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1
Numeri reali

1.1 Assiomi dei numeri reali

Introduciamo anzitutto il sistema dei numeri reali, che è il fondamento dell’analisi
matematica.

Parliamo di “sistema dei numeri reali” e non semplicemente di “insieme dei numeri rea-
li”, perché, oltre a un insieme (i cui elementi sono i numeri reali), abbiamo due operazioni
e una relazione su di esso.

L’insieme dei numeri reali può essere costruito a partire dall’insieme dei numeri natura-
li mediante ampliamenti successivi, costruendo l’insieme dei numeri interi, poi quello dei
numeri razionali e infine l’insieme dei numeri reali. Tuttavia, per evitare di allungare ec-
cessivamente l’esposizione, non procediamo per allargamenti successivi, ma introduciamo
direttamente il sistema dei numeri reali elencandone le proprietà fondamentali, dette, in
termini rigorosi, assiomi.

Definizione di sistema dei numeri reali

Il sistema dei numeri reali è una quadrupla ordinata (R,+, ·,≤) , dove R è un
insieme avente più di un elemento, + e · sono due operazioni binarie su R , cioè due
funzioni da R×R a R , chiamate rispettivamente addizione emoltiplicazione, ≤ è
una relazione in R , e sono soddisfatti gli assiomi elencati in seguito.

Gli assiomi possono essere divisi in tre gruppi: gli assiomi riguardanti le due operazioni,
gli assiomi sulla relazione e un ulteriore assioma, detto “assioma di completezza”.

Gli assiomi relativi alle operazioni stabiliscono le regole per fare i calcoli tra numeri
reali; un insieme in cui sono definite due operazioni che verificano questi assiomi è detto
campo.

Gli assiomi relativi alla relazione garantiscono che essa è di ordine lineare e descrivono
il collegamento tra la relazione e le operazioni di addizione e di moltiplicazione; in gene-
rale un campo su cui è definita una relazione che soddisfa questi assiomi è detto campo
ordinato.

Infine l’assioma di completezza assicura la validità delle proprietà dei numeri reali che
consentono lo sviluppo dell’analisi, ad esempio l’esistenza della radice quadrata di ogni
numero positivo. Tale assioma è quello che distingue il sistema dei numeri reali dal sistema
dei numeri razionali. Un campo ordinato che soddisfa l’assioma di completezza è detto
campo ordinato completo.
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1.1.1 Assiomi delle operazioni

Enunciamo anzitutto gli assiomi relativi alle operazioni, elencando dapprima quelli re-
lativi all’addizione (assiomi C1–C4), successivamente quelli relativi alla moltiplicazione
(assiomi C5–C8) e infine un assioma che coinvolge sia l’addizione che la moltiplicazione
(assioma C9).

Assioma C1: proprietà associativa dell’addizione

∀x, y, z ∈R , x + (y + z) = (x + y)+ z .

Questo assioma assicura che non è necessario distinguere tra x + (y + z) e (x + y)+ z ,
quindi si può usare la notazione x + y + z per indicare la somma di tre numeri reali.

Assioma C2: proprietà commutativa dell’addizione

∀x, y ∈R , x + y = y + x .

Assioma C3: esistenza dell’elemento neutro additivo

∃a ∈R : ∀x ∈R , x + a = a+ x = x .

L’elemento la cui esistenza è assicurata da questo assioma è unico, cioè:

1.1.1 Teorema (unicità dell’elemento neutro additivo)

Siano a, b ∈R . Se, ∀x ∈R , si ha

x + a = a+ x = x ,

x + b = b + x = x ,

allora a = b .

Dimostrazione. Dalla prima ipotesi, ponendo x = b , segue a + b = b , mentre dalla
seconda, ponendo x = a , segue a+ b = a ; perciò a = b .

Poiché questo elemento è unico, introduciamo un simbolo per indicarlo.

Definizione di elemento neutro additivo

Chiamiamo elemento neutro additivo il numero reale a la cui esistenza è assicu-
rata dall’assioma C3; lo indichiamo con 0 .

Assioma C4: esistenza dell’opposto

∀x ∈R , ∃y ∈R : x + y = y + x = 0 .
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Poiché l’addizione è commutativa (assioma C2), se è verificata una delle due uguaglianze
x + y = 0 e y + x = 0 , allora è verificata anche l’altra.

Qualunque sia x ∈ R , il numero reale y la cui esistenza è assicurata dall’assioma C4 è
unico. Si ha cioè:

1.1.2 Teorema (unicità dell’opposto)

Sia x ∈R . Se y, z ∈R sono tali che

x + y = y + x = 0 ,

x + z = z + x = 0 ,

allora y = z .

Dimostrazione. Si ha

y = y + 0 proprietà di 0 (C3),

= y + (x + z) ipotesi,

= (y + x)+ z proprietà associativa dell’addizione (C1),

= 0+ z ipotesi,

= z proprietà di 0 (C3).

Pertanto y = z .

Definizione di opposto di un numero reale

Sia x ∈R . Chiamiamo opposto (o inverso additivo) di x l’unico numero reale y
che verifica x + y = y + x = 0 ; indichiamo tale opposto con −x .

Anziché scrivere x + (−y) si usa la notazione x − y .

Assioma C5: proprietà associativa della moltiplicazione

∀x, y, z ∈R , x · (y · z) = (x · y) · z .

Questo assioma assicura che non è necessario distinguere tra x · (y · z) e (x · y) · z ,
quindi si può usare la notazione x · y · z per indicare il prodotto di tre numeri reali.

Assioma C6: proprietà commutativa della moltiplicazione

∀x, y ∈R , x · y = y · x .

Assioma C7: esistenza dell’elemento neutro moltiplicativo

∃a ∈R : ∀x ∈R , x · a = a · x = x .
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L’elemento neutro moltiplicativo è unico, cioè:

1.1.3 Teorema (unicità dell’elemento neutro moltiplicativo)

Siano a, b ∈R . Se, ∀x ∈R , si ha

x · a = a · x = x ,

x · b = b · x = x ,

allora a = b .

Dimostrazione. Dalla prima ipotesi, ponendo x = b , segue a · b = b , mentre dalla
seconda, ponendo x = a , segue a · b = a ; perciò a = b .

Poiché questo elemento è unico, introduciamo un simbolo per indicarlo.

Definizione di elemento neutro moltiplicativo

Chiamiamo elemento neutro moltiplicativo il numero reale a la cui esistenza è
assicurata dall’assioma C7; lo indichiamo con 1 .

Assioma C8: esistenza del reciproco

∀x ∈R \ {0} , ∃y ∈R : x · y = y · x = 1 .

Poiché la moltiplicazione è commutativa (assioma C6), se è verificata una delle due
uguaglianze x · y = 1 o y · x = 1 , allora è verificata anche l’altra.

Qualunque sia x ∈R\{0} , il numero reale y la cui esistenza è assicurata dall’assioma C8
è unico. Si ha cioè:

1.1.4 Teorema (unicità del reciproco)

Sia x ∈R \ {0} . Se y, z ∈R sono tali che

x · y = y · x = 1 ,

x · z = z · x = 1 ,

allora y = z

Dimostrazione. Si ha

y = y · 1 proprietà di 1 (C7),

= y · (x · z) ipotesi,

= (y · x) · z proprietà associativa della moltiplicazione (C5),

= 1 · z ipotesi,

= z proprietà di 1 (C7).

Pertanto y = z .
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Definizione di reciproco di un numero reale non nullo

Sia x ∈ R \ {0} . Chiamiamo reciproco (o inverso moltiplicativo) di x l’unico
numero reale y che verifica x · y = y · x = 1 ; indichiamo tale reciproco con x−1 o
con 1/x .

Anziché scrivere x · (1/y) si usa la notazione x/y .

Enunciamo ora un assioma che collega addizione e moltiplicazione.

Assioma C9: proprietà distributiva della moltiplicazione rispetto all’addizione

∀x, y, z ∈R , x · (y + z) = x · y + x · z .

Nell’enunciato di questo assioma, come sempre in seguito, si adotta la convenzione che,
in assenza di parentesi, la moltiplicazione viene eseguito prima dell’addizione, perciò la
scrittura x · y + x · z è un’abbreviazione di (x · y)+ (x · z) .

Per la proprietà commutativa della moltiplicazione, la proprietà distributiva vale anche
nella forma

(x + y) · z = x · z + y · z .

Un insieme in cui sono definite due operazioni che verificano gli assiomi C1–C9 è detto
campo.

1.1.2 Assiomi della relazione

Riportiamo ora gli assiomi relativi alla relazione; anzitutto quelli che stabiliscono che
la relazione è di ordine lineare (assiomi O1–O4), poi gli assiomi che stabiliscono un colle-
gamento tra la relazione e l’addizione (assioma O5) e tra la relazione e la moltiplicazione
(assioma O6).

Assioma O1: proprietà riflessiva della relazione

∀x ∈R , x ≤ x .

Assioma O2: proprietà antisimmetrica della relazione

∀x, y ∈R , (x ≤ y ∧ y ≤ x) =⇒ x = y .

Assioma O3: proprietà transitiva della relazione

∀x, y, z ∈R , (x ≤ y ∧ y ≤ z) =⇒ x ≤ z .

Una relazione da un insieme in sé che verifica gli assiomi O1–O3 è detta relazione
d’ordine.
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Assioma O4: linearità della relazione d’ordine

∀x, y ∈R , x ≤ y ∨ y ≤ x .

Una relazione d’ordine che verifica questo assioma è detta relazione d’ordine lineare o
relazione d’ordine totale.

Osserviamo che la proprietà riflessiva della relazione di ≤ è una conseguenza dell’as-
sioma di linearità. Infatti se x, y ∈ R , allora si ha x ≤ y oppure y ≤ x ; in particolare se
x ∈R , posto y = x , si ottiene comunque x ≤ x .

Enunciamo infine gli assiomi che stabiliscono un collegamento tra la relazione e le
operazioni.

Assioma O5: compatibilità tra relazione e addizione

∀x, y, z ∈R , x ≤ y =⇒ x + z ≤ y + z .

Assioma O6: compatibilità tra relazione e moltiplicazione

∀x, y, z ∈R , (x ≤ y ∧ 0≤ z) =⇒ x · z ≤ y · z .

Un campo in cui è definita una relazione che verifica gli assiomi O1–O6 è detto campo
ordinato.

1.1.3 Assioma di completezza

Esistono numerosi campi ordinati. Ad esempio, l’insieme Q dei numeri razionali è un
campo ordinato. Per caratterizzare univocamente il sistema dei numeri reali tra i campi
ordinati è necessario un ulteriore assioma, che, a differenza degli altri, non riguarda le pro-
prietà fondamentali delle operazioni e della relazione, ma proprietà più raffinate del sistema
numerico. Può essere espresso in diverse forme equivalenti tra loro, scegliamo una forma
semplice di enunciarlo.

Assioma di completezza

Siano A,B ⊆R non vuoti. Se

∀a ∈A, ∀b ∈ B , a ≤ b ,

allora esiste c ∈R tale che

∀a ∈A, ∀b ∈ B , a ≤ c ≤ b .

Due insiemi che godono della proprietà che ogni elemento del primo è minore o uguale
a ogni elemento del secondo sono detti insiemi separati. L’elemento c la cui esistenza è
assicurata dall’assioma di completezza è detto elemento di separazione tra A e B .

Un campo ordinato che verifica l’assioma di completezza è detto campo ordinato com-
pleto.
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Essenzialmente esiste un unico campo ordinato completo. In linguaggio tecnico questo
fatto viene enunciato dicendo che: “due campi ordinati completi sono isomorfi”. Questo
significa che dati due campi ordinati completi esiste una funzione biunivoca dall’uno all’al-
tro che rispetta le operazioni e la relazione. Tale funzione è detta isomorfismo di campi
ordinati.

Per essere più precisi, si può dimostrare che se (H,+H, ·H,≤H) e (K,+K, ·K,≤K) sono
campi ordinati completi, allora esiste F : H → K biunivoca e tale che, ∀x, y ∈ H , si ha
F (x +H y) = F (x)+K F (y) , F (x ·H y) = F (x) ·K F (y) e x ≤H y se e solo se F (x)≤K F (y) .

1.2 Prime conseguenze degli assiomi

Studiamo ora alcune conseguenze quasi immediate degli assiomi del sistema dei numeri
reali. Elenchiamo per prime le conseguenze dei soli assiomi delle operazioni, cioè le proprie-
tà di addizione e moltiplicazione, passiamo poi alle proprietà della relazione di ≤ , ricavate
dagli assiomi delle operazioni e da quelli della relazione, infine vediamo le conseguenze della
completezza.

Quando non vi possono essere equivoci il prodotto x ·y viene indicato con xy . Inoltre
scriviamo x < y per indicare che si ha x ≤ y e x 6= y , mentre x ≥ y equivale a y ≤ x e
x > y equivale a y < x .

Definizione di numero non negativo, non positivo, positivo, negativo

Sia x ∈R .
Diciamo che x è non negativo quando x ≥ 0 .
Diciamo che x è non positivo quando x ≤ 0 .
Diciamo che x è positivo quando x > 0 .
Diciamo che x è negativo quando x < 0 .

Ogni numero positivo è anche non negativo, mentre ogni numero negativo è anche non
positivo; 0 è sia non positivo che non negativo.

Utilizziamo le seguenti notazioni per indicare alcuni sottoinsiemi notevoli di R :

R+ = {x ∈R | x > 0} , R− = {x ∈R | x < 0} , R∗ =R \ {0} .

1.2.1 Conseguenze degli assiomi delle operazioni

Dagli assiomi di campo deduciamo le proprietà fondamentali delle operazioni di addi-
zione e di moltiplicazione.

1.2.1 Teorema (legge di cancellazione per l’addizione)

Siano x, y, z ∈R . Allora

x + z = y + z =⇒ x = y .
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Dimostrazione. Si ha

x + z = y + z =⇒ (x + z)− z = (y + z)− z esistenza dell’opposto (C4),

=⇒ x + (z − z) = y + (z − z) proprietà associativa dell’addizione (C1),

=⇒ x + 0= y + 0 esistenza dell’opposto (C4),

=⇒ x = y proprietà di 0 (C3).

In modo del tutto analogo si dimostra il teorema seguente.

1.2.2 Teorema (legge di cancellazione per la moltiplicazione)

Siano x, y ∈R e z ∈R∗ . Allora

x · z = y · z =⇒ x = y .

Notiamo che per poter cancellare un fattore moltiplicativo in una uguaglianza bisogna
che esso sia diverso da 0 . Questo perché la cancellazione richiede di moltiplicare entrambi
i membri dell’uguaglianza per il reciproco del numero da cancellare, quindi non si può
cancellare 0 che non ha reciproco.

1.2.3 Teorema

Sia x ∈R . Allora
x · 0= 0 · x = 0 .

Dimostrazione. Si ha

0+ x · 0= x · 0 proprietà di 0 (C3),

= x · (0+ 0) proprietà di 0 (C3),

= x · 0+ x · 0 proprietà distributiva (C9).

Dall’uguaglianza 0+ x · 0= x · 0+ x · 0 , per la legge di cancellazione per l’addizione 1.2.1,
segue 0= x · 0 .

Per la proprietà commutativa della moltiplicazione (assioma C6) si ha anche 0 · x = 0 .

1.2.4 Teorema

0 6= 1 .

Dimostrazione. Dimostriamo il teorema per assurdo. Se fosse 0 = 1 allora, ∀x ∈ R ,
sarebbe x ·0= x ·1 . Per il teorema 1.2.3 si ha x ·0= 0 , per le proprietà di 1 (assioma C7) si
ha x ·1= x ; quindi x = 0 . Perciò ogni elemento di R è uguale a 0 ; ciò è assurdo perché R
ha più di un elemento.

Dagli ultimi due teoremi segue che, moltiplicando 0 per un qualunque numero reale,
non si può ottenere 1 ; questo è il motivo per cui nell’assioma C8 si richiede l’esistenza del
reciproco solo per i numeri reali non nulli.
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1.2.5 Teorema (legge di annullamento del prodotto)

Siano x, y ∈R .
x · y = 0 ⇐⇒ (x = 0 ∨ y = 0) .

Dimostrazione. Supponiamo x · y = 0 . Dimostriamo che se x 6= 0 , allora y = 0 , quindi
almeno uno dei due fattori è nullo. Infatti, se x 6= 0 , allora

y = 1 · y esistenza di 1 (C7),

= (x−1 · x) · y esistenza del reciproco (C8),

= x−1 · (x · y) proprietà associativa della moltiplicazione (C5),

= x−1 · 0 ipotesi,
= 0 teorema 1.2.3.

Viceversa, se almeno uno tra x e y è nullo, allora, per il teorema 1.2.3, si ha x · y = 0 .

Conseguenza immediata di questo teorema è il seguente:

1.2.6 Teorema

Siano x, y ∈R .
x · y 6= 0 ⇐⇒ (x 6= 0 ∧ y 6= 0) .

Studiamo le proprietà dell’opposto e del reciproco di numeri reali.

1.2.7 Teorema (opposto di zero)

−0= 0 .

Dimostrazione. La proprietà di 0 (assioma C3) assicura che 0 + 0 = 0 , quindi 0 è
l’opposto di 0 .

1.2.8 Teorema (reciproco di uno)

1−1 = 1 .

Dimostrazione. La proprietà di 1 (assioma C7) assicura che 1 · 1 = 1 , quindi 1 è il
reciproco di 1 .

1.2.9 Teorema (opposto dell’opposto)

Sia x ∈R . Allora
−(−x) = x .

Dimostrazione. Per la definizione di opposto x+(−x) = 0 , quindi l’opposto di −x è x .
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1.2.10 Teorema (reciproco del reciproco)

Sia x ∈R∗ . Allora x−1 6= 0 e

�

x−1
�−1
= x .

Dimostrazione. Poiché x · x−1 = 1 6= 0 , per il teorema 1.2.6 x−1 6= 0 .
Per la definizione di reciproco x · x−1 = 1 , quindi il reciproco di x−1 è x .

Da ora in avanti, per evitare di appesantire troppo le dimostrazioni, applichiamo le
proprietà associativa e commutativa di addizione e moltiplicazione senza menzionarle.

1.2.11 Teorema (opposto della somma)

Siano x, y ∈R . Allora
−(x + y) =−x − y .

Dimostrazione. Si ha

(−x − y)+ (x + y) = (−x + x)+ (−y + y) = 0+ 0= 0 ;

pertanto l’opposto di x + y è −x − y .

1.2.12 Teorema (reciproco del prodotto)

Siano x, y ∈R∗ . Allora x · y 6= 0 e

(x · y)−1 = x−1 · y−1 .

Dimostrazione. Siano x, y ∈R∗ . Per il teorema 1.2.6, si ha x · y 6= 0 e

(x−1 · y−1) · (x · y) = (x−1 · x) · (y−1 · y) = 1 · 1= 1 ;

pertanto x−1 · y−1 è il reciproco di x · y .

Studiamo ora il prodotto di un numero reale per l’opposto di 1 .

1.2.13 Teorema

Sia x ∈R . Allora
(−1) · x = x · (−1) =−x .

Dimostrazione. Si ha

x + (−1) · x = 1 · x + (−1) · x proprietà di 1 (C7),

= (1− 1) · x proprietà distributiva (C9),

= 0 · x proprietà dell’opposto (C4),
= 0 teorema 1.2.3.

Pertanto (−1) · x è l’opposto di x .
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Da questo teorema segue:

1.2.14 Teorema

Siano x, y ∈R . Allora

(−x) · y = x · (−y) =−(x · y) ,
(−x) · (−y) = x · y .

Dimostrazione. Si ha

(−x) · y =
�

(−1) · x
�

· y teorema 1.2.13,

= (−1) · (x · y) proprietà associativa della moltiplicazione (C5),

=−(x · y) teorema 1.2.13.

In modo analogo si ottiene x · (−y) =−(x · y) .
Si ha

(−x) · (−y) = (−x) ·
�

(−1) · y
�

teorema 1.2.13,

=
�

(−x) · (−1)
� · y proprietà associativa della moltiplicazione (C5),

=
�−(−x)
� · y teorema 1.2.13,

= x · y teorema 1.2.9.

Questo teorema consente di utilizzare la notazione −x · y senza ambiguità: essa indica
indifferentemente l’opposto di x · y oppure −x moltiplicato per y .

1.2.2 Conseguenze degli assiomi della relazione

Dagli assiomi della relazione d’ordine deduciamo le regole fondamentali per manipolare
le disuguaglianze.

1.2.15 Teorema

Siano x, y ∈R . Allora

x ≤ y ⇐⇒ 0≤ y − x .

Dimostrazione. Si ha

x ≤ y =⇒ x − x ≤ y − x compatibilità tra relazione e addizione (O5),

=⇒ 0≤ y − x proprietà dell’opposto (C4).

Viceversa

0≤ y − x =⇒ 0+ x ≤ y − x + x compatibilità tra relazione e addizione (O5),

=⇒ x ≤ y − x + x proprietà di 0 (C3),

=⇒ x ≤ y proprietà dell’opposto (C4).



12 Capitolo 1. Numeri reali

Da questo teorema segue:

1.2.16 Teorema

Siano x, y ∈R . Allora

x ≤ y ⇐⇒ −y ≤−x .

Dimostrazione. Per il teorema 1.2.15 si ha x ≤ y ⇐⇒ 0 ≤ y − x . Per il teorema 1.2.9
si ha

y − x =−(−y)+ (−x) = (−x)− (−y) ,

pertanto, applicando nuovamente il teorema 1.2.15, risulta

x ≤ y ⇐⇒ 0≤ (−x)− (−y) ⇐⇒ −y ≤−x .

In particolare, ponendo y = 0 , da questo teorema segue:

1.2.17 Teorema

Siano x, y ∈R . Allora
x ≤ 0 ⇐⇒ −x ≥ 0 .

L’assioma di compatibilità tra relazione e addizione (assioma O5) assicura che somman-
do lo stesso numero reale a entrambi i membri di una disuguaglianza questa si conserva.
Vediamo una generalizzazione di questo fatto.

1.2.18 Teorema

Siano x, y, z , w ∈R . Allora

(x ≤ y ∧ z ≤ w) =⇒ x + z ≤ y +w .

Dimostrazione. Si ha

(x ≤ y ∧ z ≤ w) =⇒
=⇒ (x + z ≤ y + z ∧ y + z ≤ y +w) compatibilità tra relazione e addizione (O5),

=⇒ x + z ≤ y +w proprietà transitiva della relazione (O3).

Da questo teorema segue immediatamente:

1.2.19 Teorema

Siano x, y ∈R . Allora

(x ≥ 0 ∧ y ≥ 0) =⇒ x + y ≥ 0 .
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Vediamo ora le proprietà delle disuguaglianze che coinvolgono il prodotto di due numeri
reali.

1.2.20 Teorema

Sia x ∈R . Allora
x · x ≥ 0 .

Dimostrazione. Distinguiamo secondo che sia x ≥ 0 o x ≤ 0 . Si ha

x ≥ 0 =⇒ x · x ≥ 0 · x compatibilità tra relazione e moltiplicazione (O6),
=⇒ x · x ≥ 0 teorema 1.2.3;

x ≤ 0 =⇒ −x ≥ 0 teorema 1.2.17,

=⇒ (−x) · (−x)≥ 0 · (−x) compatibilità tra relazione e moltiplicazione (O6),

=⇒ x · x ≥ 0 teoremi 1.2.14 e 1.2.3.

Quindi, in ogni caso, x · x ≥ 0 .

Da questo teorema segue:

1.2.21 Teorema

1> 0 .

Dimostrazione. Poiché 1 = 1 · 1 , il teorema precedente assicura che 1 ≥ 0 ; per il teore-
ma 1.2.4 1 6= 0 , quindi 1> 0 .

Dagli ultimi due teoremi segue che non esiste un numero reale x tale che x · x = −1 ,
perché il primo membro è non negativo e il secondo è negativo.

1.2.22 Teorema

Sia x ∈R . Allora
x > 0 ⇐⇒ x−1 > 0 .

Dimostrazione. Sia x > 0 . Si ha

x−1 = x−1 · 1 proprietà di 1 (C7),

= x−1 ·
�

x−1 · x
�

esistenza del reciproco (C8),

=
�

x−1 · x−1
� · x proprietà associativa della moltiplicazione (C5).

Per il teorema 1.2.20 x−1 ·x−1 ≥ 0 , mentre x > 0 per ipotesi, pertanto, per la compatibilità
tra relazione e moltiplicazione (assioma O6), risulta

�

x−1 · x−1
�

· x ≥ 0 , quindi x−1 ≥ 0 ;
per il teorema 1.2.10 x−1 6= 0 , quindi si ha x−1 > 0 .

Viceversa sia x−1 > 0 . Poiché, per il teorema 1.2.10, x =
�

x−1
�−1 , x è reciproco di un

numero positivo, quindi, per ciò che si è appena dimostrato, è positivo.
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1.2.23 Teorema

Siano x, y, z ∈R . Allora

(x ≤ y ∧ z ≤ 0) =⇒ x · z ≥ y · z .

Dimostrazione. Si ha

(x ≤ y ∧ z ≤ 0) =⇒
=⇒ (x ≤ y ∧ −z ≥ 0) teorema 1.2.17,

=⇒ x · (−z)≤ y · (−z) compatibilità tra relazione e moltiplicazione (O6),
=⇒ −x · z ≤−y · z teorema 1.2.14,
=⇒ x · z ≥ y · z teorema 1.2.16.

1.2.24 Teorema

Siano x, y ∈R . Allora

0< x ≤ y =⇒ y−1 ≤ x−1 .

Dimostrazione. Sia 0< x ≤ y . Per il teorema 1.2.22 risulta x−1 > 0 e y−1 > 0 . Si ha

x · x−1 ≤ y · x−1 , compatibilità tra relazione e moltiplicazione (O6),

y−1 · x · x−1 ≤ y−1 · y · x−1 , compatibilità tra relazione e moltiplicazione (O6),

y−1 · 1≤ 1 · x−1 , proprietà del reciproco (C8),

y−1 ≤ x−1 , proprietà di 1 (C7).

1.2.25 Teorema

Siano x, y, z , w ∈R . Allora

(0≤ x ≤ y ∧ 0≤ z ≤ w) =⇒ x · z ≤ y ·w .

Dimostrazione. Si ha

(0≤ x ≤ y ∧ 0≤ z ≤ w) =⇒
=⇒ (x · z ≤ y · z ∧ y · z ≤ y ·w) compatibilità tra relazione e moltiplicazione (O6),

=⇒ x · z ≤ y ·w proprietà transitiva della relazione (O3).

Studiamo il segno (cioè la positività o negatività) del prodotto di due numeri reali. Per
la compatibilità tra relazione e moltiplicazione (assioma O6) il prodotto di due numeri non
negativi è non negativo. Vediamo gli altri casi.
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1.2.26 Teorema

Siano x, y ∈R . Allora

(x ≤ 0 ∧ y ≤ 0) =⇒ x · y ≥ 0 .

Dimostrazione. Si ha

(x ≤ 0 ∧ y ≤ 0) =⇒
=⇒ (−x ≥ 0 ∧ −y ≥ 0) teorema 1.2.17,

=⇒ (−x) · (−y)≥ 0 compatibilità tra relazione e moltiplicazione (O6),
=⇒ x · y ≥ 0 teorema 1.2.14.

1.2.27 Teorema

Siano x, y ∈R . Allora

(x ≤ 0 ∧ y ≥ 0) =⇒ x · y ≤ 0 .

Dimostrazione. Si ha

(x ≤ 0 ∧ y ≥ 0) =⇒
=⇒ (−x ≥ 0 ∧ y ≥ 0) teorema 1.2.17,

=⇒ (−x) · y ≥ 0 compatibilità tra relazione e moltiplicazione (O6),
=⇒ −x · y ≥ 0 teorema 1.2.14,
=⇒ x · y ≤ 0 teorema 1.2.17.

1.2.3 La funzione valore assoluto

Prima di studiare le conseguenze dell’assioma di completezza definiamo e studiamo la
funzione valore assoluto, che risulterà utile in seguito.

Definizione di valore assoluto di un numero reale

Sia x ∈ R . Chiamiamo valore assoluto di x e indichiamo con |x| il numero
reale

|x|=
�

x , se x ≥ 0 ,
−x , se x < 0 .

Abbiamo così definito una funzione da R a R , che è detta funzione valore assoluto.

1.2.28 Osservazione. Abitualmente i numeri reali sono rappresentati come punti di una
retta. Ciò significa che si costruisce una funzione biunivoca da R ad una retta, pensata
come insieme di punti. Non entriamo nel dettaglio della costruzione di questa funzione,
ricordiamo solo che per determinarla occorre fissare sulla retta un’origine, un segmento di
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Figura 1.2.1
Grafico della funzione valore assoluto.

lunghezza unitaria e un verso positivo. Parleremo quindi indifferentemente di numeri reali
e di punti.

Questa rappresentazione consente di dare alla funzione valore assoluto il seguente si-
gnificato geometrico. Sia che x sia positivo, sia che esso sia negativo, |x| è la lunghezza
del segmento di estremi 0 e x , cioè è la distanza di x dall’origine. Più in generale, se
x, y ∈ R , allora la lunghezza del segmento di estremi x e y è x − y se x ≥ y , mentre è
y − x in caso contrario. In ogni caso la lunghezza di tale segmento, cioè la distanza di x
da y , è |x − y| .

Da questa definizione si ottiene facilmente il teorema seguente:

1.2.29 Teorema

Sia x ∈R . Allora:

I) |x| ≥ 0 ;

II) |x|= 0 ⇐⇒ x = 0 ;

III) |x|2 = x2 ;

IV) −|x| ≤ x ≤ |x| .

Per studiare le proprietà del valore assoluto risulta utile il seguente teorema.

1.2.30 Teorema

Siano x, y ∈R , tali che x, y ≥ 0 . Allora:

I) x2 = y2 ⇐⇒ x = y ;

II) x2 ≤ y2 ⇐⇒ x ≤ y ;

III) x2 < y2 ⇐⇒ x < y .

Dimostrazione. I) Se x = y , ovviamente x2 = y2 .
Viceversa, se x2 = y2 , allora si ha 0= x2− y2 = (x+ y)(x − y) . Per la legge di annulla-

mento del prodotto 1.2.5, si ha x− y = 0 oppure x+ y = 0 . Nel primo caso risulta x = y .
Nel secondo caso si ha x = −y ≤ 0 , quindi risulta sia x ≥ 0 che x ≤ 0 , pertanto, per la
proprietà antisimmetrica della relazione (assioma O2), x = 0 ; perciò è anche y =−x = 0 .
Pertanto, anche in questo caso, x = y .
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II) Si ha x2 ≤ y2 se e solo se y2− x2 ≥ 0 , cioè (y − x)(y + x)≥ 0 .
Supponiamo (y−x)(y+x)≥ 0 . Si ha x+y ≥ 0 , quindi se y+x > 0 per il teorema 1.2.22

si ha (y + x)−1 > 0 , pertanto

y − x =
�

(y − x)(y + x)
�

(y + x)−1 ≥ 0

quindi x ≤ y . Se invece y+ x = 0 , abbiamo visto, nella dimostrazione dell’affermazione I,
che si ha x = y = 0 e quindi x ≤ y .

Viceversa, se x ≤ y , allora y − x ≥ 0 ; poiché x + y ≥ 0 , risulta (y − x)(y + x)≥ 0 .

III) Sia x2 < y2 ; se fosse x ≥ y , allora, per l’affermazione II, sarebbe x2 ≥ y2 , contraria-
mente all’ipotesi. Pertanto, x < y .

Viceversa, sia x < y ; se fosse x2 ≥ y2 , allora, per l’affermazione II, sarebbe x ≥ y ,
contrariamente all’ipotesi. Pertanto, x2 < y2 .

1.2.31 Teorema (proprietà del valore assoluto)

Siano x, y ∈R . Allora:

I) |x| ≤ y ⇐⇒ −y ≤ x ≤ y ;

II) |x| ≥ y ⇐⇒ (x ≥ y ∨ x ≤−y) ;

III) |x · y|= |x| · |y| ;
IV) |x + y| ≤ |x|+ |y| ;
V)
�

�|x| − |y|�� ≤ |x − y| .

Dimostrazione. I) Se |x| ≤ y , per il teorema 1.2.29, affermazione IV, risulta x ≤ |x| ≤ y
e x ≥−|x| ≥ −y .

Viceversa se −y ≤ x ≤ y , allora si ha −x ≤ y ; poiché |x| = x , oppure |x| = −x in
ogni caso risulta |x| ≤ y .

II) Sia |x| ≥ y . Poiché |x| = x oppure |x| = −x , si ha x ≥ y oppure −x ≥ y ; quindi
x ≥ y oppure x ≤−y .

Viceversa, sia x ≥ y oppure x ≤−y . Per il teorema 1.2.29, affermazione IV, nel primo
caso risulta |x| ≥ x ≥ y , nel secondo −|x| ≤ x ≤−y ; in ognuno dei casi si ha |x| ≥ y .

III) I due membri dell’uguaglianza sono non negativi, pertanto, per il teorema 1.2.30,
affermazione I, essa è verificata se e solo se si ha uguaglianza tra i quadrati. Per il teore-
ma 1.2.29, affermazione III si ha

|xy|2 = (xy)2 = x2y2 = |x|2|y|2 =
�

|x||y|
�2

.

IV) I due membri della disuguaglianza sono non negativi, pertanto, per il teorema 1.2.30,
affermazione II, è verificata se e solo se vale la disuguaglianza tra i quadrati. Per il teore-
ma 1.2.29, affermazioni III e IV, e per l’affermazione III di questo teorema si ha

|x + y|2 = (x + y)2 = x2+ 2xy + y2 ≤ |x|2+ 2|xy|+ y2 = |x|2+ 2|x||y|+ |y|2 = �|x|+ |y|�2 .
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Figura 1.2.2
Prova geometrica delle affermazioni I (a sinistra) e II (a destra) del teorema 1.2.31.
Per determinare i numeri reali x tali che |x| ≤ y consideriamo i punti del grafico della
funzione valore assoluto al di sotto della retta orizzontale individuata dall’ordinata y e li
proiettiamo sull’asse delle ascisse, ottenendo il segmento di estremi −y e y .
Per determinare i numeri reali x tali che |x| ≥ y consideriamo i punti del grafico della
funzione valore assoluto al di sopra della retta orizzontale individuata dall’ordinata y e li
proiettiamo sull’asse delle ascisse, ottenendo la semiretta orientata negativamente di origi-
ne −y e la semiretta orientata positivamente di origine y .

V) I due membri della disuguaglianza sono non negativi, pertanto, per il teorema 1.2.30,
affermazione II, è verificata se e solo se vale la disuguaglianza tra i quadrati. Per il teore-
ma 1.2.29, affermazioni III e IV, e per l’affermazione III di questo teorema si ha

�

�|x| − |y|��2 = �|x| − |y|�2 = |x|2− 2|x||y|+ |y|2 = |x|2− 2|xy|+ |y|2 ≤
≤ x2− 2xy + y2 = (x − y)2 = |x − y|2 .

La disuguaglianza IV è detta disuguaglianza triangolare. Il nome deriva dall’interpre-
tazione geometrica del valore assoluto (v. osservazione 1.2.28). Infatti, se x, y ∈ R , allora
|x + y| è la distanza del punto x dal punto −y , |x| è la distanza del punto x dall’origine
e |y| è la distanza del punto −y dall’origine. Pertanto la disuguaglianza |x + y| ≤ |x|+ |y|
esprime il fatto che la distanza tra i due punti x e −y di una retta non può essere maggiore
della somma delle distanze dei due punti da un terzo punto (l’origine). Nel piano a que-
sta disuguaglianza corrisponde il fatto che la lunghezza di un lato di un triangolo non può
essere maggiore della somma delle lunghezze degli altri due.

1.2.4 Estremi di insiemi di numeri reali

Nel seguito è sottinteso che tutti i sottoinsiemi di R considerati sono non vuoti.

Definizione di massimo e minimo di un sottoinsieme di R

Siano A⊆R e b , c ∈R .
Diciamo che b è massimo di A quando b ∈A e, ∀a ∈A , si ha a ≤ b .
Diciamo che c è minimo di A quando c ∈A e, ∀a ∈A , si ha a ≥ c .
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1.2.32 Teorema (unicità del massimo e del minimo)

Siano A⊆R e b1, b2, c1, c2 ∈R .
I) Se b1 e b2 sono massimo di A , allora b1 = b2 .

II) Se c1 e c2 sono minimo di A , allora c1 = c2 .

Dimostrazione. I) Se b1 e b2 sono massimo di A , allora, per la definizione di mas-
simo, b1, b2 ∈ A . Inoltre ∀a ∈ A si ha a ≤ b1 , in particolare, ponendo a = b2 si ha
b2 ≤ b1 . Ripetendo il ragionamento con b1 e b2 scambiati tra loro si ottiene anche b1 ≤ b2 .
Perciò b1 = b2 .

II) La dimostrazione è analoga.

Il massimo di un sottoinsieme A di R , se esiste, è indicato con maxA , il minimo è
indicato con minA .

1.2.33 Teorema

Sia A⊆R . Se esistono minA e maxA , allora

min A≤maxA.

Dimostrazione. Per definizione di massimo maxA∈A e minA è minore o uguale a ogni
elemento di A , in particolare minA≤maxA .

1.2.34 Esempio. Siano

A1 = {−1} , A2 = {0,2, 3, 4} , A3 = {x ∈R |1≤ x ≤ 3} ,
A4 = {x ∈R |1< x < 3} , A5 = {x ∈R | x ≤ 2} , A6 = {x ∈R | x ≤ 0}∪ {x ∈R | x > 3} .

È facile verificare che minA1 = maxA1 = −1 , minA2 = 0 , maxA2 = 4 , minA3 = 1 ,
maxA3 = 3 .

L’insieme A4 non ha minimo. Infatti sia a ∈ A4 e indichiamo con b il punto medio
tra a e 1 , cioè b = (a + 1)/2 . Evidentemente da 1 < a segue 2 < a + 1 < 2a , quindi
1 < b < a ; poiché a < 3 è anche b < 3 , quindi b ∈ A4 . Perciò b è un elemento di A4

minore di a , quindi a non è minimo di A4 . Abbiamo così provato che nessun elemento
di A4 è il minimo dell’insieme. In modo analogo, considerando c = (a+3)/2 , si prova che
ciascun elemento a di A4 non è massimo. Pertanto A4 non ha né massimo né minimo.

Si ha maxA5 = 2 , mentre A5 non ha minimo. Infatti, qualunque sia a ∈ A5 , a − 1 è
un elemento di A5 minore di a , quindi a non è il minimo di A5 .

L’insieme A6 non ha né massimo né minimo. Infatti, se a ∈A6 , allora o a ≤ 0 , quindi
4 > a e 4 ∈ A6 , oppure a > 3 , quindi a + 1 ∈ A6 e a + 1 > a . In ogni caso, esiste un
elemento di A6 maggiore di a . In modo analogo si dimostra che A6 non ha minimo.

È evidente da questi esempi che un sottoinsieme di R può non avere massimo, o non
avere minimo, o non avere né massimo né minimo.
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Figura 1.2.3
Gli insiemi studiati nell’esem-
pio 1.2.34

1.2.35 Osservazione. Se A⊆R ha un numero finito di elementi, allora esistono massimo
e minimo di A .

Questo fatto è evidente; una dimostrazione rigorosa richiede l’utilizzo del principio di
induzione che vedremo nella sottosezione 1.3.1.

Gli insiemi A4 e A6 dell’esempio 1.2.34 non hanno né massimo né minimo, ma c’è
una differenza tra le due situazioni. Non esistono numeri reali maggiori o uguali a ogni
elemento di A6 , mentre esistono numeri reali, ad esempio 4 , maggiori o uguali a ogni
elemento di A4 .

Per distinguere queste due situazioni diamo le seguenti definizioni.

Definizione di maggiorante e minorante di un sottoinsieme di R

Siano A⊆R e x ∈R .
Diciamo che x è un maggiorante di A quando ∀a ∈A si ha a ≤ x .
Diciamo che x è un minorante di A quando ∀a ∈A si ha a ≥ x .

1.2.36 Esempio. Consideriamo gli insiemi studiati nell’esempio 1.2.34.
Qualunque numero maggiore o uguale a −1 è maggiorante per A1 ; qualunque numero

minore o uguale a −1 è minorante per A1 .
I maggioranti di A2 sono tutti e soli i numeri maggiori o uguale a 4 , mentre i minoranti

sono tutti e soli i numeri minori o uguali a 0 .
I maggioranti di A3 sono tutti e soli i numeri maggiori o uguale a 3 , mentre i minoranti

sono tutti e soli i numeri minori o uguali a 1 . Lo stesso vale per A4 .
L’insieme A5 non ha minoranti. Infatti se x ∈R è tale che x > 2 , allora evidentemente

non è un minorante, mentre se x ≤ 2 , allora x − 1 è un elemento di A5 minore di x . I
maggioranti di A5 sono tutti e soli i numeri maggiori o uguali a 2 .

Con ragionamenti analoghi a quelli fatti per dimostrare che A5 non ha minoranti, si
dimostra che A6 non ha né maggioranti né minoranti.
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Definizione di insieme limitato superiormente, limitato inferiormente, limitato

Sia A⊆R .
Diciamo che A è superiormente limitato quando l’insieme dei maggioranti di A

è non vuoto, in caso contrario diciamo che A è superiormente illimitato.
Diciamo che A è inferiormente limitato quando l’insieme dei minoranti di A è

non vuoto, in caso contrario diciamo che A è inferiormente illimitato.
Diciamo che A è limitato quando A è sia superiormente limitato che inferior-

mente limitato, in caso contrario diciamo che A è illimitato.

1.2.37 Osservazione. Talvolta risulta utile l’osservazione che un insieme A è limitato se e
solo se
�|a| ��a ∈A
	

è superiormente limitato. Ovviamente 0 è in ogni caso un minorante
di
�|a| ��a ∈A
	

, quindi tale insieme è superiormente limitato se e solo se è limitato.

Infatti, se esiste x maggiorante di
�

|a| ��a ∈ A
	

, allora, ∀a ∈ A , si ha |a| ≤ x , quindi,
per le proprietà del valore assoluto 1.2.31, affermazione I, risulta −x ≤ a ≤ x ; perciò −x
è un minorante e x è un maggiorante di A .

Viceversa, se esistono x minorante e y maggiorante di A , allora, ∀a ∈A , si ha a ≤ y
e −a ≤ −x ; poiché o |a| = a , oppure |a| = −a , risulta |a| ≤ max{−x, y} . Quindi
max{−x, y} è un maggiorante di

�|a| ��a ∈A
	

.

1.2.38 Esempio. Consideriamo gli insiemi studiati nell’esempio 1.2.34.
Nell’esempio 1.2.36 abbiamo determinato i maggioranti e i minoranti di tali insiemi. Da

ciò segue che gli insiemi A1 , A2 , A3 e A4 sono superiormente limitati e inferiormente limi-
tati, quindi sono limitati. L’insieme A5 è superiormente limitato e inferiormente illimitato,
mentre A6 è superiormente e inferiormente illimitato; quindi A5 e A6 sono illimitati.

Dalle definizioni si ottiene immediatamente il seguente teorema.

1.2.39 Teorema

Siano A⊆R e x ∈R .
Si ha x =maxA se e solo se x ∈A e x è maggiorante di A .
Si ha x =min A se e solo se x ∈A e x è minorante di A .

Definizione di estremo superiore e estremo inferiore di un sottoinsieme di R

Sia A⊆R .
Se A è superiormente limitato chiamiamo estremo superiore di A il minimo

dell’insieme dei maggioranti.
Se A è inferiormente limitato chiamiamo estremo inferiore di A il massimo

dell’insieme dei minoranti.

L’esempio 1.2.34mostra che vi sono sottoinsiemi di R privi di minimo, quindi non è ga-
rantito che un insieme superiormente limitato abbia estremo superiore; tuttavia, per la com-
pletezza di R , l’insieme deimaggioranti di ogni insieme superiormente limitato haminimo.
Analogamente l’insieme dei minoranti di ogni insieme inferiormente limitato ha massimo.

Vale cioè il seguente teorema.
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1.2.40 Teorema (esistenza dell’estremo superiore)

Sia A⊆ R . Se A è superiormente limitato, allora l’insieme dei maggioranti di A
ha minimo.

Dimostrazione. Indichiamo con B l’insieme dei maggioranti di A .
Per la definizione di maggiorante, qualunque siano x ∈A e y ∈ B risulta x ≤ y . Perciò,

per l’assioma di completezza, esiste c ∈ R tale che ∀x ∈ A, x ≤ c e ∀y ∈ B , y ≥ c . La
prima disuguaglianza significa che c è un maggiorante di A , la seconda che c è minore o
uguale a ogni maggiorante di A , pertanto c è il minimo dell’insieme dei maggioranti.

Un teorema analogo vale per l’estremo inferiore.
Per il teorema appena dimostrato, l’estremo superiore di un insieme superiormente

limitato esiste sempre; esso è unico perché è unico il minimo di qualunque insieme. Tale
estremo superiore è indicato con supA .

Nel caso che A sia superiormente illimitato si pone inoltre sup A=+∞ .
In modo del tutto analogo l’estremo inferiore di un insieme A inferiormente limitato

si indica con inf A , mentre se A è inferiormente illimitato si pone inf A=−∞ .

1.2.41 Esempio. Consideriamo gli insiemi studiati negll’esempio 1.2.34.
Nell’esempio 1.2.36 abbiamo determinato i maggioranti e i minoranti di tali insiemi.

Da quanto visto segue facilmente che inf A1 = sup A1 = −1 , inf A2 = 0 , sup A2 = 4 ,
inf A3 = inf A4 = 1 , sup A3 = sup A4 = 3 , supA5 = 2 . Poiché A5 è inferiormente illi-
mitato si ha inf A5 =−∞ ; poiché A6 è inferiormente e superiormente illimitato risulta
inf A6 =−∞ e sup A6 =+∞ .

1.2.42 Teorema (caratterizzazione dell’estremo superiore)

Siano A⊆ R superiormente limitato e a ∈ R . Il numero a è estremo superiore
di A se e solo se sono verificate le condizioni:

a) ∀x ∈A, x ≤ a ,

b) ∀y ∈R tale che y < a , esiste z ∈A tale che z > y .

Dimostrazione. Si ha a = sup A se e solo se a è un maggiorante di A e a è minore o
uguale a ogni maggiorante.

La condizione che a sia un maggiorante è la a).
Il numero a è minore o uguale a ogni maggiorante se e solo se ogni y ∈ R tale che

y < a non è maggiorante, cioè esiste z ∈ A tale che z > y . Quindi la condizione che a è
minore o uguale a ogni maggiorante è equivalente alla (b).

Il teorema seguente è l’analogo per l’estremo inferiore.

1.2.43 Teorema (caratterizzazione dell’estremo inferiore)

Siano A ⊆ R inferiormente limitato e a ∈ R . Il numero a è estremo inferiore
di A se e solo se sono verificate le condizioni:
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a) ∀x ∈A, x ≥ a ,

b) ∀y ∈R tale che y > a , esiste z ∈A tale che z < y .

Il seguente teorema stabilisce la relazione tra massimo ed estremo superiore di un insie-
me.

1.2.44 Teorema

Sia A⊆R .
I) Se A ha massimo, allora è superiormente limitato e maxA= sup A .

II) Se A è superiormente limitato e supA∈A , allora ha massimo e maxA= supA .

Dimostrazione. I) Se esiste maxA , allora esso è maggiorante di A , che quindi è supe-
riormente limitato; inoltre maxA è un elemento di A , per cui è minore o uguale a ogni
maggiorante, perciò è è l’estremo superiore.

II) Se A è superiormente limitato e supA∈ A , allora sup A è un maggiorante di A che
appartiene ad A , per il teorema 1.2.39 esso è il massimo di A .

Un teorema analogo lega minimo ed estremo inferiore.

1.2.45 Teorema

Sia A⊆R limitato. Allora:

infA≤ sup A.

Dimostrazione. Sia x ∈A . Poiché inf A è un minorante di A e supA è un maggiorante
di A , si ha inf A≤ x ≤ supA .

1.3 Numeri naturali, interi, razionali

Studiamo ora i sistemi dei numeri naturali, dei numeri interi e dei numeri razionali;
tali sistemi numerici sono introdotti come sottoinsiemi dell’insieme dei numeri reali, le
operazioni e la relazione d’ordine su di essi sono ereditate da quelle sui numeri reali.

1.3.1 Numeri naturali

Introduciamo l’insieme N dei numeri naturali come sottoinsieme di R . L’idea di ba-
se per introdurre il sottoinsieme di R costituito dai numeri naturali è che tale insieme è
individuato dalle seguenti proprietà:

1. 0 ∈N ;

2. se n ∈N , allora n+ 1∈N ;

3. un numero reale appartiene a N solo se si ottiene a partire da 0 applicando la regola 2.
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La proprietà 3. ci dice che l’insieme che vogliamo definire è il più piccolo sottoinsieme
di R per cui valgono le proprietà 1. e 2., tale insieme può essere ottenuto intersecando tutti
gli insiemi che godono di tali proprietà. Quindi traduciamo in termini rigorosi questa idea
con le seguenti definizioni.

Definizione di insieme induttivo

Sia A⊆R . Diciamo che A è un insieme induttivo quando A verifica:

a) 0 ∈A ,

b) ∀x ∈R , x ∈A =⇒ x + 1 ∈A .

1.3.1 Esempio. Si verifica facilmente che sono insiemi induttivi R , {x ∈ R | x > −1} e
{x ∈R | x ≥ 0} .

Non è invece induttivo l’insieme A = {x ∈ R | x ≥ 0} ∪ {−2} , perché −2 ∈ A , ma
−2+ 1=−1 /∈A ; quindi non è verificata la condizione b) della definizione.

Definizione di insieme dei numeri naturali

Chiamiamo insieme dei numeri naturali e indichiamo con N l’intersezione di
tutti gli insiemi induttivi di numeri reali.

Analogamente a quanto definito nel caso dei numeri reali, indichiamo con N∗ l’insie-
me N \ {0} .

1.3.2 Teorema

Sia A⊆R . Se A è induttivo, allora N⊆A .

Dimostrazione. L’intersezione di una famiglia di insiemi è inclusa in ciascuno degli insiemi
che si intersecano, quindi N , intersezione di tutti gli insiemi induttivi, è incluso in ogni
insieme induttivo.

1.3.3 Teorema

L’insieme N è induttivo.

Dimostrazione. Il numero 0 appartiene a ogni insieme induttivo, quindi appartiene al-
l’intersezione di tutti gli insiemi induttivi, cioè a N .

Se x ∈ N , allora, qualunque sia A ⊆ R induttivo, si ha x ∈ A , quindi x + 1 ∈ A ;
pertanto x + 1 appartiene a ogni insieme induttivo, cioè x + 1∈N .

Pertanto N soddisfa entrambe le condizioni della definizione di insieme induttivo.

La proprietà di N di essere il più piccolo insieme induttivo si traduce facilmente nel
teorema seguente, che viene utilizzato frequentemente per dimostrare affermazioni relative
ai numeri naturali.
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1.3.4 Teorema (principio di induzione)

Per ogni n ∈N sia P (n) una proposizione. Se sono verificate le condizioni:

a) P (0) è vera,
b) ∀n ∈N , P (n) =⇒ P (n+ 1) ,

allora P (n) è vera ∀n ∈N .

Dimostrazione. Posto A =
�

n ∈ N ��P (n) è vera	 , dobbiamo dimostrare che A = N .
Per la definizione di A , si ha A ⊆ N , quindi resta da dimostrare che N ⊆ A ; poiché
ogni insieme induttivo contiene N (v. teorema 1.3.2), è sufficiente dimostrare che A è
induttivo.

Dalla condizione a) segue 0 ∈ A . Inoltre, se n ∈ A , allora P (n) è vera, per la con-
dizione b) anche P (n + 1) è vera, perciò n + 1 ∈ A . Questo prova che A è indutti-
vo.

Il teorema è così provato.

Studiamo la struttura dell’insieme N . Anzitutto determiniamone gli estremi.

1.3.5 Teorema

minN= 0 .

Dimostrazione. Poiché 0 ∈ N , per dimostrare che 0 = minA è sufficiente provare che
ogni elemento di N è maggiore o uguale a 0 ; ciò significa che, posto A= {x ∈R | x ≥ 0} ,
occorre provare che N⊆A . Per il teorema 1.3.2 ciò è vero se A è induttivo.

Si ha 0≥ 0 , quindi 0∈A ; se x ∈ A , allora x + 1> x ≥ 0 , pertanto anche x + 1 ∈ A .
Pertanto A è induttivo.

1.3.6 Teorema

supN=+∞ .

Dimostrazione. Supponiamo, per assurdo che N sia superiormente limitato.
Poniamo M = supN . Se n ∈N , allora n+1 ∈N , perciò n+1≤M ; pertanto, ∀n ∈N ,

si ha n ≤ M − 1 , quindi M − 1 è maggiorante di N . Perciò M non è il più piccolo dei
maggioranti di N e ciò è assurdo.

Dall’idea intuitiva di insieme dei numeri naturali, sappiamo che tra un numero natu-
rale n e n + 1 non vi sono altri numeri naturali. Dimostriamo rigorosamente questo
fatto.

1.3.7 Teorema

Sia n ∈N \ {0} . Allora n− 1∈N .
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Dimostrazione. Dobbiamo dimostrare che si ha N∗ ⊆ {n ∈N∗ |n− 1 ∈N} , che equivale
a N⊆ {0}∪ {n ∈N∗ |n− 1 ∈N} . Per il teorema 1.3.2, posto

A= {0}∪ {n ∈N∗ |n− 1 ∈N} ,

è sufficiente dimostrare che A è induttivo.
Evidentemente 0∈A .
Sia n ∈ A . Allora n ∈ N , quindi, per il teorema 1.3.5, n ≥ 0 , pertanto n + 1 ≥ 1 ,

quindi n+ 1 ∈N∗ ; inoltre (n+ 1)− 1= n ∈N . Pertanto n+ 1 ∈A .

Una conseguenza di questo teorema è il seguente.

1.3.8 Teorema

min
�

N \ {0}
�

= 1 .

Dimostrazione. Per il teorema 1.3.7 se n ∈ N∗ , allora n − 1 ∈ N , pertanto, per il teore-
ma 1.3.5, n− 1≥ 0 , cioè n ≥ 1 . Pertanto 1 è il più piccolo elemento di N∗ .

Generalizziamo il teorema 1.3.7, considerando la differenza di due numeri naturali.

1.3.9 Teorema

Siano m, n ∈N . Se m ≤ n , allora n−m ∈N .

Dimostrazione. Dimostriamo il teorema per induzione su n , cioè consideriamo l’affer-
mazione

P (n) : ∀m ∈N , m ≤ n =⇒ n−m ∈N .

Se n = 0 e m ∈ N , m ≤ n , allora m = 0 , quindi n −m = 0 ∈ N . Pertanto P (0) è
vera.

Supponiamo vera P (n) e sia m ∈ N tale che m ≤ n + 1 . Se m = 0 , allora si ha
(n+ 1)−m = n+ 1∈N . Se m 6= 0 , allora, per il teorema 1.3.7, risulta m− 1 ∈N e

m− 1≤ (n+ 1)− 1= n ,

quindi, per ipotesi induttiva, n− (m− 1) ∈N , cioè (n+ 1)−m ∈N . Pertanto P (n + 1)
è vera.

Per il principio di induzione 1.3.4 P (n) è vera ∀n ∈N .

1.3.10 Teorema

Siano m, n ∈N . Se m < n , allora m+ 1≤ n .

Dimostrazione. Se m < n , allora, per il teorema 1.3.9, risulta n − m ∈ N , inoltre si
ha n − m 6= 0 , quindi n − m ∈ N∗ . Allora, per il teorema 1.3.8, n − m ≥ 1 , quindi
n ≥ m+ 1 .

Questi teoremi consentono di ottenere informazioni sull’esistenza diminimo emassimo
per sottoinsiemi di N .
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1.3.11 Teorema

Sia A⊆N . Allora:

I) A ha minimo;

II) se A è superiormente limitato, allora ha massimo.

Dimostrazione. I) Per il teorema 1.3.5 N è limitato inferiormente, quindi anche A
è limitato inferiormente. Per l’analogo del teorema 1.2.44 per il minimo, è sufficiente
dimostrare che infA∈A .

Posto m = inf A , dimostriamo per assurdo che m ∈ A . Supponiamo quindi che
sia m /∈A . Per la caratterizzazione dell’estremo inferiore 1.2.42 esiste z ∈ A tale che
z < m+ 1 ; poiché abbiamo supposto m /∈ A , si ha z 6= m , perciò m < z . Ancora per il
teorema 1.2.42, esiste w ∈A tale che m ≤ w < z . Pertanto 0< z−w < (m+1)−m = 1 .
Per il teorema 1.3.9 w − z ∈N , ma ciò è assurdo, perché per il teorema 1.3.8 non esistono
numeri naturali compresi tra 0 e 1 .

II) La dimostrazione è analoga a quella dell’affermazione precedente.

Le operazioni di addizione e moltiplicazione tra numeri naturali danno come risultato
un numero naturale. Si ha cioè:

1.3.12 Teorema

Siano m, n ∈N . Allora:

I) m+ n ∈N ,
II) m · n ∈N .

Dimostrazione. I) Fissato m ∈ N , dimostriamo l’affermazione applicando il principio
di induzione 1.3.4 alla proposizione P (n) : m+ n ∈N .

Poiché m+ 0= m , P (0) è vera.
Supponiamo vera P (n) . Allora m+(n+1) = (m+n)+1 , ma m+n ∈N per ipotesi

induttiva, quindi anche (m+ n)+ 1 ∈N . Pertanto P (n+ 1) è vera.

II) Fissato m ∈N , dimostriamo l’affermazione applicando il principio di induzione 1.3.4
alla proposizione P (n) : m · n ∈N .

Si ha m · 0= 0 ∈N , quindi P (0) è vera.
Supponiamo vera P (n) . Allora m · (n + 1) = m · n + m è somma di due numeri

naturali, quindi, per l’affermazione I, è naturale. Perciò P (n+ 1) è vera.

Per questo teorema addizione e moltiplicazione possono essere considerate come opera-
zioni tra numeri naturali. Continuando a usare i simboli + e · per indicare la restrizione
ai naturali di addizione e moltiplicazione, abbiamo le seguenti proprietà.

1.3.13 Teorema

L’insieme N con le operazioni + e · verifica gli assiomi C1–C3, C5–C7 e C9,
non verifica gli assiomi C4 e C8.
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Dimostrazione. È evidente che, poiché le proprietà associativa, commutativa e distribu-
tiva valgono in R , esse valgono anche in sottoinsiemi di R , in particolare in N . Pertanto
gli assiomi C1, C2, C5, C6 e C9 sono verificati in N .

Per la definizione di insieme induttivo 0 ∈N e 1= 0+1∈N , quindi sono verificati gli
assiomi C3 e C7.

Se n ∈ N∗ , allora, per il teorema 1.3.5, n > 0 , quindi −n < 0 (v. teorema 1.2.17),
pertanto −n /∈N . Perciò non è verificato l’assioma C4.

Se n ∈ N e n > 1 , allora, per il teorema 1.2.22, 0 < 1/n e, per il teorema 1.2.24,
1/n < 1 ; per il teorema 1.3.8 non esistono naturali compresi tra 0 e 1 , quindi 1/n /∈ N .
Perciò non è verificato l’assioma C8.

1.3.2 Applicazioni del principio di induzione

In questa sottosezione utilizziamo il principio di induzione 1.3.4 per giustificare alcune
definizioni e per dimostrare alcune formule che risulteranno utili in seguito.

Studiamo anzitutto le cosiddette definizioni per induzione. Per definire un concetto
che dipende da n ∈N , possiamo anzitutto definirlo per n = 0 e inoltre dare la definizione
per n+1 sulla base della definizione data per n . Il principio di induzione assicura che con
questo procedimento il concetto è definito ∀n ∈N .

Utilizziamo questa modalità di dare una definizione per definire rigorosamente la poten-
za di un numero reale. L’idea intuitiva è che se n ∈N∗ e x ∈R∗ , allora la potenza n -sima
di x , indicata con xn , è il prodotto di n fattori uguali a x . Pensando che il prodotto
di 0 fattori sia l’elemento neutro moltiplicativo, cioè 1 , risulta naturale dare la seguente
definizione per induzione.

Definizione di potenza di un numero reale

Siano x ∈R∗ e n ∈N . Definiamo xn ponendo:

a) x0 = 1 ,

b) xn+1 = x · xn .

Poniamo inoltre, ∀n ∈N∗ , 0n = 0 .
Chiamiamo potenza n -esima di x il numero reale xn .

Un’altra definizione che è naturale dare per induzione è quella di prodotto dei primi n
numeri naturali non nulli., che è chiamato fattoriale di n . Come vedremo, risulta utile
definire anche il fattoriale di 0 .

Definizione di fattoriale

Sia n ∈N . Chiamiamo fattoriale di n il numero naturale n! definito ponendo:

a) 0!= 1 ,

b) (n+ 1)!= (n+ 1)n! .

Risulta quindi 0!= 0 , 1!= 1 · 0!= 1 , 2!= 2 · 1= 2 , 3!= 3 · 2= 6 , 4!= 4 · 6= 24 .



1.3. Numeri naturali, interi, razionali 29

1.3.14 Esempio (disuguaglianza di Bernoulli1). Proviamo per induzione che ∀x ∈ R
tale che x >−1 e ∀n ∈N si ha

(1+ x)n ≥ 1+ nx .

Fissato x >−1 , la proposizione che vogliamo provare, ∀n ∈N , è

P (n) : (1+ x)n ≥ 1+ nx .

Per n = 0 la disuguaglianza è (1+ x)0 ≥ 1+ 0 · x , cioè 1≥ 1 che è vera.
Supponiamo ora vera P (n) e dimostriamo P (n+ 1) . Si ha

(1+ x)n+1 = (1+ x)(1+ x)n ,

poiché 1+ x > 0 , da P (n) otteniamo

(1+ x)(1+ x)n ≥ (1+ x)(1+ nx) = 1+ (n+ 1)x + x2 ≥ 1+ (n+ 1)x ,

nell’ultimo passaggio si è utilizzato il fatto che x2 ≥ 0 . Pertanto (1+ x)n+1 ≥ 1+(n+1)x ,
cioè vale P (n+ 1) .

Per il principio di induzione 1.3.4 la disuguaglianza vale ∀n ∈N .

Siano a, b ∈R e n ∈N∗ . Studiamo la potenza (a+ b )n . Si ha

(a+ b )2 = aa+ ab + b a+ b b = a2+ 2ab + b 2 ,

(a+ b )3 = (a+ b )(aa+ ab + b a+ b b ) =

= aaa+ aab + ab a+ ab b + b aa+ b ab + b b a+ b b b =

= a3+ 3a2b + 3ab 2+ b 3 .

Risulta evidente che in generale (a+ b )n può essere scritto come somma di tutti i termini
che si ottengono moltiplicando n fattori, ciascuno dei quali è uguale ad a o a b . Quindi
ciascun addendo è del tipo an−k b k , con k = 0,1, . . . , n , dove si intende che a0 = b 0 = 1
anche quando a = 0 o b = 0 . Generalmente per ciascun k vi sono più addendi del tipo
an−k b k . Risulta quindi

(a+ b )n =
n
∑

k=0

Cn,k an−k b k ,

con opportuni coefficienti Cn,k ∈N∗ .
Per determinare questi coefficienti, osserviamo anzitutto che Cn,k è il numero di strin-

ghe diverse formate da n caratteri, n − k dei quali sono a e k sono b . Esiste una sola
stringa di n caratteri a , quindi Cn,0 = 1 . Vi sono n stringhe con un b , perché b può
comparire in una qualunque delle n posizioni, quindi Cn,1 = n . Da ciascuna stringa con

1La disuguaglianza prende il nome da Jakob Bernoulli (Basilea, 1655 - Basilea, 1705) che la dimostrò e la utilizzò
più volte in un trattato del 1689, ma era già stata trovata nel 1668 da René François Walter de Sluze (Visé, Belgio,
1622 - Liège, Belgio, 1685).

Bernoulli ha dato fondamentali contributi al calcolo differenziale e alla teoria della probabilità.
De Sluze è stato tra i primi studiosi del calcolo differenziale.
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1

4

1

3

−1

−1

n = 2

1

8

1

4

−1

−2

n = 3

Figura 1.3.1
Grafici delle funzioni x 7→ 1+nx (in blu) e x 7→ (1+x)n (in rosso) per n = 2 (a sinistra) e
n = 3 (a destra). Per la disuguaglianza di Bernoulli, se x >−1 , la prima delle due funzioni
in x ha valore minore o uguale a quello dalla seconda nello stesso punto.

n−1 a e un b , sostituendo b a uno degli a , si ottiene una stringa con n−2 a e 2 b ; ogni
stringa di questo tipo si ottiene in tale modo, quindi per ogni stringa con n− 1 a e un b
otteniamo n−1 stringhe con n−2 a e 2 b ; però ciascuna di queste viene ottenuta 2 vol-
te. Infatti, ad esempio, la stringa b b a . . .a si ottiene sia da ab a . . .a , sostituendo b alla a
in prima posizione, sia da b aa . . .a , sostituendo b alla a in seconda posizione. Pertanto

Cn,2 =
n− 1

2
Cn,1 =

n(n− 1)

2
.

In modo analogo, data una stringa con n − k a e k b , sostituendo b a uno degli a si
ottiene una stringa con n − (k + 1) a e k + 1 b ; quindi da ognuna di tali stringhe si
ottengono n−k stringhe con n− (k+1) a e k+1 b , ma ciascuna si ottiene k+1 volte;
pertanto Cn,k+1 =

�

(n− k)/(k + 1)
�

Cn,k .
Abbiamo quindi

Cn,k =
n− k + 1

k
Cn,k−1 =

(n− k + 1)(n− k + 2)

k(k − 1)
Cn,k−2 = · · ·=

=
(n− k + 1)(n− k + 2) · · ·n

k(k − 1) · · ·1 Cn,0 =
(n− k)! (n− k + 1)(n− k + 2) · · ·n

(n− k)! k(k − 1) · · ·1 =
n!

k! (n− k)!
.

Formalizziamo il ragionamento fatto.
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aaaa a4

aaab aab a ab aa b aaa

aaab aab a ab aa b aaa 4a3 b

aab b aab b ab ab ab ab ab b a ab b a b aab b aab bab a b ab a b b aa b b aa

aab b ab ab ab b a b aab b ab a b b aa 6a2 b 2

ab b b ab b b ab b b b ab b b ab b b ab b b b ab b b ab b b ab b b b a b b b a b b b a

ab b b b ab b b b ab b b b a 4ab 3

b b b b b b b b b b b b b b b b

b b b b b 4

Figura 1.3.2
La procedura illustrata sopra per contare il numero di stringhe formate da un numero fissato
di a e un numero fissato di b , nel caso di stringhe di 4 lettere. A ogni passo si sostituisce
una a con una b , questo può essere fatto in tanti modi diversi quante sono le a ; ogni
nuova stringa si ottiene tante volte quante sono le b .

Definizione di coefficiente binomiale

Siano n ∈ N e k ∈ {0,1, . . . , n} . Chiamiamo coefficiente binomiale di n e k il
numero naturale

�

n

k

�

=
n!

k! (n− k)!

(si legge “ n su k ”).

Ogni coefficiente binomiale è quoziente di due numeri naturali ed è un numero naturale.
Questo è evidente dal ragionamento fatto per definirlo, può essere dimostrato rigorosamen-
te utilizzando le seguenti proprietà dei coefficienti binomiali.

1.3.15 Teorema (proprietà dei coefficienti binomiali)

Siano n ∈N e k ∈ {0,1, . . . , n} . Allora:

I)
�

n

0

�

=

�

n

n

�

= 1 ;
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II)
�

n

n− k

�

=

�

n

k

�

;

III) se inoltre n 6= 0 e k 6= 0 , si ha

�

n

k

�

=

�

n− 1

k − 1

�

+

�

n− 1

k

�

.

Dimostrazione. I) Si ha

�

n

0

�

=
n!

0! (n− 0)!
=

n!

n!
= 1 ,

�

n

n

�

=
n!

n! (n− n)!
=

n!

n!
= 1 .

II) Si ha
�

n

n− k

�

=
n!

(n− k)!
�

n− (n− k)
�

!
=

n!

(n− k)! k!
=

�

n

k

�

.

III) Si ha

�

n− 1

k − 1

�

+

�

n− 1

k

�

=
(n− 1)!

(k − 1)! (n− k)!
+

(n− 1)!

k! (n− k − 1)!
=

=
(n− 1)! k

(k − 1)! k(n− k + 1)!
+

(n− 1)! (n− k)

k! (n− k − 1)! (n− k)
=

=
n!
�

k + (n− k)
�

k! (n− k)!
=

n!

k! (n− k)!
=

�

n

k

�

.

Risulta naturale disporre i coefficienti binomiali in forma di triangolo infinito (v. fi-
gura 1.3.3), mettendo nella n -sima riga gli n coefficienti n − 1 su k al variare di k
tra 0 e n − 1 . Le proprietà dei coefficienti binomiali consentono di calcolare facilmen-
te gli elementi di una riga a partire dagli elementi della riga precedente. Tale triangolo è
detto triangolo di Tartaglia o triangolo di Pascal2.

Enunciamo infine la formula per il calcolo della potenza di un binomio.
In questa e in altre formule dello stesso tipo si utilizza la convenzione che la notazione a0

indica sempre il numero 1 , anche se a assume il valore 0 .
2Il triangolo prende il nome da Nicolò Tartaglia (Brescia 1500 - Venezia 1577) e da Blaise Pascal (Clermont-

Ferrand, Francia, 1623 - Parigi, 1662). Tartaglia descrisse il triangolo in un trattato del 1566, Pascal lo studiò
approfonditamente nel “Traité du triangle arithmétique” del 1653, ma il triangolo era già noto da alcuni secoli ai
matematici persiani e cinesi.

Tartaglia è noto per avere trovato la formula risolutiva delle equazioni di terzo grado.
Pascal ha dato fondamentali contributi in vari settori della matematica, tra cui la geometria e il calcolo delle

probabilità; ha dato anche contributi allo studio della filosofia.
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k
=

0

n = 0 1 k
=

1

n = 1 1 1 k
=

2

n = 2 1 2 1 k
=

3

n = 3 1 3 3 1 k
=

4

n = 4 1 4 6 4 1 k
=

5

n = 5 1 5 10 10 5 1 k
=

6

n = 6 1 6 15 20 15 6 1 k
=

7

n = 7 1 7 21 35 35 21 7 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figura 1.3.3
Le prime 8 righe del triangolo di Tartaglia. Il k -simo elemento della n -sima riga è il
coefficiente binomiale n − 1 su k − 1 . Per l’affermazione III del teorema 1.3.15, ogni
elemento del triangolo che non sia su un lato è somma dei due elementi che stanno sopra.

1.3.16 Teorema (potenza di un binomio)

Siano a, b ∈R e n ∈N∗ . Allora

(a+ b )n =
n
∑

k=0

�

n

k

�

an−k b k .

Dimostrazione. Dimostriamo per induzione che, ∀n ∈N∗ , è vera

P (n) : (a+ b )n =
n
∑

k=0

�

n

k

�

an−k b k .

Se n = 1 , per l’affermazione I del teorema 1.3.15, si ha

1
∑

k=0

�

1

k

�

a1−k b k =

�

1

0

�

a1b 0+

�

1

1

�

a0 b 1 = a+ b ;

pertanto P (1) è vera.
Supponiamo vera P (n) . Per l’ipotesi induttiva si ha

(a+ b )n+1 = (a+ b )
n
∑

k=0

�

n

k

�

an−k b k =
n
∑

k=0

�

n

k

�

an+1−k b k +
n
∑

k=0

�

n

k

�

an−k b k+1 =

=
n
∑

k=0

�

n

k

�

an+1−k b k +
n+1
∑

j=1

�

n

j − 1

�

an−( j−1)b j =

=

�

n

0

�

an+1b 0+
n
∑

k=1

�

n

k

�

an+1−k b k +
n
∑

k=1

�

n

k − 1

�

an+1−k b k +

�

n

n

�

a0b n+1 =
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=

�

n+ 1

0

�

an+1b 0+
n
∑

k=1

��

n

k

�

+

�

n

k − 1

��

an+1−k b k +

�

n+ 1

n+ 1

�

a0b n+1 =

=
n+1
∑

k=0

�

n+ 1

k

�

an+1−k b k ,

dove si sono utilizzate le affermazioni I e III del teorema 1.3.15. Pertanto P (n+1) è vera.
Per il principio di induzione 1.3.4 l’uguaglianza vale ∀n ∈N∗ .

La formula della potenza di un binomio può essere generalizzata per la potenza della
somma di più di due addendi. Questo richiede di generalizzare il concetto di coefficiente
binomiale.

Definizione di coefficiente multinomiale

Siano n ∈N , m ∈N\{0,1} e, per j = 1,2, . . . , m , k j ∈ {0,1, . . . , n} , tali che si ha
∑m

j=1 k j = n . Chiamiamo coefficiente multinomiale n su k1, k2, . . . , km il numero
naturale

�

n

k1, k2, . . . , km

�

=
n!
∏m

j=1 k j !
.

Se m = 2 , allora dalla condizione k1+ k2 = n segue k2 = n− k1 , quindi
�

n

k1, k2

�

=
n!

k1! k2!
=

n!

k1! (n− k1)!
=

�

n

k1

�

;

perciò i coefficienti binomiali sono un caso particolare dei coefficienti multinomiali.
Ogni coefficiente multinomiale è quoziente di due numeri naturali ed è un numero natu-

rale, ciò è una semplice conseguanza delle seguenti proprietà dei coefficienti multinomiali.

1.3.17 Teorema (proprietà dei coefficienti multinomiali)

Siano n ∈ N , m ∈ N \ {0,1} e, per j = 1,2, . . . , m , k j ∈ {0,1, . . . , n} , tali che si
ha
∑m

j=1 k j = n . Allora:

I)
�

n

0, . . . , 0, n, 0, . . . , 0

�

= 1 ;

II)
�

n

k1, . . . , kl−1, 0, kℓ+1, . . . , km

�

=

�

n

k1, . . . , kl−1, kℓ+1, . . . , km

�

;

III) se inoltre n 6= 0 e, per j = 1,2, . . . , m , k j 6= 0 , si ha

�

n

k1, k2, . . . , km

�

=
m
∑

j=1

�

n− 1

k1, . . . , k j−1, k j − 1, k j+1, . . . , km

�

.
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Dimostrazione. I) Si ha
�

n

0, . . . , 0, n, 0, . . . , 0

�

=
n!

0! · · ·0! n! 0! · · ·0!
=

n!

n!
= 1 .

II) Si ha
�

n

k1, . . . , kl−1, 0, kℓ+1, . . . , km

�

=
n!

k1! · · ·kℓ−1! 0! kℓ+1! · · ·km !
=

=
n!

k1! · · ·kℓ−1! kℓ+1! · · ·km !
=

�

n

k1, . . . , kl−1, kℓ+1, . . . , km

�

.

III) Si ha

m
∑

j=1

�

n− 1

k1, . . . , k j−1, k j − 1, k j+1, . . . , km

�

=
m
∑

j=1

(n− 1)!

k1! · · ·k j−1! (k j − 1)! k j+1! · · ·km !
=

=
m
∑

j=1

(n− 1)! k j

k1! · · ·k j−1! k j ! k j+1! · · ·km !
=
(n− 1)!
∑m

j=1 k j

k1! k2! · · ·km !
=
(n− 1)! n

k1! k2! · · ·km !
=

=

�

n

k1, k2, . . . , km

�

.

Possiamo ora generalizzare il teorema sulla potenza di un binomio 1.3.16.

1.3.18 Teorema (potenza di un polinomio)

Siano n ∈N∗ , m ∈N \ {0,1} e a1,a2, . . . ,am ∈R . Allora, posto

Im,n =
�

(k1, k2, . . . , km) ∈Nm
�

�k1+ k2+ · · ·+ km = n
	

,

si ha

(a1+ a2+ · · ·+ am)
n =
∑

(k1,k2,...,km)∈Im,n

�

n

k1, k2, . . . , km

� m
∏

j=1

a
k j

j
.

Dimostrazione. Dimostriamo il teorema per induzione rispetto al numero m degli ad-
dendi.

Per m = 2 l’affermazione si riduce al teorema sulla potenza di un binomio.
Supponiamo che la formula valga per m . Allora si ha

(a1+ a2+ · · ·+ am + am+1)
n =
�

(a1+ a2+ · · ·+ am)+ am+1

�n
=

=
n
∑

ℓ=0

�

n

ℓ

�

(a1+ a2+ · · ·+ am)
ℓan−ℓ

m+1 =

=
n
∑

ℓ=0

�

n

ℓ

�

∑

(k1,k2,...,km )∈Iℓ,m

�

ℓ

k1, k2, . . . , km

� m
∏

j=1

a
k j

j
an−ℓ

m+1 =
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=
n
∑

ℓ=0

∑

(k1,k2,...,km )∈Iℓ,m

n!

ℓ! (n− ℓ)!
ℓ!

k1! k2! · · ·km !

m
∏

j=1

a
k j

j
an−ℓ

m+1 =

=
n
∑

ℓ=0

∑

(k1,k2,...,km )∈Iℓ,m

n!

k1! k2! · · ·km ! (n− ℓ)!
m
∏

j=1

a
k j

j
an−ℓ

m+1 .

Se (k1, k2, . . . , km) ∈ Iℓ,m , allora k1+k2+· · ·+km = ℓ , quindi k1+k2+· · ·+km+(n−ℓ) = n ,
pertanto (k1, k2, . . . , km , n−ℓ)∈ In,m+1 . Inoltre ogni elemento di In,m+1 può essere scritto
nella forma (k1, k2, . . . , km , n− ℓ) con ℓ= 0,1, . . . , n e (k1, k2, . . . , km) ∈ Iℓ,m . Quindi

n
∑

ℓ=0

∑

(k1,k2,...,km)∈Iℓ,m

n!

k1! k2! · · ·km ! (n− ℓ)!
m
∏

j=1

a
k j

j
an−ℓ

m+1 =

=
∑

(k1,k2,...,km ,km+1)∈In,m+1

n!

k1! k2! · · ·km ! km+1!

m
∏

j=1

a
k j

j
a

km+1

m+1 =

=
∑

(k1,k2,...,km ,km+1)∈In,m+1

�

n

k1, k2, . . . km , km+1

�m+1
∏

j=1

a
k j

j
.

Pertanto la formula vale per m+ 1 .
Per induzione vale ∀m ∈N \ {0,1} .

1.3.19 Teorema

Siano a, b ∈R e n ∈N∗ . Allora

an − b n = (a− b )
n−1
∑

k=0

ak b n−k−1 .

In questo enunciato si richiede che sia n ∈ N∗ , perché per n = 0 il secondo membro
non ha senso. Infatti l’indice k nella sommatoria dovrebbe verificare contemporaneamente
le disuguaglianze k ≥ 0 e k ≤−1 .

Dimostrazione. Per n ∈ N∗ indichiamo con P (n) l’uguaglianza da dimostrare. Possia-
mo applicare il principio di induzione 1.3.4 in forma modificata. Infatti è evidente che se si
dimostra che P (1) è vera e che P (n) =⇒ P (n+ 1) , possiamo concludere che P (n) è
vera ∀n ∈N∗ .

Se n = 1 , allora il primo membro è uguale a a− b , mentre il secondo è

(a− b )
0
∑

k=0

ak b−k = (a− b )a0b 0 = a− b ;

perciò l’uguaglianza è verificata per n = 1 .
Se P (n) è vera, allora si ha

an+1− b n+1 = an+1− an b + an b − b n+1 = (a− b )an + b (an − b n) =
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= (a− b )an + b (a− b )
n−1
∑

k=0

ak b n−k−1 = (a− b )an b 0+ (a− b )
n−1
∑

k=0

ak b n−k =

= (a− b )
n
∑

k=0

ak b n−k ,

quindi P (n+ 1) è vera.

1.3.20 Osservazione. Abbiamo affermato (v. osservazione 1.2.35) che un sottoinsieme fi-
nito di R ha massimo e minimo. Vediamo come il principio di induzione consente di dare
una dimostrazione rigorosa di questo fatto.

Dimostriamo l’affermazione che se un insieme ha n elementi, con n ∈ N∗ , allora ha
massimo.

Se un insieme ha un elemento, allora questo è maggiore o uguale a ogni elemento
dell’insieme, quindi è il massimo.

Supponiamo che ogni sottoinsieme di R con n elementi abbia massimo e sia A⊆ R
con n + 1 elementi. Scegliamo un arbitrario elemento a di A . Allora A \ {a} ha n

elementi, quindi ha massimo; sia b = max
�

A \ {a}
�

. Se b ≥ a , allora b è maggiore o
uguale a ogni elemento di A , quindi b è il massimo di A . Se invece b < a , allora a è
maggiore o uguale a ogni elemento di A , quindi a è il massimo di A .

Evidentemente per il minimo il ragionamento è analogo.

1.3.3 Numeri interi

Una volta definito, come sottoinsieme di R , l’insieme dei numeri naturali, è semplice
definire l’insieme dei numeri interi e studiarne le proprietà.

Definizione di insieme dei numeri interi

Chiamiamo insieme dei numeri interi e indichiamo con Z il sottoinsieme di R
tale che

Z=N∪ {x ∈R | − x ∈N} .

Analogamente a quanto definito nel caso dei numeri reali, indichiamo con Z∗ l’insie-
me Z \ {0} .

È evidente che N⊆Z .
È inoltre facile dimostrare che n ∈Z ⇐⇒ −n ∈ Z .
Come per i numeri naturali le operazioni tra numeri interi danno come risultato un

numero intero.

1.3.21 Teorema

Siano m, n ∈Z . Allora:

I) m+ n ∈ Z ,
II) m · n ∈Z .
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Dimostrazione. I) Esaminiamo i vari casi possibili.
Se m, n ∈ N , allora, per il teorema I), si ha m + n ∈ N . Se m ∈N e −n ∈ N ,

allora o m ≥ −n , oppure m < −n ; dal teorema 1.3.9 segue che nel primo caso si ha
m+ n = m− (−n) ∈N , mentre nel secondo caso si ha −(m+n) = (−n)−m ∈N . Infine,
se −m,−n ∈N , allora risulta −(m+ n) = (−m)+ (−n) ∈N .

In ogni caso o m+ n ∈N , oppure −(m+ n) ∈N , quindi m+ n ∈ Z .
II) Esaminiamo i vari casi possibili.

Se m, n ∈ N , allora, per il teorema II), m · n ∈ N . Se m ∈ N e −n ∈ N , allora
−(m · n) = m · (−n) ∈N . Infine, se −m,−n ∈N , allora m · n = (−m) · (−n) ∈N .

In ogni caso o m · n ∈N , oppure −(m · n) ∈N , quindi m · n ∈Z .

Questo teorema assicura che addizione e moltiplicazione possono essere considerate
come operazioni tra numeri interi. Continuando a usare i simboli + e · per indicare la
restrizione ai naturali di addizione e moltiplicazione, abbiamo le seguenti proprietà.

1.3.22 Teorema

L’insieme Z con le operazioni + e · verifica gli assiomi C1–C7 e C9, non verifica
l’assioma C8.

Dimostrazione. Per motivi analoghi a quelli relativi a N , gli assiomi C1, C2, C5, C6
e C9 sono verificati in Z . Inoltre sappiamo che 0,1 ∈ N ⊆ Z , quindi sono verificati gli
assiomi C3 e C7.

Se n ∈ Z , allora o n ∈ N , quindi −(−n) ∈ N , pertanto −n ∈ Z , oppure −n ∈ N ,
quindi −(−n) = n ∈Z ; quindi è verificato l’assioma C4

Come nel caso dei numeri naturali, se n ∈ Z e n > 1 , allora, 1/n /∈ Z . Perciò non è
verificato l’assioma C8.

Studiamo gli estremi di Z . Si ha:

1.3.23 Teorema

infZ=−∞ , supZ=+∞ .

Dimostrazione. Poiché Z contiene N , che è superiormente illimitato (v. teorema 1.3.6,
anche Z è superiormente illimitato.

Dimostriamo ora che Z è inferiormente illimitato. Poiché N è superiormente illimi-
tato, ∀x ∈R , −x non è un maggiorante di N , quindi esiste n ∈N tale che n >−x , cioè
−n < x ; siccome −n ∈ Z questo prova che x non è minorante di Z . Pertanto Z non ha
minoranti.

Analogamente a quanto avviene per i numeri naturali si ha:

1.3.24 Teorema

Siano m, n ∈Z . Se m 6= n , allora |n−m| ≥ 1 .
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Dimostrazione. Poiché n−m ∈ Z , |n−m| ∈Z , inoltre |n−m|> 0 , quindi |n−m| ∈N∗
Pertanto, per il teorema 1.3.8 |n−m| ≥ 1 .

Infine vale il seguente teorema, la cui dimostrazione è simile a quella dell’analogo teo-
rema per i sottoinsiemi di N (v. teorema 1.3.11).

1.3.25 Teorema

Sia A⊆Z .
Se A è superiormente limitato, allora ha massimo.
Se A è inferiormente limitato, allora ha minimo.

1.3.4 Numeri razionali

A partire dall’insieme dei numeri interi, definiamo l’insieme dei numeri razionali.

Definizione di insieme dei numeri razionali

Chiamiamo insieme dei numeri razionali e indichiamo con Q il sottoinsieme
di R tale che

Q=
§

x ∈R
�

�

�

�
∃p ∈Z : ∃q ∈Z∗ : x =

p

q

ª

.

Analogamente a quanto definito nel caso dei numeri reali, indichiamo con Q∗ l’insie-
me Q \ {0} .

Poiché 1 ∈ Z∗ , se p ∈ Z , allora p = p/1 ∈Q , quindi Z⊆Q .

1.3.26 Teorema

Siano p, q ∈Q . Allora:

I) p + q ∈Q ,
II) p · q ∈Q .

Dimostrazione. I) Se p = j/k e q = m/n , con j , m ∈Z e k , n ∈N∗ , si ha

p + q =
j

k
+

m

n
=

j · n
k · n +

m · k
n · k =

j · n+m · k
n · k ∈Q .

II) Se p = j/k e q = m/n , con j , m ∈ Z e k , n ∈N∗ , si ha

p · q = j

k
· m

n
=

j ·m
k · n ∈Q .

1.3.27 Teorema

L’insieme Q con le operazioni + e · verifica gli assiomi C1–C9 cioè è un campo.
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Dimostrazione. Per motivi analoghi a quelli relativi a N , gli assiomi C1, C2, C5, C6
e C9 sono verificati in Q . Inoltre sappiamo che 0,1 ∈ N ⊆ Q , quindi sono verificati gli
assiomi C3 e C7.

Se p/q ∈Q , allora −p/q = (−p)/q ∈Q .
Se p/q ∈Q∗ , allora p 6= 0 , cioè p ∈Z∗ , perciò q/p ∈Q .

Studiamo gli estremi di Q . Si ha:

1.3.28 Teorema

infQ=−∞ , supQ=+∞ .

Dimostrazione. L’insieme Q contiene Z che è superiormente e inferiormente illimitato,
quindi anche Q è superiormente e inferiormente illimitato.

Il campo ordinato Q non è completo. Per provarlo dimostriamo anzitutto il seguente
teorema.

1.3.29 Teorema

Non esiste x ∈Q tale che x2 = 2 .

Dimostrazione. Dimostriamo il teorema per assurdo. Supponiamo che esista x ∈Q ta-
le che x2 = 2 . Possiamo supporre x > 0 , perché se fosse x < 0 sarebbe −x > 0 e
(−x)2 = x2 = 2 .

Pertanto esistono m, n ∈N∗ e tali che (m/n)2 = 2 . Possiamo supporre che la frazione
sia ridotta ai minimi termini, cioè che m e n siano privi di fattori comuni. Si ha m2 = 2n2 ,
quindi m2 è pari. Poiché il quadrato di un numero dispari è dispari, m deve essere pari,
quindi esiste p ∈N∗ tale che m = 2p . Allora risulta 4p2 = 2n2 , cioè 2p2 = n2 , quindi n2

è pari, pertanto n è pari. Quindi sia m che n sono pari, ma questo è assurdo, perché tali
numeri sono privi di fattori comuni.

1.3.30 Teorema

Il campo ordinato Q non è completo.

Dimostrazione. Poniamo

A= {x ∈Q+ | x2 < 2} , B = {x ∈Q+ | x2 > 2} .

Gli insiemi A e B sono separati, perché se a ∈ A e b ∈ B , allora si ha a2 < b 2 , quindi,
per il teorema 1.2.30, affermazione III, risulta a < b .

Dimostriamo che non esiste in Q un elemento di separazione tra A e B , quindi Q
non verifica l’assioma di completezza.

Poiché 1 ∈ A , un eventuale elemento di separazione è maggiore o uguale a 1 , quindi è
positivo.
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Poniamo

f : Q+→Q+ , f (x) = x +
2− x2

x + 2
=

2x + 2

x + 2
.

a

f (a)

b

f (b )
Figura 1.3.4
Grafico della funzione f utilizzata nella
dimostrazione del teorema 1.3.30.
In blu la retta dei punti che hanno ordina-
ta uguale all’ascissa.
Tale retta è più in basso del grafico di f
nei punti di ascissa a con a2 < 2 men-
tre è più in alto nei punti di ascissa b
con b 2 > 2 .

Evidentemente se a ∈ A , quindi 2− a2 > 0 , si ha f (a) > a , mentre se b ∈ B risulta
f (b )< b . Inoltre, ∀x ∈Q+ , si ha

�

f (x)
�2− 2=

4x2+ 8x + 4− 2(x2+ 4x + 4)

(x + 2)2
=

2x2− 4

(x + 2)2
.

Pertanto se a ∈A , allora si ha
�

f (a)
�2− 2< 0 , quindi f (a) ∈A , se invece b ∈ B , allora si

ha
�

f (b )
�2− 2> 0 , quindi f (b ) ∈ B .

Abbiamo così dimostrato che, se a ∈ A , allora f (a) è un elemento di A maggiore
di a , quindi a non è elemento di separazione. Analogamente, se b ∈ B , allora f (b ) è un
elemento di B minore di b , quindi b non è elemento di separazione. Per il teorema 1.3.29,
se x ∈Q+ , allora o x2 < 2 o x2 > 2 , quindi Q+ = A∪B ; poiché non esiste un elemento
di separazione né in A né in B , non esiste un elemento di separazione in Q+ .

1.4 Ulteriori proprietà dei numeri reali

Enunciamo anzitutto un teorema semplice, ma fondamentale per lo sviluppo dell’ana-
lisi.

1.4.1 Teorema

Sia x ∈R . Se ∀y ∈R+ si ha x ≤ y , allora x ≤ 0 .

Dimostrazione. Dimostriamo che se è vera la negazione della tesi, allora è vera la negazio-
ne dell’ipotesi. Quindi proviamo che, se x > 0 , allora esiste y ∈R+ tale che y < x . Ciò è
ovvio, possiamo scegliere y = x/2 .
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1.4.2 Teorema (proprietà di Archimede3)

Siano x, y ∈R . Se x > 0 e y > 0 , allora esiste n ∈N tale che y < nx .

Dimostrazione. Siano x, y > 0 . Poiché N è superiormente illimitato (v. teorema 1.3.6)
y/x non è maggiorante di N , perciò ∃n ∈ N tale che n > y/x ; da questo segue y < nx .

1.4.3 Teorema

Sia x ∈R . Se x > 0 , allora ∃n ∈N tale che 1/n < x .

Dimostrazione. Sia x > 0 . Allora 1/x > 0 e per la proprietà di Archimede 1.4.2, appli-
cata ai numeri 1 e 1/x , esiste n ∈N tale che 1/x < n · 1 , quindi 1/n < x .

Definizione di parte intera di un numero reale

Sia x ∈R . Chiamiamo parte intera di x e indichiamo con [x] , il numero intero

max{n ∈Z |n ≤ x} .

−2 −1

1 2

−3

−2

−1

1

2

Figura 1.4.1
Grafico della funzione parte intera.

L’insieme {n ∈ Z |n ≤ x} è un sottoinsieme di Z superiormente limitato, perché x
è un suo maggiorante; quindi per il teorema 1.3.25 tale insieme ha massimo. Perciò la
definizione è corretta.

Abbiamo così definito una funzione da R a Z , che è detta funzione parte intera.
3La prpoprietà prende il nome da Archimede di Siracusa (Siracusa, 287 a.C. - Siracusa, 212 a.C.), uno dei più

grandi matematici della sua epoca, oltre che fisico e inventore.
La proprietà è riportata in un volume di Archimede del 225 a.C., riferita ai segmenti: dati due segmenti, è

sempre possibile, ripetendo un numero sufficiente di volte uno dei due, ottenere un segmento più lungo dell’altro.
Archimede attribuisce la paternità della scoperta al matematico e astronomo Eudosso di Cnido (Cnido, Asia

Minore, 408 a.C. - Cnido, 355 a.C.).
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1.4.4 Osservazione. Dalla definizione segue immediatamente che ∀x ∈ R si ha [x] ∈ Z
e [x] ≤ x . Inoltre [x] + 1 è un intero più grande del più grande intero minore o uguale
a x , quindi [x]+ 1> x .

1.4.5 Esempio. Risulta

[1] = 1 , [−2] =−2 ,
�

3

2

�

= 1 ,
�

− 3

2

�

=−2 .

Definizione di radice n -esima di un numero reale non negativo

Siano a, x ∈ R+ ∪ {0} e n ∈ N \ {0,1} . Diciamo che x è radice n -esima di a
quando

xn = a .

1.4.6 Teorema (esistenza e unicità della radice n -esima)

Siano a ∈R+∪{0} e n ∈N\{0,1} . Allora esiste uno e un solo x ∈R+∪{0} tale
che xn = a .

Dimostrazione. Sia a = 0 . Poiché 0n = 0 , 0 è radice n -esima di a . Se x ∈R+ ∪ {0} è
tale che xn = 0 , allora si ha x = 0 , perché un prodotto si annulla solo se almeno un fattore
è nullo. Quindi 0 è l’unica radice n -esima di 0 .

Consideriamo ora il caso a > 0 .
Dimostriamo l’unicità della radice n -esima di a . Siano x1 e x2 radici n -esime di a .

Poiché a 6= 0 , si ha x1 6= 0 e x2 6= 0 , quindi si ha x1 > 0 e x2 > 0 . Per il teorema 1.3.19
risulta

0= xn
1 − xn

2 = (x1− x2)
n−1
∑

k=0

xk
1 xn−k−1

2 .

Per la legge di annullamento del prodotto 1.2.5, uno dei due fattori deve essere nullo; si ha
∑n−1

k=0
xk

1 xn−k−1
2 > 0 , perché ciascun addendo è positivo, quindi deve essere x1 − x2 = 0 .

Pertanto la radice n -esima di a è unica.
Per dimostrare l’esistenza della radice n -esima di a , posto A = {y ∈ R+ | yn ≤ a} ,

proviamo che A è superiormente limitato e il suo estremo superiore è la radice n -sima
cercata.

Se a ≤ 1 , allora an ≤ a , quindi a ∈ A ; inoltre ∀y ∈ R , se y > 1 , allora yn > 1n =
1≥ a , quindi y /∈A , perciò 1 è un maggiorante di A . Se invece a > 1 , allora 1n = 1< a ,
quindi 1 ∈ A ; inoltre ∀y ∈ R , se y > a , allora yn > an ≥ a , quindi y /∈ A , perciò a è
un maggiorante di A . Pertanto A ha un elemento positivo ed è superiormente limitato,
quindi ha estremo superiore positivo. Poniamo x = sup A .

Dimostriamo che xn = a . Sia ǫ ∈ R+ , tale che ǫ ≤ x . Poiché x + ǫ > x = supA , si
ha x + ǫ /∈ A , pertanto (x + ǫ)n > a . Inoltre x − ǫ < x , perciò, per la caratterizzazione
dell’estremo superiore, esiste z ∈A tale che x−ǫ < z , quindi (x−ǫ)n < zn ≤ a ; pertanto

(x − ǫ)n < a < (x + ǫ)n .
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Poiché 0≤ x − ǫ < x < x + ǫ , si ha

(x − ǫ)n < xn < (x + ǫ)n ,
cioè

−(x + ǫ)n <−xn <−(x − ǫ)n .

Sommando membro a membro si ottiene

(x − ǫ)n − (x + ǫ)n < a− xn < (x + ǫ)n − (x − ǫ)n ;

per le proprietà del valore assoluto 1.2.31, affermazione I, queste disuguaglianze equivalgo-
no a

|a− xn |< (x + ǫ)n − (x − ǫ)n .

Per il teorema 1.3.19, tenuto conto che ǫ≤ x , si ha

(x + ǫ)n − (x − ǫ)n =
�

(x + ǫ)− (x − ǫ)
�

n−1
∑

k=0

(x + ǫ)k (x − ǫ)n−k−1 ≤ 2ǫ
n−1
∑

k=0

(2x)k xn−k−1 ;

quindi, posto M = 2
∑n−1

k=0
(2x)k xn−k−1 , risulta |a−xn |<Mǫ , cioè |a−xn |/M < ǫ . Questa

disuguaglianza è vera per ogni ǫ compreso tra 0 ed x , quindi anche per ogni ǫ > 0 . Per
il teorema 1.4.1, risulta quindi |a− xn |/M ≤ 0 ; poiché tale numero è non negativo, esso è
uguale a 0 . Pertanto |a− xn |= 0 , cioè a = xn , quindi x è radice n -sima di a .

1.4.7 Teorema

Siano x, y ∈R tali che x < y .

I) Esiste q ∈Q tale che x < q < y .

II) Esiste z ∈R \Q tale che x < z < y .

La tesi del teorema viene espressa dicendo che Q e R \Q sono densi in R .

Dimostrazione. I) Poiché y−x > 0 , per il teorema 1.4.3 ∃m ∈N tale che y−x > 1/m .
Posto n = [mx] e q = (n+1)/m , si ha q ∈Q ; dimostriamo che q è compreso tra x e y .

Per l’osservazione 1.4.4 si ha n ≤ mx < n+ 1 , quindi

n

m
≤ x <

n+ 1

m
= q ,

pertanto x < q . Inoltre

y = x + (y − x)>
n

m
+

1

m
= q ;

quindi q è il numero cercato.

II) Poiché
p

2 x <
p

2 y , per l’affermazione I esiste q ∈Q tale che
p

2 x < q <
p

2 y , da
cui segue

x <
qp
2
< y .

Si ha q/
p

2 /∈Q , perché in caso contrario sarebbe
p

2/q ∈Q , quindi
p

2= q
�p

2/q
�

∈Q ,
contrariamente a quanto affermato dal teorema 1.3.29.
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Definiamo una tipologia di sottoinsiemi di R di particolare interesse. Sono gli insie-
mi che potremmo chiamare “senza buchi”; cioè tali che dati due punti dell’insieme, ogni
punto compreso tra di essi appartiene ancora all’insieme. Formalizziamo questa idea nella
seguente definizione.

Definizione di intervallo

Sia I ⊆R avente più di un elemento. Diciamo che I è un intervallo quando

∀x, y, z ∈R , (x, y ∈ I ∧ x ≤ z ≤ y) =⇒ z ∈ I .

Ovviamente un insieme con un solo elemento verifica la condizione scritta sopra. Per
questo motivo un tale insieme viene detto intervallo degenere.

1.4.8 Esempio. Consideriamo gli insiemi studiati nell’esempio 1.2.34.
L’insieme A1 = {−1} ha un solo elemento, quindi è un intervallo degenere.
L’insieme A2 = {0,2, 3, 4} non è un intervallo, perché 0,2∈A2 e 0< 1< 2 , ma 1 /∈A2 .
L’insieme A3 = {x ∈R |1≤ x ≤ 3} è un intervallo. Infatti se x, y ∈A3 e z è compreso

tra x e y , allora z ≥ x ≥ 1 e z ≤ y ≤ 3 , pertanto z ∈A3 .
L’insieme A4 = {x ∈ R |1 < x < 3} è un intervallo, come si prova con ragionamenti

simili a quelli relativi ad A3 .
L’insieme A5 = {x ∈ R | x ≤ 2} è un intervallo. Infatti se x, y ∈ A5 e z è compreso

tra x e y , allora z ≤ y ≤ 2 , pertanto z ∈A5 .
L’insieme A6 = {x ∈R | x ≤ 0}∪ {x ∈R | x > 3} non è un intervallo, perché 0,4∈A6 e

0< 2< 4 , ma 2 /∈A6 .

È facile rendersi conto che per conoscere un intervallo è sufficiente conoscerne gli estre-
mi, inferiore e superiore, oltre a sapere se tali estremi, nel caso che siano reali, apparten-
gono o meno all’intervallo. Esaminando i casi possibili otteniamo le seguenti tipologie di
intervalli.

Definizione di intervallo aperto, chiuso, limitato, illimitato

Siano a, b ∈R , con a < b .
Chiamiamo intervallo chiuso e limitato di estremi a e b , e indichiamo con

[a, b ] , l’insieme
[a, b ] = {x ∈R |a ≤ x ≤ b} .

Chiamiamo intervallo chiuso a sinistra, aperto a destra, limitato di estremi a
e b , e indichiamo con [a, b [ , l’insieme

[a, b [ = {x ∈R |a ≤ x < b} .

Chiamiamo intervallo aperto a sinistra, chiuso a destra, limitato di estremi a
e b , e indichiamo con ]a, b ] , l’insieme

]a, b ] = {x ∈R |a < x ≤ b} .
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Chiamiamo intervallo aperto e limitato di estremi a e b , e indichiamo con
]a, b [ , l’insieme

]a, b [ = {x ∈R |a < x < b} .
Chiamiamo intervallo chiuso, superiormente illimitato e inferiormente limi-

tato di estremo a , e indichiamo con [a,+∞[ , l’insieme

[a,+∞[ = {x ∈R |a ≤ x} .

Chiamiamo intervallo aperto, superiormente illimitato e inferiormente limi-
tato di estremo a , e indichiamo con ]a,+∞[ , l’insieme

]a,+∞[ = {x ∈R |a < x} .

Chiamiamo intervallo chiuso, inferiormente illimitato e superiormente limi-
tato di estremo b , e indichiamo con ]−∞, b ] , l’insieme

]−∞, b ] = {x ∈R | x ≤ b} .

Chiamiamo intervallo aperto, inferiormente illimitato e superiormente limi-
tato di estremo b , e indichiamo con ]−∞, b [ , l’insieme

]−∞, b [ = {x ∈R | x < b} .

Inoltre, per coerenza con quanto definito sopra, poniamo:

]−∞,+∞[ =R .

È evidente che ciascuno di questi insiemi è un intervallo. Viceversa si dimostra facilmen-
te che ogni sottoinsieme di R che sia un intervallo rientra in una delle tipologie descritte
sopra.



2
Successioni di numeri reali

2.1 Successioni

In questo capitolo studiamo le successioni: sono liste numerate di elementi di un certo
insieme; possiamo indicare una successione con la scrittura

a0, a1, a2, . . . ,an , . . . .

In questo modo a ogni numero naturale corrisponde un oggetto, pertanto una successio-
ne può essere vista come una funzione di dominio N e a valori in un determinato insieme,
che solitamente è R .

Le successioni costituiscono l’ambito più semplice in cui iniziare lo studio dei concetti
fondamentali dell’analisi, in particolare il concetto di limite.

2.1.1 Terminologia

Definiamo anzitutto gli oggetti che studiamo.

Definizione di successione e di successione reale

Sia X un insieme non vuoto. Chiamiamo successione in X ogni funzione da N
a X .

In particolare, chiamiamo successione reale ogni funzione da N a R .

Una successione è una funzione con un particolare dominio: l’insieme dei numeri na-
turali. Tuttavia nello studio delle successioni il fatto che esse siano funzioni risulta margi-
nale; pertanto c’è l’abitudine di utilizzare terminologie e notazioni diverse da quelle usate
solitamente per le funzioni; le introduciamo con le seguenti definizioni.

Definizione di termine di una successione

Sia a una successione e n ∈ N . Chiamiamo n -esimo termine (o termine di
indice n ) della successione a , e indichiamo con an , l’elemento a(n) .

Vista la notazione usata per indicarne i termini, indichiamo la successione a con la
scrittura (an)n∈N .

Con un abuso di linguaggio, chiamiamo successione anche una funzione di dominio N∗ ,
cioè una successione per cui non è definito il termine di indice 0 . Questa viene indicata col
simbolo (an)n∈N∗ .
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Definizione di insieme dei termini di una successione

Sia (an)n∈N una successione. L’immagine di (an)n∈N , cioè {an |n ∈N} , è chiamato
insieme dei termini della successione (an)n∈N .

È essenziale non confondere una successione con l’insieme dei suoi termini: una fun-
zione è diversa dalla sua immagine. Successioni diverse possono avere lo stesso insieme dei
termini.

2.1.1 Esempio. Consideriamo le successioni reali con termine n -simo (v. figura 2.1.1):

pn=
1

n+ 1
, 1

1

2

1

3

1

4

1

5

1

6

1

7
. . . ;

qn=
n+ (−1)n

n+ 1
, 1 0 1

1

2
1

2

3
1 . . . ;

rn=
1

5− 2n
,

1

5

1

3
1 −1 − 1

3
− 1

5
− 1

7
. . . ;

sn= n , 0 1 2 3 4 5 6 . . . ;

tn=
2n+ (−1)n − 1

4
, 0 0 1 1 2 2 3 . . . ;

un= 3− n , 3 2 1 0 −1 −2 −3 . . . ;

vn= (−1)n , 1 −1 1 −1 1 −1 1 . . . ;

wn= (−1)n
n+ 2

n+ 1
, 2 − 3

2

4

3
− 5

4

6

5
− 7

6

8

7
. . . ;

zn= (−1)n n , 0 −1 2 −3 4 −5 6 . . . .

Si prova facilmente che si ha:

{pn |n ∈N}=
§

1

n+ 1

�

�

�

�
n ∈N
ª

,

{qn |n ∈N}=
§

n

n+ 1

�

�

�

�
n ∈N
ª

∪ {1} ,

{rn |n ∈N}=
§

− 1

2n+ 1

�

�

�

�
n ∈N
ª

∪
§

1,
1

3
,
1

5

ª

,

{sn |n ∈N}=N ,

{tn |n ∈N}=N ,

{un |n ∈N}= {n ∈ Z |n ≤ 3} ,
{vn |n ∈N}= {−1,1} ,

{wn |n ∈N}=
§

(−1)n
n+ 2

n+ 1

�

�

�

�
n ∈N
ª

,

{zn |n ∈N}= {2n |n ∈N}∪ �−(2n+ 1)
�

�n ∈N	 .

Le successioni (sn)n∈N e (tn)n∈N hanno lo stesso insieme dei termini: l’insieme dei
numeri naturali. Tali successioni sono diverse, ad esempio s1 = 1 , mentre t1 = 0 .
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pn
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8/7
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b

b

Figura 2.1.1
Le successioni definite nell’esempio 2.1.1.
Una successione reale è una funzione da N , che è incluso in R , a R , quindi può essere
rappresentata come sottoinsieme di R×R , cioè sottoinsieme del piano cartesiano. Perciò
una successione (an)n∈N viene rappresentata dai punti di coordinate (n,an) , con n ∈N .

Nella sottosezione 1.3.1 abbiamo definito per induzione il fattoriale di un numero na-
turale; abbiamo posto 0! = 1 e, ∀n ∈ N , abbiamo posto (n + 1)! = (n + 1)n! . Questa
procedura definisce una funzione da N a R , cioè una successione.

Le successioni studiate nell’esempio 2.1.1 sono definite mediante una formula, che con-
sente di determinare direttamente il termine n -simo; la successione (an)n∈N = (n!)n∈N è
definita in modo diverso: si fissa a0 e si stabilisce una “regola” che consente di determina-
re an+1 , se si conosce an .

Le successioni definite in questo modo sono dette successioni definite per ricorrenza
(o per induzione).
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2.1.2 Esempio. Vediamo due esempi di successioni definite per ricorrenza.
Consideriamo la successione (cn)n∈N , definita come segue:







c0 = 0 ,

cn+1 =
2

cn + 2
, per n ∈N .

Per essere certi che in questo modo risulta definita una successione occorre verificare che è
sempre definito 2/(cn + 2) , cioè che non si ottiene mai cn =−2 . Ciò segue dal fatto che si
ha c0 ≥ 0 e, se cn ≥ 0 , allora anche cn+1 ≥ 0 ; quindi i termini sono non negativi, pertanto
è sempre cn 6=−2 .

I primi termini della successione sono:

0
2

0+ 2
= 1

2

1+ 2
=

2

3

2

(2/3)+ 2
=

3

4

2

(3/4)+ 2
=

8

11

2

(8/11)+ 2
=

11

15
. . . .

Consideriamo la successione (dn)n∈N , definita come segue:

¨

d0 = 1 ,

dn+1 =−dn + n , per n ∈N .

I primi termini della successione sono:

1 − 1+ 0=−1 1+ 1= 2 − 2+ 2= 0 0+ 3= 3 − 3+ 4= 1 . . . .

cn

1

1

4

8/11

dn

1 1

−1 4

3

Figura 2.1.2
Le successioni definite nel-
l’esempio 2.1.2.

2.1.2 Estremi e limitatezza di successioni

Nella sottosezione 1.2.4 abbiamo definito i concetti di limitatezza e di estremo (inferiore
e superiore) per sottoinsiemi di R ; questi concetti possono essere definiti anche nell’ambito
delle successioni reali. L’idea che guida la definizione di questi concetti per le successioni è
che ogni affermazione è relativa all’insieme dei termini.

Quindi risultano naturali le seguenti definizioni.
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Definizione di successione superiormente limitata, superiormente illimitata e di
estremo superiore di una successione

Sia (an)n∈N una successione in R .
Diciamo che (an)n∈N è superiormente limitata quando {an |n ∈ N} è superior-

mente limitato. In tal caso chiamiamo estremo superiore di (an)n∈N , e indichiamo
con supn∈N an , l’estremo superiore dell’insieme dei termini della successione.

Diciamo che (an)n∈N è superiormente illimitata quando {an |n ∈N} è superior-
mente illimitato. In tal caso poniamo supn∈N an =+∞ .

Definizione di successione inferiormente limitata, inferiormente illimitata e di
estremo inferiore di una successione

Sia (an)n∈N una successione in R .
Diciamo che (an)n∈N è inferiormente limitata quando {an |n ∈ N} è inferior-

mente limitato. In tal caso chiamiamo estremo inferiore di (an)n∈N , e indichiamo
con infn∈N an , l’estremo inferiore dell’insieme dei termini della successione.

Diciamo che (an)n∈N è inferiormente illimitata quando {an |n ∈ N} è inferior-
mente illimitato. In tal caso poniamo infn∈N an =−∞ .

Definizione di successione limitata e illimitata

Sia (an)n∈N una successione in R .
Diciamo che (an)n∈N è limitata quando {an |n ∈N} è limitato.
Diciamo che (an)n∈N è illimitata quando {an |n ∈N} è illimitato.

Osserviamo che la successione (an)n∈N è superiormente limitata se e solo se esiste
M ∈R tale che, ∀n ∈N , si ha an ≤ M . Analogamente inferiormente limitata se e solo
se esiste M ∈R tale che, ∀n ∈N , si ha an ≥M .

2.1.3 Esempio. Riprendiamo in esame le successioni introdotte nell’esempio 2.1.1.

La successione (pn)n∈N =
�

1/(n+1)
�

n∈N è limitata, perché ogni suo termine è compreso
tra 0 e 1 .

Evidentemente max{1/(n+ 1) |n ∈N}= p0 = 1 .
Dimostriamo che infn∈N pn = 0 . Ogni termine è positivo, quindi 0 è un minorante.

Dobbiamo dimostrare che 0 è il massimo dei minoranti, cioè che, se ǫ ∈R+ , allora ǫ non è
un minorante della successione; ciò significa che esiste un termine 1/(n+1) maggiore di ǫ .
La disuguaglianza 1/(n+1)> ǫ equivale a n+1> 1/ǫ . Per la proprietà di Archimede 1.4.2,
esiste n ∈ N tale che 1/ǫ < n · 1 , quindi per tale n si ha anche n + 1 > 1/ǫ . Pertanto
qualunque ǫ > 0 non è un maggiorante della successione, quindi infn∈N pn = 0 .

La successione (qn)n∈N =
��

n + (−1)n
�

/(n + 1)
�

n∈N
è superiormente limitata, perché,

∀n ∈N , si ha
n+ (−1)n

n+ 1
≤ n+ 1

n+ 1
= 1 ;

inoltre n+ (−1)n ≥ 0 , pertanto qn ≥ 0 , quindi la successione è inferiormente limitata.
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Poiché q0 = 1 , 1 è un maggiorante della successione che appartiene all’insieme dei
termini, pertanto max{qn |n ∈N}= 1 .

Inoltre q1 = 0 , quindi 0 è un minorante della successione che appartiene all’insieme
dei termini, pertanto min{qn |n ∈N}= 0 .

Consideriamo la successione (rn)n∈N =
�

1/(5 − 2n)
�

n∈N . Per ogni n ∈ N risulta
5− 2n ∈Z∗ , quindi |5− 2n| ≥ 1 , pertanto 1/|5− 2n| ≤ 1 . Perciò 1/(5− 2n) è compreso
tra −1 e 1 , quindi la successione è limitata.

Inoltre si ha r2 = 1 e r3 = −1 , quindi risulta max
�

1/(2n− 5)
�

�n ∈N	= r2 = 1 e
min
�

1/(2n− 5)
�

�n ∈N	= r3 =−1 .

Poiché l’insieme dei termini della successione (sn)n∈N = (n)n∈N è l’insieme dei nu-
meri naturali, è evidente che è superiormente illimitata e inferiormente limitata; inoltre
min{sn |n ∈N}=minN= 0 .

Poiché {tn |n ∈ N} =
¦
�

2n + (−1)n − 1
�

/4
�

�

�n ∈ N
©

= {sn |n ∈ N} , quanto affermato

relativamente a (sn)n∈N vale anche per (tn)n∈N .

La successione (un)n∈N = (3− n)n∈N ha tutti i termini minori o uguali a 3 , pertanto
max{un |n ∈N}= u0 = 3 .

L’insieme dei termini contiene l’insieme degli interi negativi, quindi la successione è
inferiormente illimitata.

Poiché l’insieme dei termini di (vn)n∈N =
�

(−1)n
�

n∈N è {−1,1} , tale successione è
limitata. Evidentemente min{vn |n ∈N}=−1 e max{vn |n ∈N}= 1 .

Consideriamo la successione (wn)n∈N =
�

(−1)n(n + 2)/(n + 1)
�

n∈N . Per ogni n ∈ N
si ha

|wn |=
�

�

�

�

(−1)n(n+ 2)

n+ 1

�

�

�

�
=

n+ 2

n+ 1
= 1+

1

n+ 1
≤ 2 ,

pertanto la successione (wn)n∈N è limitata.
Si ha w0 = 2 , pertanto 2=max{wn |n ∈N} .
Se n è pari, allora wn > 0 , mentre se n è dispari, allora wn è negativo, quindi ogni

termine di indice dispari è minore di ogni termine di indice pari. Inoltre, se n è dispari,
allora

wn+2−wn =−
n+ 4

n+ 3
+

n+ 2

n+ 1
=
−(n+ 4)(n+ 1)+ (n+ 2)(n+ 3)

(n+ 3)(n+ 1)
=

2

(n+ 3)(n+ 1)
> 0 .

Pertanto al crescere dell’indice n dispari wn cresce, quindi w1 è minore di ogni altro
termine di indice dispari. Inoltre, come già detto, ogni termine di indice dispari è minore
di ogni termine di indice pari, pertanto min{wn |n ∈N}= w1 =−3/2 .

L’insieme dei termini della successione (zn)n∈N =
�

(−1)n n
�

n∈N è l’unione dell’insieme
dei numeri naturali pari con l’insieme degli opposti dei numeri naturali dispari; il primo in-
sieme è superiormente illimitato, il secondo è inferiormente illimitato, perciò la successione
è illimitata sia superiormente che inferiormente.
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2.2 Limiti di successioni

2.2.1 Successioni convergenti

Può essere interessante conoscere il comportamento dei termini di una successione
quando il loro indice diventa “grande”. L’idea è di verificare se per valori “grandi” del-
l’indice n il termine an si “avvicina” a un particolare numero reale.

Ad esempio, consideriamo la successione (pn)n∈N =
�

1/(n + 1)
�

n∈N , introdotta nell’e-

sempio 2.1.1. È evidente che al crescere di n la distanza di pn da 0 diventa arbitrariamente
piccola. Cerchiamo di dare un significato preciso a questa affermazione. Ricordiamo an-
zitutto che la distanza di un numero da 0 è il valore assoluto del numero. Il fatto che la
distanza diventi arbitrariamente piccola significa che, scelto un qualunque numero ǫ po-
sitivo, risulta |pn | < ǫ , se n è grande. Resta da precisare cosa si intende dicendo che n è
grande. Possiamo chiedere che esista un valore soglia tale che gli indici n oltre tale soglia
sono considerati grandi e quindi per tali n risulta |pn |< ǫ . Ovviamente tale valore soglia
dipende da ǫ , più ǫ è piccolo, maggiore deve essere il valore soglia.

Il ragionamento relativo a una successione i cui termini si avvicinano a 0 può essere fatto
anche quando i termini della successione si avvicinano a un qualunque numero reale ℓ ; ba-
sta considerare la distanza del termine n -simo da ℓ , cioè il valore assoluto della differenza.

Queste considerazioni portano a dare la seguente definizione.

Definizione di limite reale di una successione

Siano (an)n∈N una successione in R e ℓ ∈ R . Diciamo che (an)n∈N ha limite ℓ
(o che an tende a ℓ ) quando

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒ |an − ℓ|< ǫ ;

in tal caso poniamo limn→+∞ an = ℓ .

Per indicare che limn→+∞ an = ℓ si usa anche la notazione an→ ℓ .
La condizione |an − ℓ| < ǫ è tanto più restrittiva quanto più ǫ è piccolo, poiché, se è

verificata per un certo valore di ǫ , allora è verificata anche per ogni valore più grande.
Per le proprietà del valore assoluto 1.2.31, affermazione I, la condizione |an − ℓ| < ǫ

equivale a ℓ− ǫ < an < ℓ+ ǫ .

2.2.1 Osservazione. È immediato verificare che

an→ ℓ ⇐⇒ an − ℓ→ 0 .

Questa osservazione mostra che le successioni che hanno limite 0 rivestono un partico-
lare interesse, per questo motivo hanno una denominazione particolare: vengono chiamate
successioni infinitesime.

Definizione di successione convergente

Siano (an)n∈N una successione in R . Diciamo che (an)n∈N è convergente quando
esiste ℓ ∈R tale che an→ ℓ .
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b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

ℓ− ǫ1

ℓ− ǫ2

ℓ

ℓ+ ǫ2

ℓ+ ǫ1

nǫ1
nǫ2

Figura 2.2.1
Definizione di limite ℓ .
I termini della successione di in-
dice maggiore di nǫ1

distano dal
limite ℓ meno di ǫ1 , cioè sono
compresi tra ℓ− ǫ1 e ℓ+ ǫ1 .
Lo stesso avviene se si sostitui-
sce ǫ2 a ǫ1 .

2.2.2 Osservazione. Le successioni costanti, cioè quelle con tutti i termini uguali, sono
convergenti.

Infatti, se tutti i termini della successione (an)n∈N sono uguali a m , allora, ∀ǫ ∈R+ e,
∀n ∈ N , risulta |an −m| = 0 < ǫ ; pertanto la definizione di limite è verificata scegliendo
sempre nǫ = 0 . Quindi limn→+∞ an = m .

2.2.3 Esempio. Studiamo i limiti di alcune delle successioni introdotte nell’esempio 2.1.1.

Consideriamo la successione (pn)n∈N =
�

1/(n+ 1)
�

n∈N , dimostriamo che ha limite 0 .

Sia ǫ ∈ R+ . Si ha |pn − 0| < ǫ se e solo se 1/(n + 1) < ǫ , cioè n + 1 > 1/ǫ . Scelto
nǫ ∈N tale che nǫ ≥ 1/ǫ , se n > nǫ si ha n+ 1> 1/ǫ da cui segue |pn − 0|< ǫ .

Quindi è verificata la definizione di limn→+∞ pn = 0 .

Consideriamo la successione (qn)n∈N =
�
�

n+(−1)n
�

/(n+1)
�

n∈N
, dimostriamo che ha

limite 1 .
Sia ǫ ∈R+ . Si ha, ∀n ∈N ,

|qn − 1|=
�

�

�

�

n+ (−1)n

n+ 1
− 1

�

�

�

�
=

�

�

�

�

n+ (−1)n − (n+ 1)

n+ 1

�

�

�

�
=

�

�

�

�

(−1)n − 1

n+ 1

�

�

�

�
≤ 2

n+ 1
.

Pertanto, se 2/(n + 1) < ǫ , allora si ha |qn − 1| < ǫ . Quindi, scelto nǫ ∈ N tale che
nǫ ≥ 2/ǫ , cioè ǫ≥ 2/nǫ , se n > nǫ risulta

2

n+ 1
<

2

nǫ
≤ ǫ ,

pertanto |qn − 1|< ǫ .
Quindi è verificata la definizione di limn→+∞ qn = 1 .

Consideriamo la successione (rn)n∈N =
�

1/(5−2n)
�

n∈N , dimostriamo che ha limite 0 .
Sia ǫ ∈ R+ . Si ha |rn − 0|< ǫ se e solo se 1/|5− 2n| < ǫ , cioè |2n − 5| > 1/ǫ . Per le

proprietà del valore assoluto 1.2.31, affermazione II, tale disuguaglianza è verificata se e solo
se 2n−5> 1/ǫ , oppure 2n−5<−1/ǫ . Dalla prima condizione segue che la disuguaglianza
è verificata se n > (5+ 1/ǫ)/2 . Perciò, qualunque sia nǫ ∈N tale che nǫ ≥ (5+ 1/ǫ)/2 , se
n > nǫ , risulta n > (5+ 1/ǫ)/2 , pertanto |rn − 0|< ǫ .

Quindi è verificata la definizione di limn→+∞ rn = 0 .
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È intuitivamente evidente che i termini di una successione non possono, per valo-
ri grandi dell’indice, essere contemporaneamente vicini a due numeri reali distinti. Ciò
significa che una successione non può avere due limiti distinti. Vale quindi il seguente
teorema.

2.2.4 Teorema (di unicità del limite)

Siano (an)n∈N una successione in R e ℓ, m ∈ R . Se an → ℓ e an → m , allora
ℓ= m .

Dimostrazione. Poiché ℓ e m sono limiti della successione (an)n∈N , si ha:

∀ǫ ∈R+ , ∃ jǫ ∈N : ∀n ∈N , n > jǫ =⇒ |an − ℓ|< ǫ ,

∀ǫ ∈R+ , ∃kǫ ∈N : ∀n ∈N , n > kǫ =⇒ |an −m|< ǫ .

Scelto ǫ ∈ R+ , sia n ∈ N tale che n > max{ jǫ, kǫ} ; allora n > jǫ e n > kǫ , quindi si ha
sia |an − ℓ|< ǫ che |an −m|< ǫ , pertanto

|ℓ−m|= ��(ℓ− an)+ (an −m)
�

�≤ |ℓ− an|+ |an −m|< 2ǫ .

Pertanto, ∀ǫ ∈R+ , si ha |ℓ−m|< 2ǫ . Poiché ogni numero reale positivo può essere scritto
nella forma 2ǫ , con ǫ ∈ R+ , per il teorema 1.4.1 si ha |ℓ−m| ≤ 0 , quindi |ℓ−m| = 0 ,
pertanto ℓ= m .

È opportuno analizzare attentamente questa prima dimostrazione sui limiti di succes-
sioni, perché fa uso di alcune tecniche che ritroveremo in varie altre dimostrazioni.

Anzitutto osserviamo che nelle due definizioni di limite riportate abbiamo usato due
simboli diversi per indicare il valore soglia che individua gli indici “grandi”: jǫ nella defini-
zione di an→ ℓ e kǫ nella definizione di an→ m . Questo perché le due definizioni sono
indipendenti tra loro, quindi, fissato ǫ ∈ R+ , la soglia che assicura che an è vicina a ℓ è
indipendente da quella che assicura che an è vicino a m , dove “vicino” significa a distanza
minore di ǫ . Per proseguire nella dimostrazione dobbiamo considerare un an che verifichi
entrambe le condizioni, per questo scegliamo un indice n che superi entrambe le soglie,
cioè n >max{ jǫ, kǫ} .

Utilizzando queste informazioni, e la disuguaglianza triangolare per il valore assoluto,
otteniamo che la distanza tra ℓ e m è minore di 2ǫ . A questo punto sfruttiamo il fatto
che, al variare di ǫ in R+ , 2ǫ percorre tutto R+ ; in altre parole la metà di un numero reale
positivo è positiva, quindi ogni δ ∈R+ può essere scritto come 2(δ/2) con δ/2 ∈R+ .

Abbiamo così ottenuto che la distanza tra ℓ e m è minore di ogni numero reale
positivo, quindi è nulla. Perciò ℓ= m .

Il teorema di unicità del limite assicura che la notazione limn→+∞ an indica un numero
ben preciso, non vi è quindi possibilità di ambiguità.

Enunciamo alcuni teoremi che illustrano come si comportano i limiti rispetto alla rela-
zione d’ordine.
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2.2.5 Teorema (del confronto)

Siano (an)n∈N e (bn)n∈N successioni in R . Supponiamo che (an)n∈N e (bn)n∈N
siano convergenti. Se, ∀n ∈N , si ha an ≤ bn , allora limn→+∞ an ≤ limn→+∞ bn .

Dimostrazione. Posto ℓ= limn→+∞ an e m = limn→+∞ bn , per definizione si ha:

∀ǫ ∈R+ , ∃ jǫ ∈N : ∀n ∈N , n > jǫ =⇒ ℓ− ǫ < an < ℓ+ ǫ ,

∀ǫ ∈R+ , ∃kǫ ∈N : ∀n ∈N , n > kǫ =⇒ m− ǫ < bn < m+ ǫ .

Scelto ǫ ∈R+ , sia n ∈N tale che n >max{ jǫ, kǫ} ; allora si ha ℓ− ǫ < an e bn < m+ ǫ ,
poiché an ≤ bn , si ha anche ℓ− ǫ < m+ ǫ .

Quindi, ∀ǫ ∈ R+ , si ha ℓ− m < 2ǫ . Poiché ogni numero reale positivo può essere
scritto nella forma 2ǫ , con ǫ ∈R+ , per il teorema 1.4.1 risulta ℓ−m ≤ 0 , cioè ℓ≤ m .

In particolare, se in questo teorema si sceglie come (bn)n∈N una successione che va-
le costantemente b , si ottiene che se, ∀n ∈ N , si ha an ≤ b , allora limn→+∞ an ≤ b .
Analogamente, se ∀n ∈N , si ha a ≤ bn , allora a ≤ limn→+∞ bn .

2.2.6 Osservazione. Se si rafforza l’ipotesi del teorema del confronto, chiedendo che sia,
∀n ∈ N , an < bn , non si può concludere che vale sempre la disuguaglianza stretta tra i
limiti, essi possono essere uguali.

Consideriamo la successione (pn)n∈N =
�

1/(n+ 1)
�

n∈N , introdotta nell’esempio 2.1.1.
Nell’esempio 2.2.3 abbiamo stabilito che 1/(n + 1) → 0 . Per l’osservazione 2.2.2 la suc-
cessione costante (0)n∈N ha limite 0 . Quindi, ∀n ∈ N , risulta 0 < 1/(n + 1) , ma non è
limn→+∞ 0< limn→+∞ 1/(n+ 1) .

2.2.7 Teorema (della permanenza del segno)

Siano (an)n∈N una successione in R e m ∈ R . Supponiamo che (an)n∈N sia
convergente.

I) Se limn→+∞ an > m , allora esiste n ∈N tale che, ∀n ∈N , n > n =⇒ an > m .

II) Se limn→+∞ an < m , allora esiste n ∈N tale che, ∀n ∈N , n > n =⇒ an < m .

Dimostrazione. I) Posto ℓ= limn→+∞ an , per definizione si ha:

∀ǫ ∈R+ , ∃ jǫ ∈N : ∀n ∈N , n > jǫ =⇒ ℓ− ǫ < an < ℓ+ ǫ .

Scelto ǫ = ℓ− m , se n > nℓ−m si ha an > ℓ− (ℓ− m) = m . Quindi la tesi è verificata
ponendo n = nℓ−m .

II) La dimostrazione è analoga a quella dell’affermazione precedente.

Questo teorema afferma che la proprietà an > m (o an < m ) è verificata dai termi-
ni an il cui indice n è maggiore di una certa soglia (il numero n dell’enunciato). Nello
studio delle successioni ci si trova spesso nella situazione in cui una determinata proprietà è
verificata dai termini di una successione di indice “grande”. Risulta quindi utile la seguente
definizione.



2.2. Limiti di successioni 57

Definizione di proprietà verificata definitivamente

Per ogni n ∈ N sia P (n) una proposizione. Diciamo che P (n) è verificata
definitivamente quando

∃m ∈N : ∀n ∈N , n > m =⇒ P (n) .

Questa terminologia verrà usata frequentemente quando la proposizione P (n) è un’af-
fermazione riguardante il termine n -simo di una successione. Ad esempio, il teorema
della permanenza del segno 2.2.7, affermazione I, può essere enunciato nella forma: “se
limn→+∞ an > m , allora definitivamente risulta an > m ”.

2.2.8 Esempio. La successione (rn)n∈N =
�

1/(5− 2n)
�

n∈N , introdotta nell’esempio 2.1.1
ha sia termini positivi che negativi; ad esempio a0 = 1/5 e a3 = −1 . Se n > 2 , allora
5−2n < 0 , quindi rn < 0 . Pertanto i termini della successione non sono tutti negativi, ma
sono definitivamente negativi.

Spesso questa affermazione viene abbreviata dicendo che la successione è definitivamen-
te negativa.

2.2.9 Osservazione. Siano, ∀n ∈N , P (n) e Q(n) proposizioni. Se sia P (n) che Q(n)
valgono definitivamente, allora anche P (n)∧Q(n) vale definitivamente.

Infatti, se mP , mQ ∈N sono tali che n > mP =⇒ P (n) e n > mQ =⇒ Q(n) , allora
n >max{mP , mQ} =⇒ P (n)∧Q(n) .

2.2.10 Esempio. Utilizziamo il teorema della permanenza del segno 2.2.7 per provare che
alcune delle successioni introdotte nell’esempio 2.1.1 non hanno limite.

Consideriamo la successione (vn)n∈N =
�

(−1)n
�

n∈N , dimostriamo che non esiste ℓ ∈R
tale che vn → ℓ .

Se fosse vn → ℓ , con ℓ > 0 , allora, per il teorema delle permanenza del segno 2.2.7, vn
sarebbe definitivamente positivo, ma questo non è vero perché la successione ha termini
negativi di indice arbitrariamente grande. Poiché la successione ha anche termini positivi
di indice arbitrariamente grande, non può neppure avere limite negativo. Infine non può
essere vn → 0 . Infatti, ∀n ∈N , si ha |vn − 0|= ��(−1)n

�

�= 1 . Pertanto, se nella definizione
di limite scegliamo ǫ= 1/2 , non si ha mai |vn − 0|< ǫ .

Consideriamo la successione (wn)n∈N =
�

(−1)n(n + 2)/(n + 1)
�

n∈N , dimostriamo che
non esiste ℓ ∈R tale che wn→ ℓ .

Come la successione
�

(−1)n
�

n∈N , anche questa ha termini di indice arbitrariamente
grande positivi e e termini di indice arbitrariamente grande negativi, quindi non può avere
né limite negativo né limite positivo. Inoltre, ∀n ∈N , si ha

|wn |=
�

�

�

�

(−1)n(n+ 2)

n+ 1

�

�

�

�
=

n+ 2

n+ 1
> 1 ,

quindi (wn)n∈N non può convergere a 0 .
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2.2.11 Teorema (dei due carabinieri)

Siano (an)n∈N , (bn)n∈N e (cn)n∈N successioni in R tali che, ∀n ∈ N , si ha
an ≤ bn ≤ cn . Se (an)n∈N e (cn)n∈N sono convergenti e

lim
n→+∞

an = lim
n→+∞

cn ,

allora anche (bn)n∈N è convergente e

lim
n→+∞

bn = lim
n→+∞

an = lim
n→+∞

cn .

Dimostrazione. Posto ℓ= limn→+∞ an = limn→+∞ cn , per definizione si ha:

∀ǫ ∈R+ , ∃ jǫ ∈N : ∀n ∈N , n > jǫ =⇒ ℓ− ǫ < an < ℓ+ ǫ ,

∀ǫ ∈R+ , ∃kǫ ∈N : ∀n ∈N , n > kǫ =⇒ ℓ− ǫ < cn < ℓ+ ǫ .

Scelto ǫ ∈R+ , poniamo nǫ =max{ jǫ, kǫ} ; se n > nǫ , allora si ha n > jǫ e n > kǫ , quindi
ℓ− ǫ < an e cn < ℓ+ ǫ ; poiché an ≤ bn ≤ cn , da qui segue ℓ− ǫ < bn < ℓ+ ǫ .

Quindi è verificata la definizione di limn→+∞ bn = ℓ .
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Figura 2.2.2
Dimostrazione del teorema dei
due carabinieri 2.2.11.
In blu (an)n∈N , in rosso (bn)n∈N
e in verde (cn)n∈N .
Se n > jǫ , allora an > ℓ − ǫ ,
quindi si ha anche bn > ℓ− ǫ ; se
n > kǫ , allora cn < ℓ+ǫ , quindi
si ha anche bn < ℓ+ ǫ . I termini
di (bn)n∈N di indice maggiore sia
di jǫ che di kǫ sono compresi tra
ℓ− ǫ e ℓ+ ǫ .

2.2.12 Esempio. Sia k ∈ N \ {0,1} . Consideriamo le successioni (0)n∈N ,
�

(n + 1)−k
�

n∈N
e (pn)n∈N =
�

(n + 1)−1
�

n∈N (v. esempio 2.1.1). Poiché, ∀n ∈ N , si ha 1+ n ≤ (1+ n)k ,

risulta 0 < (n + 1)−k ≤ 1/(1+ n) . La successione (0)n∈N ha limite 0 e nell’esempio 2.2.3
abbiamo provato che 1/(n + 1)→ 0 . Pertanto, per il teorema dei due carabinieri 2.2.11,
risulta (n+ 1)−k → 0 .

Osserviamo che si ha anche n−k → 0 . Infatti, fissato ǫ ∈ R+ , se nǫ è tale che per
n > nǫ si ha (n+ 1)−k < ǫ , allora per n > nǫ+ 1 si ha n−k < ǫ .
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2.2.2 Successioni divergenti

Vi sono successioni per cui i termini di indice grande non si “avvicinano” ad alcun
numero reale, ma diventano essi stessi “grandi” in valore assoluto, con segno sempre po-
sitivo o sempre negativo. Nello stesso ordine di idee della definizione di limite reale di
una successione, diamo due definizioni per individuare le successioni che hanno questo
comportamento.

Definizione di limite +∞ e −∞ di una successione

Sia (an)n∈N una successione in R .
Diciamo che (an)n∈N ha limite +∞ (o che an tende a +∞ ) quando

∀M ∈R , ∃nM ∈N : ∀n ∈N , n > nM =⇒ an >M ;

in tal caso poniamo limn→+∞ an =+∞ .
Diciamo che (an)n∈N ha limite −∞ (o che an tende a −∞ ) quando

∀M ∈R , ∃nM ∈N : ∀n ∈N , n > nM =⇒ an <M ;

in tal caso poniamo limn→+∞ an =−∞ .

Osserviamo che nella definizione di limite +∞ , se la condizione an > M è verificata
per un certo numero M , allora è verificata per tutti gli M minori; di conseguenza, se la
condizione è verificata per ogni M ∈R+ , allora è verificata per ogni M ∈R .

Nel caso di limite −∞ si ha analogamente che è sufficiente chiedere che la condizione
sia verificata per gli M appartenenti a R− .
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Figura 2.2.3
Definizione di limite +∞ .
I termini della successione di in-
dice maggiore di nM1

sono mag-
giori di M1 .
Lo stesso avviene se si sostitui-
sce M2 a M1 .

Definizione di successione divergente

Sia (an)n∈N una successione in R .
Diciamo che (an)n∈N è divergente quando an→+∞ oppure an→−∞ .
In particolare diciamo che (an)n∈N è divergente positivamente o divergente

a +∞ nel primo caso, divergente negativamente o divergente a −∞ nel secondo
caso.
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2.2.13 Osservazione. È evidente che an → +∞ se e solo se −an→−∞ . Infatti, per
M ∈ R , si ha definitivamente an > M , se e solo se definitivamente −an < −M e ogni
numero reale può essere scritto nella forma −M per M ∈R opportuno.

È utile definire un termine per indicare tutte le successioni che hanno limite, sia esso
reale o ±∞ .

Definizione di successione regolare e successione oscillante

Sia (an)n∈N una successione in R .
Diciamo che (an)n∈N è regolare quando è convergente o divergente, cioè quando

ha limite.
In caso contrario diciamo che (an)n∈N è oscillante.

2.2.14 Esempio. Studiamo i limiti di alcune delle successioni introdotte nell’esempio 2.1.1.
Consideriamo la successione (sn)n∈N = (n)n∈N , dimostriamo che ha limite +∞ .
Sia M ∈R . Scelto nM ∈N tale che nM ≥M , se n > nM , allora si ha sn = n > nM ≥M .
Quindi è verificata la definizione di limn→+∞ sn =+∞ .

Consideriamo la successione (tn)n∈N =
�
�

2n+ (−1)n − 1
�

/4
�

n∈N
, dimostriamo che ha

limite +∞ .
Sia M ∈R . Si ha, ∀n ∈N ,

tn =
2n+ (−1)n − 1

4
≥ 2n− 2

4
=

n− 1

2
;

Pertanto se n−1> 2M , allora si ha tn >M . Quindi, scelto nM ∈N tale che nM ≥ 2M+1 ,
se n > nM risulta tn >M .

Quindi è verificata la definizione di limn→+∞ tn =+∞ .

Consideriamo la successione (un)n∈N = (3− n)n∈N , dimostriamo che ha limite −∞ .
Sia M ∈R . Si ha un <M se e solo se 3−n <M , cioè n > 3−M . Pertanto qualunque

sia nM ∈N tale che nM ≥ 3−M , se n > nM si ha 3− n <M .
Quindi è verificata la definizione di limn→+∞ un =−∞ .

Per provare la divergenza di una successione vale un teorema analogo al teorema dei due
carabinieri 2.2.11.

2.2.15 Teorema

Siano (an)n∈N e (bn)n∈N successioni in R tali che, ∀n ∈N , si ha an ≤ bn .

I) Se an→+∞ , allora anche bn→+∞ .

II) Se bn→−∞ , allora anche an→−∞ .

Dimostrazione. I) Per definizione si ha:

∀M ∈R , ∃nM ∈N : ∀n ∈N , n > nM =⇒ an >M .

Qualunque sia M ∈R , se n > nM si ha bn ≥ an >M , cioè bn >M , pertanto bn→+∞ .
II) La dimostrazione è analoga a quella dell’affermazione precedente.
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Osserviamo che nel teorema dei due carabinieri 2.2.11, per provare la convergenza di
una successione, si richiede l’esistenza di una successione che minora e di una che maggiora
la successione studiata; in questo teorema, a seconda dei casi, è sufficiente l’esistenza di
una successione che minora o di una successione che maggiora. Ciò è dovuto al fatto che
la definizione di successione convergente richiede che, definitivamente, an verifichi due
disuguaglianze, mentre la definizione di successione divergente richiede che an verifichi
una sola disuguaglianza.

2.2.16 Esempio. Sia k ∈N\{0,1} . Si ha, ∀n ∈N , nk ≥ n e n→+∞ (v. esempio 2.2.14).
Pertanto, per il teorema 2.2.15, affermazione I, nk →+∞ .

2.2.17 Esempio. Per ogni n ∈N , risulta n!≥ n . Questo vale evidentemente per n = 0 . Se
si pensa al fattoriale di n come al prodotto dei numeri da 1 a n , l’affermazione è evidente
anche per n > 0 . Infatti ogni fattore è maggiore o uguale a 1 , quindi il prodotto è maggiore
o uguale a ogni fattore, in particolare maggiore o uguale a n .

Una dimostrazione rigorosa della disuguaglianza n! ≥ n richiede il principio di indu-
zione, che applichiamo a partire da 1 , invece che da 0 . Poiché 1! = 1 l’affermazione vale
per n = 1 . Se vale per n , allora

(n+ 1)!= (n+ 1)n!≥ (n+ 1)n ≥ n+ 1 ,

dove nella prima disuguaglianza abbiamo usato l’ipotesi induttiva. Quindi l’affermazione
vale per n+ 1 .

Poiché n→+∞ (v. esempio 2.2.14), per il teorema 2.2.15, affermazione I, si ha anche
n!→+∞ .

2.2.3 Successioni regolari

Introduciamo alcune definizioni per unificare, per quanto possibile, i teoremi relati-
vi alle successioni convergenti e quelli relativi alle successioni divergenti. Introduciamo
anzitutto un insieme contenente tutti i possibili limiti di successioni.

Definizione di insieme dei numeri reali esteso

Chiamiamo insieme dei numeri reali esteso (o anche retta reale estesa) e indi-
chiamo con R l’insieme ottenuto aggiungendo ai numeri reali due oggetti che indi-
chiamo con i simboli −∞ e +∞ (si leggono rispettivamente “meno infinito” e “più
infinito”).

Abbiamo quindi
R=R∪ {−∞,+∞} .

La relazione di ≤ in R può essere estesa a una relazione in R , che è ancora di ordine
lineare. È invece impossibile estendere le operazioni di addizione e di moltiplicazione a R
in modo che continuino a valere le abituali proprietà di tali operazioni (e in particolare gli
assiomi di campo C1–C9). Per tale motivo i simboli x+y e x ·y non hanno significato nel
caso che x o y siano +∞ o −∞ . Utilizziamo però la notazione −x quando x =±∞ ,
intendendo che −(+∞) = −∞ e −(−∞) = +∞ ; la notazione è impropria perché non
essendo definita la somma non è possibile parlare di opposto.
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Estendiamo la relazione di ≤ a R considerando +∞ maggiore di ogni numero reale
e di −∞ e −∞ minore di ogni numero reale (e ovviamente di +∞ ). Si ha quindi

∀x ∈R , −∞≤ x ≤+∞ .

Con questa definizione (intendendo come al solito che x < y significa x ≤ y , ma
x 6= y ) x < +∞ è equivalente a x 6= +∞ e analogamente x > −∞ è equivalente a
x 6=−∞ .

Si verifica facilmente che, anche in questo ambito, ≤ è una relazione d’ordine lineare.
Si possono quindi definire per sottoinsiemi di R minimo, massimo, minoranti, maggio-
ranti, estremi, ripetendo le definizioni date per sottoinsiemi di R . Non hanno interesse le
definizioni relative alla limitatezza, perché in R ogni insieme ha il maggiorante +∞ e il
minorante −∞ .

Si prova facilmente, esaminando i vari casi possibili e riconducendosi a ciò che sappiamo
per sottoinsiemi di R , che anche in R ogni insieme di maggioranti ha minimo e ogni
insieme di minoranti ha massimo, quindi sono sempre definiti estremo inferiore ed estremo
superiore.

Talvolta per esprimere il fatto che un elemento di R appartiene a R (cioè non è né +∞
né −∞ ) diciamo che esso è “finito”.

Nella definizione di successione che tende a c ∈R compare la condizione |an − c |< ǫ ,
che equivale a an ∈ ]c − ǫ, c + ǫ[ . Se il limite è +∞ gioca un ruolo analogo la condizione
an >M , cioè an ∈ ]M ,+∞[ , mentre se il limite è −∞ utilizziamo la condizione an <M ,
cioè an ∈ ]−∞, M [ .

È utile dare un nome agli insiemi individuati sopra.

Definizione di intorno di un elemento di R

Sia c ∈R .
Se c ∈R chiamiamo intorno di c ogni insieme del tipo ]c−ǫ, c+ǫ[ con ǫ ∈R+ .
Se c =+∞ chiamiamo intorno di c ogni insieme del tipo ]M ,+∞[ con M ∈R .
Se c =−∞ chiamiamo intorno di c ogni insieme del tipo ]−∞, M [ con M ∈R .
In ogni caso indichiamo con Ic l’insieme degli intorni di c .

Pertanto, ∀c ∈R , si ha

Ic =
�

]c − ǫ, c + ǫ[
�

�ǫ ∈R+
	

,

inoltre

I+∞ =
�

]M ,+∞[
�

�M ∈R
	

,

I−∞ =
�

]−∞, M [
�

�M ∈R	 .

2.2.18Osservazione. Utilizzando il concetto di intorno, le definizioni di limite reale, +∞
e −∞ possono essere unificate. Infatti è facile verificare che, se (an)n∈N è una successione
in R e ℓ ∈R , si ha limn→+∞ an = ℓ se e solo se

∀U ∈Iℓ , ∃nU ∈N : ∀n ∈N , n > nU =⇒ an ∈U .
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I teoremi del confronto 2.2.5 e della permanenza del segno 2.2.7, visti per le succes-
sioni convergenti, valgono anche per le successioni divergenti e quindi, in generale, per le
successioni regolari.

2.2.19 Teorema (del confronto)

Siano (an)n∈N e (bn)n∈N successioni in R . Supponiamo che (an)n∈N e (bn)n∈N
siano regolari. Se, ∀n ∈N , si ha an ≤ bn , allora limn→+∞ an ≤ limn→+∞ bn .

Dimostrazione. Poniamo ℓ= limn→+∞ an e m = limn→+∞ bn .
Se ℓ = −∞ , allora ℓ ≤ m ; se invece ℓ = +∞ , allora, per il teorema 2.2.15, afferma-

zione I, anche m =+∞ .
Se m = −∞ , allora, per il teorema 2.2.15, affermazione II, anche ℓ = −∞ ; se invece

m =+∞ , allora ℓ≤ m .
Infine se ℓ, m ∈R , allora, per il teorema 2.2.5, si ha ℓ≤ m .

2.2.20 Teorema (della permanenza del segno)

Siano (an)n∈N una successione in R e m ∈ R . Supponiamo che (an)n∈N sia
regolare.

I) Se limn→+∞ an > m , allora esiste n ∈N tale che, ∀n ∈N , n > n =⇒ an > m .

II) Se limn→+∞ an < m , allora esiste n ∈N tale che, ∀n ∈N , n > n =⇒ an < m .

Dimostrazione. I) Poniamo ℓ= limn→+∞ an . Poiché ℓ > m ∈R , risulta ℓ 6=−∞ .
Se ℓ ∈ R , allora l’affermazione coincide con l’affermazione I del teorema della perma-

nenza del segno 2.2.7, .
Se ℓ=+∞ , allora la tesi segue immediatamente dalla definizione di limite +∞ .

II) La dimostrazione è analoga a quella dell’affermazione precedente.

Il teorema seguente fornisce un collegamento tra il fatto che una successione abbia limite
e la sua limitatezza.

2.2.21 Teorema (sulla limitatezza delle successioni regolari)

Sia (an)n∈N una successione in R .

I) Se (an)n∈N è convergente, allora (an)n∈N è limitata.

II) Se an→+∞ , allora (an)n∈N è inferiormente limitata e superiormente illimitata.

III) Se an→−∞ , allora (an)n∈N è superiormente limitata e inferiormente illimitata.

Dimostrazione. I) Posto ℓ= limn→+∞ an , per definizione si ha:

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒ ℓ− ǫ < an < ℓ+ ǫ .

Se n > n1 , allora ℓ− 1 < an < ℓ+ 1 . Dunque ℓ− 1 e ℓ+ 1 sono rispettivamente un
minorante e un maggiorante di {an |n > n1} .
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Poniamo a =min
�

{an |n ≤ n1}∪{ℓ−1}
�

e b =max
�

{an |n ≤ n1}∪{ℓ+1}
�

. È evidente
che a è un minorante di {an |n ∈ N} ; infatti se n > n1 , allora an > ℓ− 1 ≥ a , mentre se
n ≤ n1 , allora an ≥min{an |n ≤ n1} ≥ a . Analogamente b è un maggiorante di (an)n∈N ,
quindi la successione ha sia minoranti che maggioranti, perciò è limitata.

II) Per definizione si ha:

∀M ∈R , ∃nM ∈N : ∀n ∈N , n > nM =⇒ an >M .

Pertanto ∀M ∈R esistono termini della successione maggiori di M , quindi la successione
non ammette maggioranti, cioè è superiormente illimitata.

Se n > n0 si ha an > 0 , perciò, posto a =min
�{an |n ≤ n0} ∪ {0}

�

, ragionando come
al punto precedente si prova che a è un minorante di {an |n ∈N} ; quindi la successione è
inferiormente limitata.

III) La dimostrazione è analoga a quella dell’affermazione precedente.

Per questo teorema una successione convergente non può essere illimitata, né superior-
mente né inferiormente, quindi non può essere divergente; per motivi analoghi una succes-
sione divergente a +∞ non può essere divergente a −∞ . Quindi il teorema di unicità
del limite 2.2.4 vale considerando non solo limiti reali, ma anche limiti in R . Vale cioè il
seguente teorema.

2.2.22 Teorema (di unicità del limite)

Siano (an)n∈N una successione in R e ℓ, m ∈ R . Se an → ℓ e an → m , allora
ℓ= m .

Risulta evidente che il concetto di limite di una successione, sia nel caso di limite reale
che di limite uguale a ±∞ , dipende solo dai termini della successione di indice grande. In
altre parole modificando un numero finito di termini di una successione il limite, se esiste,
non cambia. Ciò è precisato dal seguente teorema.

2.2.23 Teorema

Siano (an)n∈N e (bn)n∈N successioni in R . Supponiamo che esista n ∈ N tale
che, ∀n ∈N , se n > n risulta an = bn .

Se (an)n∈N è regolare, allora anche (bn)n∈N è regolare e si ha

lim
n→+∞

an = lim
n→+∞

bn .

Dimostrazione. Posto ℓ= limn→+∞ an , per definizione si ha:

∀U ∈Iℓ , ∃nU ∈N : ∀n ∈N , n > nU =⇒ an ∈U .

Scelto U ∈ Iℓ , poniamo kU =max{n, nU } . Se n > kU , allora si ha an ∈ U e bn = an ,
quindi n > kU =⇒ bn ∈U ; perciò è verificata la definizione di limn→+∞ bn = ℓ .
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2.2.24 Osservazione. L’ipotesi del teorema può essere espressa anche dicendo che le suc-
cessioni (an)n∈N e (bn)n∈N differiscono al più per un numero finito di termini. Infatti può
essere an 6= bn solo se n ≤ n , quindi le due successioni hanno al più n+1 termini diversi.
Viceversa se le due successioni hanno un numero finito di termini diversi, allora, indicato
con n il più grande indice tale che an 6= bn , evidentemente si ha n > n =⇒ an = bn .

Questa osservazione ha carattere generale: una proprietà vale definitivamente per una
successione se e solo se è verificata da tutti i termini tranne, al più, un numero finito.

2.2.25 Osservazione. Questo teorema ha una importante conseguenza: ogni proprietà
del limite di una successione che vale se una determinata ipotesi è verificata da ogni termine
della successione, vale anche se l’ipotesi è verificata solo definitamente.

Infatti se (an)n∈N verifica l’ipotesi definitivamente, modificando opportunamente i ter-
mini an che non verificano l’ipotesi, si costruisce una successione (bn)n∈N definitivamente
uguale a (an)n∈N e avente tutti i termini che verificano l’ipotesi. Quindi limn→+∞ bn ha
la proprietà considerata, per il teorema 2.2.23 limn→+∞ an = limn→+∞ bn , pertanto anche
limn→+∞ an ha la proprietà considerata.

Ad esempio, è una immediata conseguenza del teorema del confronto 2.2.19 il fatto
che una successione regolare a termini non negativi ha limite non negativo. Il ragiona-
mento appena fatto ci consente di concludere che anche le successioni regolari a termini
definitivamente non negativi hanno limite non negativo.

2.2.4 Operazioni sui limiti

Studiamo ora il limite di successioni ottenute, mediante le operazioni, da altre succes-
sioni. Iniziamo con le successioni espresse come somma di due successioni.

2.2.26 Teorema (sul limite della somma)

Siano (an)n∈N e (bn)n∈N successioni in R .

I) Se (an)n∈N e (bn)n∈N sono convergenti, allora anche (an+bn)n∈N è convergente e

lim
n→+∞

(an + bn) = lim
n→+∞

an + lim
n→+∞

bn .

II) Se an→+∞ e (bn)n∈N è inferiormente limitata, allora an + bn→+∞ .

III) Se an→+∞ e (bn)n∈N ha limite diverso da −∞ , allora an + bn→+∞ .

IV) Se an→−∞ e (bn)n∈N è superiormente limitata, allora an + bn→−∞ .

V) Se an→−∞ e (bn)n∈N ha limite diverso da +∞ , allora an + bn→−∞ .

Dimostrazione. I) Posto ℓ= limn→+∞ an e m = limn→+∞ bn , per definizione si ha:

∀ǫ ∈R+ , ∃ jǫ ∈N : ∀n ∈N , n > jǫ =⇒ |an − ℓ|< ǫ ,

∀ǫ ∈R+ , ∃kǫ ∈N : ∀n ∈N , n > kǫ =⇒ |bn −m|< ǫ .

Se n >max{ jǫ, kǫ} , allora si ha
�

�(an + bn)− (ℓ+m)
�

�=
�

�(an − ℓ)+ (bn −m)
�

�≤ |an − ℓ|+ |bn −m|< 2ǫ .
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Poiché ogni numero reale positivo può essere scritto nella forma 2ǫ , con ǫ ∈ R+ , è
verificata la definizione di limn→+∞(an + bn) = ℓ+m .

II) Per definizione si ha:

∀M ∈R , ∃nM ∈N : ∀n ∈N , n > nM =⇒ an >M ;

poiché (bn)n∈N è inferiormente limitata, esiste b ∈ R tale che, ∀n ∈ N , si ha bn ≥ b ,
quindi

n > nM =⇒ an + bn >M + b .

Poiché, scegliendo opportunamente M in R , ogni numero reale può essere scritto nella
forma M + b , risulta verificata la definizione di an + bn→+∞ .

III) Per il teorema sulla limitatezza delle successioni regolari 2.2.21, affermazioni I e II, le
ipotesi dell’affermazione precedente sono verificate, quindi vale la tesi.

IV) La dimostrazione è analoga a quella dell’affermazione II.

V) La dimostrazione è analoga a quella dell’affermazione III.

Questo teorema consente di calcolare il limite della somma di due successioni quando
si conosce il limite di ciascuno dei due addendi, con l’esclusione del caso in cui una delle
successioni diverge a +∞ e l’altra diverge a −∞ . In tal caso diciamo che si ha un limite
in forma indeterminata.

Precisiamo che parlare di forma indeterminata non significa che il limite non esiste o che
non è possibile calcolarlo, ma significa che la sola conoscenza del limite delle due successioni
che si sommano non è sufficiente per trarre conclusioni sul limite della successione somma.
Per il calcolo del limite occorre esprimere i termini della successione in una forma diversa.

2.2.27 Esempio. Vediamo alcuni esempi di successioni che mostrano che, sommando una
successione divergente a +∞ e una divergente a −∞ , la successione somma può avere
qualunque comportamento.

Nella tabella seguente si ha sempre an→+∞ e bn→−∞ ; la successione (an + bn)n∈N
ha un comportamento diverso a seconda della scelta di an e bn . Con ℓ indichiamo un
arbitrario numero reale.

an n+ ℓ 2n n n+ (−1)n

bn −n −n −2n −n

an + bn ℓ n −n (−1)n

lim
n→+∞

(an + bn) ℓ +∞ −∞ ∄

Verifichiamo che in tutti i casi an→+∞ . Sappiamo che n→+∞ (v. esempio 2.2.14).
Per il teorema sul limite della somma, affermazione III, si ha n + ℓ → +∞ . Poiché,
∀n ∈ N , si ha 2n ≥ n , per il teorema 2.2.15, affermazione I, 2n → +∞ . Poiché la suc-
cessione
�

(−1)n
�

n∈N è limitata, per il teorema sul limite della somma, affermazione II,
n+ (−1)n→+∞ .

Verifichiamo che in tutti i casi bn → −∞ . Si ha −n →−∞ e −2n →−∞ , perché
n→+∞ e 2n→+∞ (v. osservazione 2.2.13).
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Studiamo il limite di successioni espresse come prodotto di due successioni.

2.2.28 Teorema (sul limite del prodotto)

Siano (an)n∈N e (bn)n∈N successioni in R .

I) Se (an)n∈N e (bn)n∈N sono convergenti, allora anche (an bn)n∈N è convergente e

lim
n→+∞

(an bn) = lim
n→+∞

an lim
n→+∞

bn .

II) Se (an)n∈N è divergente e inf{bn |n ∈N}> 0 , allora (an bn)n∈N è divergente e

lim
n→+∞

(an bn) = lim
n→+∞

an .

III) Se (an)n∈N è divergente e (bn)n∈N ha limite maggiore di 0 , allora (an bn)n∈N è
divergente e

lim
n→+∞

(an bn) = lim
n→+∞

an .

IV) Se (an)n∈N è divergente e sup{bn |n ∈N}< 0 , allora (an bn)n∈N è divergente e

lim
n→+∞

(an bn) =− lim
n→+∞

an .

V) Se (an)n∈N è divergente e (bn)n∈N ha limite minore di 0 , allora (an bn)n∈N è
divergente e

lim
n→+∞

(an bn) =− lim
n→+∞

an .

VI) Se an→ 0 e (bn)n∈N è limitata, allora an bn→ 0 .

Dimostrazione. I) Posto ℓ= limn→+∞ an e m = limn→+∞ bn , per definizione si ha

∀ǫ ∈R+ , ∃ jǫ ∈N : ∀n ∈N , n > jǫ =⇒ |an − ℓ|< ǫ ,

∀ǫ ∈R+ , ∃kǫ ∈N : ∀n ∈N , n > kǫ =⇒ |bn −m|< ǫ .

Posto nǫ =max{ jǫ, kǫ} , se n > nǫ si ha:

|an bn − ℓm|=
�

�(an bn − an m)+ (an m− ℓm)
�

�≤ |an bn − an m|+ |an m− ℓm|=
= |an | |bn −m|+ |an − ℓ| |m| ≤ |an |ǫ+ ǫ|m| .

Poiché la successione (an)n∈N è convergente, essa è limitata per il teorema sulla limitatez-
za delle successioni regolari 2.2.21, affermazione I, perciò

�|an |
�

�n ∈N	 è superiormente
limitato (v. osservazione 1.2.37); sia c un numero maggiore dell’estremo superiore di tale
insieme. Allora si ha

n > nǫ =⇒ |an bn − ℓm| ≤
�

|an |+ |m|
�

ǫ <
�

c + |m|
�

ǫ ;

poiché ogni numero reale positivo può essere scritto come
�

c + |m|�ǫ , con ǫ ∈R+ oppor-
tuno, è verificata la definizione di limn→+∞ an bn = ℓm .
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II) Supponiamo an→+∞ , il caso an→−∞ si tratta in modo analogo.
Poniamo b = inf{bn |n ∈N} ; per ipotesi b > 0 . Per definizione si ha:

∀M ∈R , ∃nM ∈N : ∀n ∈N , n > nM =⇒ an >M ;

se M ∈R+ da qui segue

n > nM =⇒ an bn >M bn ≥ b M .

Pertanto, se M ∈R+ , allora si ha

n > nM/b =⇒ an bn > b
M

b
=M ,

mentre se M ∈R− ∪ {0} , allora si ha

n > n0 =⇒ an bn > b · 0= 0≥M .

Quindi è verificata la definizione di limn→+∞ an bn =+∞ .

III) Sia m ∈ R+ tale che m < limn→+∞ bn ; allora, per il teorema della permanenza del
segno 2.2.20, ∃n ∈N tale che, per n > n , si ha bn > m , quindi

inf{bn |n > n} ≥ m > 0 .

Pertanto (bn)n∈N verifica definitivamente la condizione richiesta nell’affermazione II, allora
(v. osservazione 2.2.25) vale la conclusione di tale affermazione, cioè an bn→+∞ .

IV) La dimostrazione è analoga a quella dell’affermazione II.

V) La dimostrazione è analoga a quella dell’affermazione III.

VI) Per definizione si ha:

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒ |an |< ǫ .

Poiché (bn)n∈N è limitata anche
�

|bn |
�

�n ∈N
	

è limitato (v. osservazione 1.2.37); scegliamo
b > sup
�

|bn|
�

�n ∈N
	

. Se n > nǫ si ha |an bn |< bǫ ; pertanto an bn→ 0 .

Questo teorema consente di calcolare il limite del prodotto di due successioni se si co-
nosce il limite di ciascuno dei due fattori, con l’esclusione del caso in cui una delle suc-
cessioni diverge e l’altra converge a 0 . In tal caso diciamo che si ha un limite in forma
indeterminata.

Vale anche per la forma indeterminata del prodotto quanto osservato per la forma
indeterminata della somma.

2.2.29 Esempio. Vediamo alcuni esempi di successioni che mostrano che, moltiplicando
una successione divergente a +∞ e una infinitesima, la successione prodotto può avere
qualunque comportamento.

Nella tabella seguente si ha sempre an → +∞ e bn → 0 ; la successione (an bn)n∈N
ha un comportamento diverso a seconda della scelta di an e bn . Con ℓ indichiamo un
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arbitrario numero reale non nullo.

an n+ 1 n+ 1 (n+ 1)2 (n+ 1)2 n+ 1

bn

ℓ

n+ 1

1

(n+ 1)2
1

n+ 1
− 1

n+ 1

(−1)n

n+ 1

an bn ℓ
1

n+ 1
n+ 1 −n− 1 (−1)n

lim
n→+∞

(an bn) ℓ 0 +∞ −∞ ∄

Verifichiamo che in tutti i casi an → +∞ . Sappiamo che n + 1 → +∞ (v. esem-
pio 2.2.27). Poiché, ∀n ∈N , si ha (n + 1)2 ≥ n+ 1 , per il teorema 2.2.15, affermazione I,
si ha (n+ 1)2→+∞ .

Verifichiamo che in tutti i casi bn → 0 . Sappiamo che 1/(n + 1) → 0 (v. esem-
pio 2.2.3). Per il teorema sul limite del prodotto, affermazione III, si ha ℓ/(n + 1) → 0

e 1/(n+ 1)2→ 0 . La successione
�

(−1)n
�

n∈N è limitata, quindi, per il teorema sul limite
del prodotto, affermazione VI, (−1)n/(n+ 1)→ 0 .

2.2.30 Esempio. Sia a ∈ ]1,+∞[ . Per la disuguaglianza di Bernoulli (v. esempio 1.3.14),
si ha

an =
�

1+ (a− 1)
�n ≥ 1+ (a− 1)n > (a− 1)n .

Poiché a − 1 > 0 e limn→+∞ n = +∞ , per il teorema sul limite del prodotto 2.2.28,
affermazione III, risulta (a − 1)n → +∞ , pertanto, per il teorema 2.2.15, affermazione I,
risulta an→+∞ .

2.2.31 Teorema (sul limite del reciproco)

Sia (an)n∈N una successione in R tale che, ∀n ∈N , si ha an 6= 0 .

I) Se (an)n∈N è convergente e limn→+∞ an 6= 0 , allora anche (1/an)n∈N è conver-
gente e

lim
n→+∞

1

an

=
1

limn→+∞ an

.

II) Se an→ 0 e, ∀n ∈N , si ha an > 0 , allora 1/an→+∞ .

III) Se an→ 0 e, ∀n ∈N , si ha an < 0 , allora 1/an→−∞ .

IV) Se (an)n∈N è divergente, allora 1/an→ 0 .

Dimostrazione. I) Poniamo ℓ = limn→+∞ an ; sappiamo che ℓ 6= 0 . Per definizione
si ha

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒ |an − ℓ|< ǫ .

Risulta
�

�

�

�

1

an

− 1

ℓ

�

�

�

�
=

�

�

�

�

ℓ− an

anℓ

�

�

�

�
=
|ℓ− an|
|an | |ℓ|

.

Se ℓ > 0 , allora ℓ > ℓ/2 , quindi, per il teorema della permanenza del segno 2.2.20, ∃n ∈N
tale che se n > n allora an > ℓ/2 ; se invece ℓ < 0 allora ℓ < ℓ/2 , per cui ∃n ∈N tale che,
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se n > n , allora an < ℓ/2 . In ciascuno dei due casi per n > n risulta |an |> |ℓ|/2 . Quindi,
se n >max{n, nǫ} , si ha

�

�

�

�

1

an

− 1

ℓ

�

�

�

�
=
|ℓ− an |
|an | |ℓ|

<
ǫ
�

|ℓ|/2
�

|ℓ|
=

2

|ℓ|2 ǫ .

Quindi 1/an→ 1/ℓ .

II) Se ∀n ∈N si ha an > 0 , allora la definizione di an→ 0 diventa

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒ an < ǫ .

Se n > nǫ , si ha 1/an > 1/ǫ ; perciò, ∀M ∈R+ ,

n > n1/M =⇒
1

an

>
1

1/M
=M .

Quindi 1/an→+∞ .

III) La dimostrazione è analoga a quella dell’affermazione precedente.

IV) Consideriamo il caso an→+∞ . Per definizione si ha:

∀M ∈R , ∃nM ∈N : ∀n ∈N , n > nM =⇒ an >M .

In particolare se M è positivo, dalla disuguaglianza an >M , valida per ogni n > nM , segue

0<
1

an

<
1

M
.

Perciò, fissato ǫ ∈R+ , se n > n1/ǫ , allora si ha

0<
1

an

<
�1

ǫ

�−1

= ǫ .

Quindi 1/an→ 0 .
Nel caso an→−∞ la dimostrazione è analoga.

Quando an → 0 , per applicare questo teorema deve essere verificata l’ulteriore ipotesi
che (an)n∈N sia a termini positivi o a termini negativi. Naturalmente il teorema si può
applicare anche se la successione è a termini definitivamente positivi o definitivamente ne-
gativi. Consideriamo invece il caso in cui la successione non è né definitivamente positiva
né definitivamente negativa, cioè, per ogni n ∈ N , esistono sia termini positivi che termi-
ni negativi con indice maggiore di n . In tal caso, fissato ogni ǫ ∈ R+ , definitivamente si
ha |an | < ǫ , cioè 1/|an| > 1/ǫ , quindi vi sono indici n arbitrariamente grandi tali che
1/an > 1/ǫ e indici n arbitrariamente grandi tali che 1/an <−1/ǫ . È chiaro che in questa
situazione non può esistere limn→+∞(1/an) .

Poiché an/bn = an(1/bn) , da questo teorema e da quello sul limite del prodotto 2.2.28,
si possono ottenere informazioni sul limite del quoziente. Non sempre si può applicare il
teorema sul limite del prodotto, perché questo non dà informazioni nel caso del prodot-
to tra una successione infinitesima e una successione divergente. Scrivendo an/bn come
an(1/bn) ci si trova in questa situazione in due casi: quando (an)n∈N e (bn)n∈N sono en-
trambe infinitesime oppure quando entrambe sono divergenti. Abbiamo quindi, come per
la somma e il prodotto, limiti che si presentano in forma indeterminata.
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2.2.32 Esempio. Sia a ∈ ]0,1[ . Si ha

an =
1

(1/a)n

e 1/a > 1 ; pertanto (v. esempio 2.2.30) (1/a)n → +∞ , quindi, per il teorema sul limite
del reciproco 2.2.31, affermazione IV, risulta an→ 0 .

2.2.33 Teorema (sul limite del valore assoluto)

Sia (an)n∈N una successione in R .

I) Se (an)n∈N è convergente, allora
�

|an |
�

n∈N è convergente e

lim
n→+∞
|an |=
�

�

� lim
n→+∞

an

�

�

� .

II) Se (an)n∈N è divergente, allora |an | →+∞ .

III) Se |an | → 0 , allora an→ 0 .

Dimostrazione. I) Posto ℓ= limn→+∞ an , per definizione si ha:

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒ |an − ℓ|< ǫ .

Fissato ǫ ∈R+ , se n > nǫ , per le proprietà del valore assoluto 1.2.31, affermazione V, si ha
�

�|an | − |ℓ|
�

�≤ |an − ℓ|< ǫ ;

quindi è verificata la definizione di limn→+∞|an |= |ℓ| .
II) Se an→+∞ , poiché, ∀n ∈N , si ha |an | ≥ an , per il teorema 2.2.15, affermazione I,
risulta |an | →+∞ .

Se invece an → −∞ , poiché, ∀n ∈ N , si ha −|an | ≤ an , per il teorema 2.2.15,
affermazione II, risulta −|an | →−∞ , quindi |an | →+∞ .

III) Per definizione si ha:

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒
�

�|an | − 0
�

�< ǫ .

Poiché
�

�|an |−0
�

�= |an |= |an−0| , questa coincide con la definizione di limn→+∞ an = 0 .

2.2.34 Esempio. Sia a ∈ ]−1,0[ . Si ha |a| ∈ ]0,1[ , pertanto |an |= |a|n → 0 (v. esem-
pio 2.2.32), quindi, per il teorema sul limite del valore assoluto 2.2.33, affermazione III, si
ha an→ 0 .

2.2.5 Criterio del rapporto

Sudiamo un criterio che consente di stabilire il limite di successioni a termini positivi. In
vari casi applicando questo criterio possiamo determinare il limite di successioni che si pre-
sentano come quoziente in forma indeterminata, 0/0 o ∞/∞ , cioè possiamo confrontare
tra loro due successioni infinitesime o due successioni divergenti.
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2.2.35 Teorema (criterio del rapporto)

Sia (an)n∈N una successione in R+ tale che esiste limn→+∞ an+1/an .

I) Se limn→+∞ an+1/an < 1 , allora an→ 0 .

II) Se limn→+∞ an+1/an > 1 , allora an→+∞ .

Dimostrazione. Poniamo ℓ = limn→+∞ an+1/an . Poiché, ∀n ∈ N , si ha an+1/an > 0 ,
per il teorema del confronto 2.2.19 risulta ℓ≥ 0 .

I) Se ℓ < 1 , poniamo m = (ℓ+ 1)/2 . Risulta ℓ < m < 1 , quindi per il teorema della
permanenza del segno 2.2.20, affermazione II, esiste n ∈ N tale che, se n ≥ n , allora
an+1/an < m , cioè an+1 < man . Pertanto si ha

an+1 < man ,

an+2 < man+1 < m2an ,

ripetendo il ragionamento, per ogni k ∈ N , risulta an+k < mk an . Pertanto, se n ≥ n ,
allora an < mn−nan . Poiché m ∈ ]0,1[ si ha mn → 0 (v. esempio 2.2.32), quindi si ha
anche mn−nan = mn m−nan → 0 . Inoltre, ∀n ∈N , si ha an > 0 , pertanto, per il teorema
dei due carabinieri 2.2.11, risulta an→ 0 .

II) Se ℓ ∈ ]1,+∞[ , poniamo m = (ℓ+ 1)/2 , mentre, se ℓ = +∞ , poniamo m = 2 .
In ogni caso risulta ℓ > m > 1 , quindi per il teorema della permanenza del segno 2.2.20,
affermazione I, esiste n ∈ N tale che, se n ≥ n , allora an+1/an > m , cioè an+1 > man .
Pertanto si ha

an+1 > man ,

an+2 > man+1 > m2an ,

ripetendo il ragionamento, per ogni k ∈ N , risulta an+k > mk an . Pertanto, se n ≥ n ,
allora an > mn−nan . Poiché m ∈ ]1,+∞[ si ha mn → +∞ (v. esempio 2.2.30), quindi
si ha anche mn−nan = mn m−nan → +∞ . Per il teorema 2.2.15, affermazione I, risulta
an→+∞ .

2.2.36 Osservazione. Se il limite che compare nell’enunciato di in questo teorema è 1 ,
allora non si può concludere nulla sul limite di (an)n∈N . Infatti si verifica facilmente che
se (an)n∈N è una delle successioni (n)n∈N , (1/(n + 1))n∈N o (ℓ)n∈N (con ℓ ∈ R+ ), al-
lora limn→+∞ an+1/an = 1 e queste successioni hanno limiti diversi. Infatti n → +∞
(v. esempio 2.2.14), 1/(n+ 1)→ 0 (v. esempio 2.2.3) e ℓ→ ℓ .

2.2.37 Esempio. Siano k ∈ N∗ e a ∈ ]1,+∞[ . Si ha nk → +∞ (v. esempio 2.2.16) e
an→+∞ (v. esempio 2.2.30), pertanto limn→+∞ nk/an si presenta in forma indetermi-
nata. La successione (nk/an)n∈N è a termini positivi, applichiamo il criterio del rappor-
to 2.2.35. Si ha

(n+ 1)k/an+1

nk/an
=
(n+ 1)k an

an+1nk
=

1

a

�n+ 1

n

�k
=

1

a

�

1+
1

n

�k
→ 1

a
.
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Poiché 1/a < 1 , per il criterio del rapporto 2.2.35 si ha nk/an→ 0 .

2.2.38 Esempio. Sia a ∈ ]1,+∞[ . Si ha an→+∞ (v. esempio 2.2.30) e n! → +∞
(v. esempio 2.2.17), pertanto limn→+∞ an/n! si presenta in forma indeterminata. La suc-
cessione (an/n!)n∈N è a termini positivi, applichiamo il criterio del rapporto 2.2.35. Si ha

an+1/(n+ 1)!

an/n!
=

an+1n!

an(n+ 1)!
=

a

n+ 1
→ 0 .

Per il criterio del rapporto 2.2.35 si ha an/n!→ 0 .

2.2.6 Simboli di Landau

Introduciamo alcuni simboli utili per semplificare il calcolo dei limiti. Alla base del-
l’introduzione di questi simboli c’è l’osservazione che nel calcolo di un limite spesso non
è necessario conoscere l’espressione precisa di una successione, ma interessa soltanto il suo
“comportamento all’infinito”. I simboli che introduciamo sono detti simboli di Landau4.

Definizione di successione asintotica

Siano (an)n∈N e (bn)n∈N successioni in R , tali che definitivamente bn 6= 0 . Dicia-
mo che (an)n∈N è asintotica (o equivalente) a (bn)n∈N quando limn→+∞ an/bn = 1 .
In tal caso scriviamo an ∼ bn .

L’asintoticità può essere vista come una relazione di equivalenza tra successioni defini-
tivamente non nulle. Vale cioè il seguente teorema.

2.2.39 Teorema

Siano (an)n∈N , (bn)n∈N e (cn)n∈N successioni in R definitivamente non nulle.
Allora:

I) an ∼ an ;

II) an ∼ bn =⇒ bn ∼ an ;

III) (an ∼ bn ∧ bn ∼ cn) =⇒ an ∼ cn .

Dimostrazione. I) Si ha an/an = 1→ 1 , quindi an ∼ an .

II)

an ∼ bn =⇒
an

bn

→ 1

=⇒ bn

an

→ 1

=⇒ bn ∼ an .

4I simboli prendono il nome da Edmund Landau (Berlino, 1877 - Berlino, 1938), studioso di teoria dei numeri,
che li utilizzò in un trattato del 1909.

Il simbolo o grande era già stato introdotto da Paul Bachmann (Berlino, 1837 - Weimar, Germania, 1920),
anch’egli studioso di teoria dei numeri, nel 1894.
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III)

(an ∼ bn ∧ bn ∼ cn) =⇒
an

bn

→ 1 ∧ bn

cn

→ 1

=⇒ an

cn

=
an

bn

bn

cn

→ 1

=⇒ an ∼ cn .

L’utilità del concetto di asintoticità di successioni nel calcolo dei limiti è dovuta al
seguente teorema.

2.2.40 Teorema

Siano (an)n∈N e (bn)n∈N successioni in R , tali che definitivamente bn 6= 0 . Sup-
poniamo che sia an ∼ bn . La successione (an)n∈N è regolare se e solo se (bn)n∈N è
regolare e in tal caso si ha

lim
n→+∞

an = lim
n→+∞

bn .

Dimostrazione. Poniamo, ∀n ∈N , hn = an/bn . Per ipotesi an ∼ bn , quindi

lim
n→+∞

hn = lim
n→+∞

an

bn

= 1 .

Supponiamo (bn)n∈N regolare. Poiché, ∀n ∈N , si ha an = hn bn , an è prodotto di due
successioni regolari, (bn)n∈N e (hn)n∈N , che ha limite 1 , pertanto, per il teorema sul limite
del prodotto 2.2.28, anche (an)n∈N è regolare e il limite coincide con quello di (bn)n∈N .

Viceversa, supponiamo (an)n∈N regolare. Poiché limn→+∞ hn > 0 , per il teorema del
confronto 2.2.5, definitivamente hn > 0 , quindi an 6= 0 e risulta bn = an/hn . Come sopra,
da qui segue che bn è regolare.

Questo teorema assicura che per determinare il limite di una successione si può studiare
il limite di una successione asintotica a essa; questo consente, in molti casi, di ricondursi
allo studio di una successione più semplice.

2.2.41 Esempio. Consideriamo un polinomio p di grado k ∈N∗ . Sia cioè

p(x) =
k
∑

j=0

α j x j ,

con α0,α1, . . . ,αk−1 ∈R e αk ∈R∗ . Studiamo la successione
�

p(n)
�

n∈N . Si ha, ∀n ∈N∗ ,

p(n) =
k
∑

j=0

α j n
j = αk nk

k
∑

j=0

α j

αk

n j−k = αk nk

�k−1
∑

j=0

α j

αk

n j−k + 1

�

.

Per j = 0,1, . . . , k − 1 si ha j − k < 0 , quindi n j−k → 0 (v. esempio 2.2.12), pertanto

k−1
∑

j=0

α j

αk

n j−k + 1→ 1 .

Quindi si ha p(n)∼ αk nk .



2.2. Limiti di successioni 75

Poiché nk →+∞ (v. esempio 2.2.16), per il teorema sul limite del prodotto 2.2.28, se
αk > 0 , allora αk nk →+∞ , mentre se αk < 0 , allora αk nk →−∞ . Per il teorema 2.2.40
possiamo concludere che

�

p(n)
�

n∈N diverge, positivamente se il coefficiente del termine di
grado massimo è positivo, negativamente in caso contrario.

Il seguente teorema è una facile conseguenza dei teoremi sul limite del prodotto 2.2.28,
affermazione I e sul limite del reciproco 2.2.31, affermazione I.

2.2.42 Teorema

Siano (an)n∈N , (bn)n∈N , (cn)n∈N , (dn)n∈N successioni in R , tali che definitiva-
mente cn 6= 0 e dn 6= 0 .

I) Se an ∼ cn e bn ∼ dn , allora an bn ∼ cn dn .

II) Se cn ∼ dn , allora 1/cn ∼ 1/dn .

Dimostrazione. I)

an ∼ cn ∧ bn ∼ dn =⇒
an

cn

→ 1 ∧ bn

dn

→ 1

=⇒ an bn

cndn

→ 1

=⇒ an bn ∼ cn dn .

II)

cn ∼ dn =⇒
cn

dn

→ 1

=⇒ dn

cn

→ 1

=⇒ 1

cn

∼ 1

dn

.

2.2.43 Esempio. Consideriamo una funzione razionale fratta r . Siano cioè

p(x) =
k
∑

j=0

α j x j , q(x) =
m
∑

j=0

β j x j ,

con k ∈ N , m ∈ N∗ , α0,α1, . . . ,αk−1,β0,β1, . . . ,βm−1 ∈ R e αk ,βm ∈ R∗ e poniamo
r (x) = p(x)/q(x) per gli x ∈R che non annullano il denominatore. Poiché un polinomio
ha al più un numero finito di radici, r (n) è definito per gli n naturali, escluso al più un
numero finito. Possiamo quindi studiare il limite di r (n) .

Come visto nell’esempio 2.2.41, si ha p(n) ∼ αk nk e q(n) ∼ βm nm . Pertanto, per il
teorema 2.2.42, si ha

r (n) = p(n)
1

q(n)
∼ αk nk 1

βm nm
=
αk

βm

nk−m .
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Se k > m , allora nk−m →+∞ (v. esempio 2.2.16), se k = m , allora nk−m = 1 , se k < m ,
allora nk−m → 0 (v. esempio 2.2.12). Pertanto, per il teorema 2.2.40, risulta

r (n)→



















+∞ , se k > m e αkβm > 0 ,

−∞ , se k > m e αkβm < 0 ,
αk

βm

, se k = m ,

0 , se k < m .

2.2.44 Osservazione. Abbiamo visto (affermazione I del teorema 2.2.42) che la moltiplica-
zione conserva l’asintoticità di successioni; ciò non è vero per l’addizione. Cioè se an ∼ cn
e bn ∼ dn , non necessariamente an + bn ∼ cn + dn .

Ad esempio, consideriamo le successioni (an)n∈N = (n
2+n)n∈N , (bn)n∈N = (−n2)n∈N ,

(cn)n∈N = (n
2+1)n∈N , (dn)n∈N = (−n2)n∈N . Le successioni (an)n∈N e (cn)n∈N sono polino-

miali, come visto nell’esempio 2.2.41 sono asintotiche al termine di esponente massimo, che
in entrambi i casi è n2 . Poiché sono asintotiche alla stessa successione, per il teorema 2.2.42
sono asintotiche tra loro. Poiché bn = dn si ha bn ∼ dn . Tuttavia

an + bn

cn + dn

=
n2+ n− n2

n2+ 1− n2
= n→+∞ ,

quindi an + bn non è asintotica a cn + dn .

Definizione di successione trascurabile

Siano (an)n∈N e (bn)n∈N successioni in R , tali che definitivamente bn 6= 0 . Di-
ciamo che (an)n∈N è trascurabile rispetto a (bn)n∈N quando limn→+∞ an/bn = 0 . In
tal caso scriviamo an = o(bn) (si legge “ an è o piccolo di bn ”).

2.2.45 Osservazione. L’uso del simbolo = per indicare che una successione è trascurabile
rispetto a un’altra è scorretto; sarebbe necessario usare il simbolo di appartenenza, perché
esistono più successioni trascurabili rispetto a una successione fissata, quindi la definizione
individua un insieme di successioni. L’abitudine è però di usare il simbolo di uguaglianza,
perché ciò consente di semplificare le notazioni. C’è un prezzo da pagare per questa scelta:
il fatto che il simbolo o piccolo indichi più di una successione comporta che le regole di
calcolo con gli o piccoli sono diverse dalle ordinarie regole di calcolo.

Ad esempio, la differenza di due successioni trascurabili rispetto a una terza è ancora
una successione trascurabile rispetto a quest’ultima. Infatti, se an/cn → 0 e bn/cn → 0 ,
allora possiamo concludere solamente che

lim
n→+∞

an − bn

cn

= lim
n→+∞

an

cn

− lim
n→+∞

bn

cn

= 0 .

Questo si traduce nella formula o(cn)− o(cn) = o(cn) . Evidentemente non possiamo con-
cludere che o(cn)−o(cn) è nullo, perché non consideriamo la differenza di una successione
con se stessa, come potrebbe fare pensare il fatto che facciamo la differenza di due oggetti
indicati con lo stesso simbolo. Stiamo invece considerando la differenza di due successioni
di cui sappiamo soltanto che il quoziente di ognuna di esse con cn tende a 0 .
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2.2.46 Esempio. Siano h, k ∈N∗ , con h < k . Si ha nh/nk = nh−k → 0 , perché h−k < 0
(v. esempio 2.2.12). Utilizzando i simboli di Landau, questo fatto può essere scritto come
nh = o(nk ) .

Sappiamo che, se k ∈N∗ e a ∈ ]1,+∞[ , allora nk/an→ 0 (v. esempio 2.2.37). Risulta
quindi nk = o(an) .

Sappiamo che, se a ∈ ]1,+∞[ , allora an/n!→ 0 (v. esempio 2.2.38). Risulta quindi
an = o(n!) .

Vi è un collegamento tra asintoticità e trascurabilità di successioni, stabilito nel seguente
teorema.

2.2.47 Teorema

Siano (an)n∈N e (bn)n∈N successioni in R , tali che definitivamente bn 6= 0 . Si ha
an ∼ bn se e solo se an = bn + o(bn) .

Dimostrazione. Se an ∼ bn , allora, posto cn = an − bn , risulta an = bn + cn e

cn

bn

=
an − bn

bn

=
an

bn

− 1→ 1− 1= 0 ;

quindi cn = o(bn) .
Viceversa, se an = bn + o(bn) , allora

an

bn

=
bn + o(bn)

bn

= 1+
o(bn)

bn

→ 1+ 0= 1 ;

quindi an ∼ bn .

2.2.48 Esempio. Determiniamo limn→+∞(2
n + n4)/(3n + n2) . Numeratore e denomina-

tore sono somma di successioni positivamente divergenti, quindi sono positivamente diver-
genti. Il limite è quindi in forma indeterminata. Per l’esempio 2.2.37, si ha n4/2n → 0 e
n2/3n→ 0 , quindi, per il teorema 2.2.47,

2n + n4 = 2n + o(2n)∼ 2n ,

3n + n2 = 3n + o(3n)∼ 3n .

Pertanto, per il teorema 2.2.42, si ha

2n + n4

3n + n2
∼ 2n

3n
=

�

2

3

�n

→ 0 ,

dove la convergenza a 0 segue dall’esempio 2.2.32, perché 2/3 < 1 . Quindi, per il teore-
ma 2.2.40, si ha anche limn→+∞(2

n + n4)/(3n + n2) = 0 .

Determiniamo limn→+∞(n!+4n)/(n!+n4) . Numeratore e denominatore sono somma
di successioni positivamente divergenti, quindi sono positivamente divergenti. Il limite è
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quindi in forma indeterminata. Per l’esempio 2.2.38, si ha 4n/n!→ 0 , inoltre, per l’esem-
pio 2.2.37, si ha n4/4n → 0 , quindi n4/n! = (n4/4n)(4n/n!) → 0 . Per il teorema 2.2.47,
risulta

n!+ 4n = n!+ o(n!)∼ n! ,

n!+ n4 = n!+ o(n!)∼ n! .

Pertanto, per il teorema 2.2.42, si ha

n!+ 4n

n!+ n4
∼ n!

n!
= 1 .

Quindi, per il teorema 2.2.40, si ha limn→+∞(n!+ 4n)/(n!+ n4) = 1 .

Le regole di calcolo per o piccolo sono una semplice conseguenza della definizione e dei
teoremi di base sui limiti. Le enunciamo nel seguente teorema.

2.2.49 Teorema (regole di calcolo per o piccolo)

Siano (an)n∈N , (bn)n∈N , (cn)n∈N , (dn)n∈N successioni in R , tali che definitiva-
mente cn 6= 0 e dn 6= 0 , e m ∈R∗ .
I) Se an = o(cn) e bn = o(cn) , allora an + bn = o(cn) .

II) Se an = o(cn) , allora man = o(cn) .

III) Se an = o(cn) , allora an dn = o(cn dn) .

IV) Se an = o(cn) e bn = o(dn) , allora an bn = o(cn dn) .

V) Se an = o(cn) e cn = o(dn) , allora an = o(dn) .

VI) Se an = o(cn) e cn ∼ dn , allora an = o(dn) .

Le regole di calcolo stabilite da questo teorema possono essere espresse come:

o(cn)+ o(cn) = o(cn) ,

mo(cn) = o(cn) ,

o(cn)dn = o(cn dn) ,

o(cn)o(dn) = o(cn dn) ,

o
�

o(dn)
�

= o(dn) ,

cn ∼ dn =⇒ o(cn) = o(dn) .

Dimostrazione. I)

an = o(cn) ∧ bn = o(cn) =⇒
an

cn

→ 0 ∧ bn

cn

→ 0

=⇒ an + bn

cn

→ 0

=⇒ an + bn = o(cn) .
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II)

an = o(cn) =⇒
an

cn

→ 0

=⇒ man

cn

→ 0

=⇒ man = o(cn) .

III)

an = o(cn) =⇒
an

cn

→ 0

=⇒ andn

cn dn

→ 0

=⇒ andn = o(cn dn) .

IV)

an = o(cn) ∧ bn = o(dn) =⇒
an

cn

→ 0 ∧ bn

dn

→ 0

=⇒ an bn

cndn

→ 0

=⇒ an bn = o(cn dn) .

V)

an = o(cn) ∧ cn = o(dn) =⇒
an

cn

→ 0 ∧ cn

dn

→ 0

=⇒ an

dn

=
an

cn

cn

dn

→ 0

=⇒ an = o(dn) .

VI)

an = o(cn) ∧ cn ∼ dn =⇒
an

cn

→ 0 ∧ cn

dn

→ 1

=⇒ an

dn

=
an

cn

cn

dn

→ 0

=⇒ an = o(dn) .

Definizione di successione controllata

Siano (an)n∈N e (bn)n∈N successioni in R , tali che definitivamente bn 6= 0 . Di-
ciamo che (an)∈Nn è controllata da (bn)n∈N quando la successione (an/bn)n∈N è
limitata. In tal caso scriviamo an =O(bn) (si legge “ an è o grande di bn ”).



80 Capitolo 2. Successioni di numeri reali

Abbiamo la seguente relazione tra i concetti di asintoticità, o piccolo e o grande.

2.2.50 Teorema

Siano (an)n∈N e (bn)n∈N successioni in R , tali che definitivamente bn 6= 0 .

I) Se an ∼ bn , allora an =O(bn) .

II) Se an =O(bn) , allora an =O(bn) .

Dimostrazione. Se an ∼ bn oppure an = o(bn) , allora an/bn converge, pertanto, per il
teorema sulla limitatezza delle successioni regolari 2.2.21, affermazione I, tale quoziente è
limitato; quindi risulta an =O(bn) .

2.2.51 Esempio. Consideriamo un polinomio p di grado k ∈N∗ . Sia cioè

p(x) =
k
∑

j=0

α j x j ,

con α0,α1, . . . ,αk−1 ∈ R e αk ∈ R∗ . Per l’esempio 2.2.43, si ha p(n)/nk → αk , per il
teorema sulla limitatezza delle successioni regolari 2.2.21, affermazione I, ogni successione
convergente è limitata, quindi p(n) =O(nk ) .

Per o grande valgono regole di calcolo del tutto analoghe a quelle per o piccolo; anche
queste sono una semplice conseguenza della definizione e delle proprietà della limitatezza.

2.2.52 Teorema (regole di calcolo per o grande)

Siano (an)n∈N , (bn)n∈N , (cn)n∈N , (dn)n∈N successioni in R , tali che definitiva-
mente cn 6= 0 e dn 6= 0 , e m ∈R∗ .
I) Se an =O(cn) e bn =O(cn) , allora an + bn =O(cn) .

II) Se an =O(cn) , allora man =O(cn) .

III) Se an =O(cn) , allora an dn =O(cndn) .

IV) Se an =O(cn) e bn =O(dn) , allora an bn =O(cn dn) .

V) Se an =O(cn) e cn =O(dn) , allora an =O(dn) .

VI) Se an =O(cn) e cn ∼ dn , allora an =O(dn) .

Le regole di calcolo stabilite da questo teorema possono essere espresse come:

O(cn)+O(cn) =O(cn) ,

mO(cn) =O(cn) ,

O(cn)dn =O(cndn) ,

O(cn)O(dn) =O(cn dn) ,

O
�

O(dn)
�

=O(dn) ,

cn ∼ dn =⇒ O(cn) =O(dn) .
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Dimostrazione. I)

an =O(cn) ∧ bn =O(cn) =⇒
�

an

cn

�

n∈N
limitata ∧
�

bn

cn

�

n∈N
limitata

=⇒
�

an + bn

cn

�

n∈N
limitata

=⇒ an + bn =O(cn) .

II)

an =O(cn) =⇒
�

an

cn

�

n∈N
limitata

=⇒
�

man

cn

�

n∈N
limitata

=⇒ man =O(cn) .

III)

an =O(cn) =⇒
�

an

cn

�

n∈N
limitata

=⇒
�

andn

cn dn

�

n∈N
limitata

=⇒ an dn =O(cn dn) .

IV)

an =O(cn) ∧ bn =O(dn) =⇒
�

an

cn

�

n∈N
limitata ∧
�

bn

dn

�

n∈N
limitata

=⇒
�

an bn

cn dn

�

n∈N
limitata

=⇒ an bn =O(cndn) .

V)

an =O(cn) ∧ cn =O(dn) =⇒
�

an

cn

�

n∈N
limitata ∧
�

cn

dn

�

n∈N
limitata

=⇒
�

an

dn

�

n∈N
=

�

an

cn

cn

dn

�

n∈N
limitata

=⇒ an =O(dn) .

VI)

an =O(cn) ∧ cn ∼ dn =⇒
�

an

cn

�

n∈N
limitata ∧ cn

dn

→ 1

=⇒
�

an

dn

�

n∈N
=

�

an

cn

cn

dn

�

n∈N
limitata

=⇒ an =O(dn) .
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Abbiamo inoltre le seguenti regole che coinvolgono insieme o grande e o piccolo.

2.2.53 Teorema

Siano (an)n∈N , (bn)n∈N , (cn)n∈N , (dn)n∈N successioni in R , tali che definitiva-
mente cn 6= 0 e dn 6= 0 .

I) Se an = o(cn) e bn =O(cn) , allora an + bn =O(cn) .

II) Se an = o(cn) e bn =O(dn) , allora an bn = o(cn dn) .

III) Se an = o(cn) e cn =O(dn) , allora an = o(dn) .

IV) Se an =O(cn) e cn = o(dn) , allora an = o(dn) .

Le regole di calcolo stabilite da questo teorema possono essere espresse come:

o(cn)+O(cn) =O(cn) ,

o(cn)O(dn) = o(cn dn) ,

o
�

O(dn)
�

= o(dn) ,

O
�

o(dn)
�

= o(dn) .

Dimostrazione. I)

an = o(cn) ∧ bn =O(cn) =⇒
an

cn

→ 0 ∧
�

bn

cn

�

n∈N
limitata

=⇒
�

an + bn

cn

�

n∈N
limitata

=⇒ an + bn =O(cn) .

II)

an = o(cn) ∧ bn =O(dn) =⇒
an

cn

→ 0 ∧
�

bn

dn

�

n∈N
limitata

=⇒ an bn

cn dn

→ 0

=⇒ an bn = o(cn dn) .

III)

an = o(cn) ∧ cn =O(dn) =⇒
an

cn

→ 0 ∧
�

cn

dn

�

n∈N
limitata

=⇒ an

dn

=
an

cn

cn

dn

→ 0

=⇒ an = o(dn) .
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IV)

an =O(cn) ∧ cn = o(dn) =⇒
�

an

cn

�

n∈N
limitata ∧ cn

dn

→ 0

=⇒ an

dn

=
an

cn

cn

dn

→ 0

=⇒ an = o(dn) .

2.3 Condizioni per la regolarità di successioni

Per determinare se una successione è convergente (o, più in generale, regolare) è necessa-
rio verificare la definizione di limite e per questo occorre conoscere il limite. In alternativa
si possono usare i teoremi che collegano limiti e operazioni, ma occorre già conoscere il
limite delle successioni che sommiamo o moltiplichiamo.

In questa sezione adottiamo un diverso punto di vista e studiamo condizioni che assi-
curano che una successione reale è convergente, o che è regolare, senza conoscerne a priori
il limite.

2.3.1 Successioni monotòne

Introduciamo una classe di successioni che hanno sempre limite.

Definizione di successione crescente, decrescente, monotòna

Sia (an)n∈N una successione in R .
Diciamo che (an)n∈N è crescente quando

∀n ∈N , an+1 ≥ an .

Diciamo che (an)n∈N è strettamente crescente quando

∀n ∈N , an+1 > an .

Diciamo che (an)n∈N è decrescente quando

∀n ∈N , an+1 ≤ an .

Diciamo che (an)n∈N è strettamente decrescente quando

∀n ∈N , an+1 < an .

Diciamo che (an)n∈N è monotòna quando è crescente o decrescente.
Diciamo che (an)n∈N è strettamente monotòna quando è strettamente crescente

o strettamente decrescente.

Se (an)n∈N è crescente si prova facilmente che, ∀m, n ∈N , se m < n , allora am ≤ an ;
proprietà analoghe valgono negli altri casi.
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Ogni successione strettamente crescente è crescente, mentre ogni successione stretta-
mente decrescente è decrescente. Le successioni costanti sono sia crescenti che decrescenti.

2.3.1 Esempio. Studiamo la monotonia della successioni introdotte nell’esempio 2.1.1.
La successione (pn)n∈N =

�

1/(n+ 1)
�

n∈N è strettamente decrescente, perché, ∀n ∈ N ,
si ha pn+1 = 1/(n+ 2)< 1/(n+ 1) = pn .

Esaminando i termini della successione (qn)n∈N =
��

n+(−1)n
�

/(n+1)
�

n∈N
si vede facil-

mente che non è monotòna. Infatti q0 = 1> 0= q1 , quindi la successione non è crescente,
e q1 = 0< 1= q2 , quindi la successione non è decrescente.

Analogamente, la successione (rn)n∈N =
�

1/(5 − 2n)
�

n∈N non è monotòna. Infatti
risulta r0 = 1/5< 1/3= r1 e r3 = 1>−1= r4 .

Si verifica facilmente che la successione (sn)n∈N = (n)n∈N è strettamente crescente.
Consideriamo la successione (tn)n∈N =

��

2n+ (−1)n − 1
�

/4
�

n∈N . Si ha

tn+1− tn =
2n+ 2+ (−1)n+1− 1

4
− 2n+ (−1)n − 1

4
=

1− (−1)n

2
=

¨

0 , se n è pari,

1 , se n è dispari.

Pertanto si ha tn+1 = tn se n è pari e tn+1 > tn se n è dispari. Quindi (tn)n∈N è crescente,
ma non strettamente crescente.

Si verifica facilmente che la successione (un)n∈N = (3−n)n∈N è strettamente decrescente.
La successione (vn)n∈N =

�

(−1)n
�

n∈N non è monotòna, perché v0 > v1 e v1 < v2 .

Anche la successione (wn)n∈N =
�

(−1)n(n + 2)/(n + 1)
�

n∈N non è monotòna, perché
w0 = 2>−3/2= w1 e w1 =−3/2< 4/3=w2 .

Analogamente, la successione (zn)n∈N =
�

(−1)n n
�

n∈N non è monotòna, perché si ha
z0 = 0>−1= z1 e z1 =−1< 2= z2 .

Il principale risultato sulle successioni monotòne è il teorema seguente.

2.3.2 Teorema (sul limite delle successioni monotòne)

Sia (an)n∈N una successione in R .

I) Se (an)n∈N è monotòna crescente, allora è regolare e si ha

lim
n→+∞

an = sup
n∈N

an .

II) Se (an)n∈N è monotòna decrescente, allora è regolare e si ha

lim
n→+∞

an = inf
n∈N

an .

Dimostrazione. I) Consideriamo anzitutto il caso supn∈N an =+∞ . Ogni M ∈R non
è un maggiorante della successione, pertanto esiste nM ∈ N tale che anM

> M . Poiché
(an)n∈N è crescente, se n > nM si ha an ≥ anM

>M . Pertanto an→+∞ .
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Consideriamo ora il caso supn∈N an ∈R . Posto ℓ= supn∈N an , qualunque sia ǫ ∈R+ si
ha ℓ− ǫ < supn∈N an , quindi, per la caratterizzazione dell’estremo superiore 1.2.42, esiste
un termine della successione maggiore di ℓ − ǫ ; indichiamolo con anǫ

. La successione
(an)n∈N è crescente, quindi, se n > nǫ , si ha an ≥ anǫ

> ℓ − ǫ . Poiché ℓ è estremo
superiore della successione, ∀n ∈N , si ha an ≤ ℓ < ℓ+ ǫ ; quindi

n > nǫ =⇒ ℓ− ǫ < an < ℓ+ ǫ ;

pertanto an→ ℓ .
II) La dimostrazione è analoga a quella dell’affermazione precedente.

M

nM

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

ℓ− ǫ

ℓ

ℓ+ ǫ

nǫ

b

b

b

b

b

b
b

b
b b b b b b b b b b b b b

Figura 2.3.1
Dimostrazione del teorema sul limite delle successioni monotòne 2.3.2.
A sinistra il caso di una successione crescente illimitata, a destra il caso di una successione
crescente limitata.

Osserviamo che per dimostrare il teorema si utilizza l’esistenza dell’estremo superiore
o inferiore dell’insieme dei termini di una successione, quindi è essenziale la completez-
za di R . In Q questo teorema non vale, cioè esistono successioni monotòne di numeri
razionali che non hanno limite razionale.

Notiamo che l’importanza di questo teorema risiede principalmente nel fatto che assi-
cura che una condizione semplice da verificare, la monotonia, implica la regolarità di una
successione. Il fatto che il limite è l’estremo superiore o inferiore della successione è meno
rilevante, perché solitamente non è facile determinare tale estremo.

In particolare da questo teorema segue che una successione crescente non può avere limi-
te −∞ , perché supn∈N an è diverso da −∞ . Analogamente una successione decrescente
non può avere limite +∞ .

Osserviamo inoltre che questo teorema assicura che un successione crescente superior-
mente limitata è convergente e, analogamente, una successione decrescente inferiormente
limitata è convergente.
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2.3.3 Esempio (numero di Nepero o numero di Eulero5). Consideriamo le successioni
(an)n∈N∗ e (bn)n∈N∗ , definite da

an =

�

1+
1

n

�n

, bn =

�

1+
1

n

�n+1

.

1

4

1

2 b

b

b
b

b b b b b b b b b b b b b b b b b b b b b b b b b b

b

b

b
b

b b b b b b b b b b b b b b b b b b b b b b b b b be

Figura 2.3.2
Le successioni (an)n∈N∗ (in ros-
so) e (bn)n∈N∗ (in verde) studia-
te nell’esempio 2.3.3.

Dimostriamo che (an)n∈N∗ è crescente e (bn)n∈N∗ è decrescente.
Per n ∈N∗ si ha

an+1

an

=

�

1+ 1/(n+ 1)
�n+1

�

1+ 1/n
�n =

�

(n+ 2)/(n+ 1)
�n+1

�

(n+ 1)/n
�n =

n+ 1

n

�

n+ 2

n+ 1

n

n+ 1

�n+1

=

=
n+ 1

n

�

n2+ 2n

(n+ 1)2

�n+1

=
n+ 1

n

�

1− 1

(n+ 1)2

�n+1

.

Per la disuguaglianza di Bernoulli (v. esempio 1.3.14) risulta

�

1− 1

(n+ 1)2

�n+1

≥ 1− (n+ 1)
1

(n+ 1)2
= 1− 1

n+ 1
=

n

n+ 1
,

pertanto
an+1

an

≥ n+ 1

n

n

n+ 1
= 1 .

Quindi, ∀n ∈N∗ , si ha an ≤ an+1 .

5Dal nome latinizzato di John Napier (Edimburgo, 1550 - Edimburgo 1617) e di Leonhard Euler (Basilea,
1707 - San Pietroburgo 1783).

Napier è stato l’inventore dei logaritmi, che comparvero per la prima volta in un volume del 1614. In tale
volume sono utilizzati i logaritmi in base 1/e .

Euler, che ha dato molti importanti contributi in vari settori della matematica e della fisica, è ricordato in
relazione a questo numero perché è stato il primo, nel 1731, a indicarlo con la lettera e .

La definizione di e come limite di
�

1+(1/n)
�n è dovuta a Jakob Bernoulli (v. nota 1) che scrisse tale successione

nel 1683 per studiare un problema di interessi composti.
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Per n ∈N∗ si ha

bn

bn+1

=

�

1+ 1/n
�n+1

�

1+ 1/(n+ 1)
�n+2

=

�

(n+ 1)/n
�n+1

�

(n+ 2)/(n+ 1)
�n+2

=
n

n+ 1

�

n+ 1

n

n+ 1

n+ 2

�n+2

=

=
n

n+ 1

�

n2+ 2n+ 1

n(n+ 2)

�n+2

=
n

n+ 1

�

1+
1

n(n + 2)

�n+2

.

Per la disuguaglianza di Bernoulli (v. esempio 1.3.14) risulta

�

1+
1

n(n+ 2)

�n+2

≥ 1+ (n+ 2)
1

n(n+ 2)
= 1+

1

n
=

n+ 1

n
,

pertanto
bn

bn+1

≥ n

n+ 1

n+ 1

n
= 1 .

Quindi, ∀n ∈N∗ , si ha bn ≥ bn+1 .
Per il teorema sul limite sul limite delle successioni monotòne 2.3.2, (an)n∈N∗ e (bn)n∈N∗

hanno limite. Dimostriamo che le due successioni hanno lo stesso limite reale.
Poiché, ∀n ∈N∗ , si ha

bn =

�

1+
1

n

�n+1

>
�

1+
1

n

�n

= an ,

per la monotonia delle successioni risulta a1 ≤ an < bn ≤ b1 ; pertanto a1 è un minorante
di (bn)n∈N∗ e b1 è un maggiorante di (an)n∈N∗ . Pertanto tali successioni sono limitate,
quindi hanno limite reale e si ha limn→+∞ an ≤ b0 = 4 e limn→+∞ bn ≥ a0 = 2 . Inoltre

lim
n→+∞

bn = lim
n→+∞

�

1+
1

n

�

an = lim
n→+∞

�

1+
1

n

�

lim
n→+∞

an = lim
n→+∞

an .

Indichiamo con e e chiamiamo numero di Nepero o numero di Eulero questo limite.

2.3.2 Sottosuccessioni

Per studiare alcune proprietà delle successioni risulta utile il concetto di sottosuccessio-
ne. L’idea di base è di costruire una nuova successione “buttando via” alcuni termini di
una successione assegnata (ad esempio quelli di indice dispari) e si “rinumerano” i termini
rimanenti, conservando il loro ordine; naturalmente, perché i termini rimasti individuino
una nuova successione, questi devono essere infiniti.

Se (bn)n∈N è ottenuta in questo modo a partire da (an)n∈N , allora b0 è uguale al primo
termine di (an)n∈N che abbiamo conservato, indicando l’indice di tale termine con k0 , ab-
biamo b0 = ak0

. Analogamente b1 è uguale al termine successivo che abbiamo conservato,
indichiamo l’indice di tale termine con k1 , quindi b1 = ak1

. Evidentemente si ha k1 > k0 .
Proseguendo a costruire la sottosuccessione, in generale si ha bn = akn

, con la proprietà
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che passando da n a n+ 1 il corrispondente indice per la successione (an)n∈N cresce, cioè
kn+1 > kn .

Per formalizzare l’idea, risulta naturale scegliere una successione (kn)n∈N di numeri na-
turali, i termini di questa successione sono gli indici dei termini di (an)n∈N che rimangono.
Per conservare l’ordine dei termini, questa successione deve essere strettamente crescente.

Diamo quindi la seguente definizione.

Definizione di sottosuccessione

Siano (an)n∈N una successione in R e (kn)n∈N una successione di numeri natu-
rali strettamente crescente. La successione

�

akn

�

n∈N è detta sottosuccessione della
successione (an)n∈N (o anche successione estratta dalla successione (an)n∈N ).

Per lo studio delle sottosuccessioni è essenziale la proprietà dei loro indici enunciata nel
teorema seguente.

2.3.4 Teorema

Sia (kn)n∈N una successione in N strettamente crescente. Allora, ∀n ∈ N , si ha
kn ≥ n .

Dimostrazione. Dimostriamo il teorema applicando il principio di induzione 1.3.4.
Poiché k0 è naturale, per il teorema 1.3.5, si ha k0 ≥ 0 .
Se kn ≥ n , poiché kn+1 > kn , si ha kn+1 > n ; quindi, per il teorema 1.3.10, si ha

kn+1 ≥ n+ 1 .

2.3.5 Teorema (sul limite delle sottosuccessioni)

Siano (an)n∈N una successione in R e
�

akn

�

n∈N una sua sottosuccessione. Se

(an)n∈N è regolare, allora anche
�

akn

�

n∈N è regolare e

lim
n→+∞

akn
= lim

n→+∞
an .

Dimostrazione. Posto ℓ= limn→+∞ an , per definizione si ha:

∀U ∈Iℓ , ∃nU ∈N : ∀n ∈N , n > nU =⇒ an ∈U .

Se n ∈ N è tale che n > nU , poiché, per il teorema 2.3.4, kn ≥ n , si ha anche kn > nU ,
quindi akn

∈ U . Perciò è verificata la definizione di limn→+∞ akn
= ℓ .

Se una sottosuccessione ha limite, allora la successione da cui questa è estratta non ne-
cessariamente ha limite; come vedremo è sempre possibile, data una successione oscillante,
trovare una sua sottosuccessione regolare.

Possiamo ricavare conclusioni sul limite di una successione a partire da informazioni sul
limite di sottosuccessioni se gli indici delle sottosuccessioni coinvolte esauriscono l’insieme
dei naturali. In tale ordine di idee si ha il teorema seguente.
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2.3.6 Teorema

Siano (an)n∈N una successione in R ,
�

akn

�

n∈N e
�

ahn

�

n∈N due sue sottosuccessioni
regolari. Se limn→+∞ akn

= limn→+∞ ahn
e N = {km |m ∈ N} ∪ {hm |m ∈ N} , allora

esiste
lim

n→+∞
an = lim

n→+∞
akn
= lim

n→+∞
ahn

.

Dimostrazione. Posto ℓ= limn→+∞ akn
= limn→+∞ ahn

, per definizione si ha:

∀U ∈Iℓ , ∃iU ∈N : ∀n ∈N , n > iU =⇒ akn
∈ U ,

∀U ∈ Iℓ , ∃ jU ∈N : ∀n ∈N , n > jU =⇒ ahn
∈ U .

Sia U ∈Iℓ e poniamo nU =max
�

kiU
, h jU

	

. Sia n ∈N tale che n > nU . Poiché

N= {km |m ∈N}∪ {hm |m ∈N} ,
risulta n ∈ {km |m ∈ N} oppure n ∈ {hm |m ∈ N} , quindi n = km oppure n = hm , per
un opportuno m ∈N . Nel primo caso si ha

km = n > nU =max
�

kiU
, h jU

	

≥ kiU
,

quindi m > iU , perché la successione (kn)n∈N è strettamente crescente; pertanto risulta
an = akm

∈ U . Analoga conclusione nel secondo caso.

Abbiamo così dimostrato che ∀U ∈ Iℓ esiste nU ∈ N tale che se n > nU allora
an ∈U , quindi è verificata la definizione di limn→+∞ an = ℓ .

2.3.7 Teorema

Sia (an)n∈N una successione in R . Allora esiste una sottosuccessione
�

akn

�

n∈N
monotòna.

Dimostrazione. Nel corso di questa dimostrazione chiamiamo picco ogni n ∈N tale che,
se m > n , allora si ha am ≤ an ; cioè an è maggiore o uguale a ogni termine che segue.

Se l’insieme dei picchi è infinito, elenchiamoli in ordine crescente: k0 < k1 < k2 < · · · .
Allora, per la definizione di picco, ∀n ∈N risulta akn+1

≤ akn
; pertanto la sottosuccessione

�

akn

�

n∈N è decrescente.

Se invece l’insieme dei picchi è finito o vuoto, allora esiste h0 ∈ N maggiore di ogni
picco. Poiché h0 non è un picco, esiste h1 > h0 tale che ah1

> ah0
. Anche h1 non è

un picco (perché maggiore di h0 ), quindi esiste h2 > h1 tale che ah2
> ah1

. Ripetendo il
ragionamento si costruisce una sottosuccessione strettamente crescente.

2.3.8 Esempio. Studiamo i picchi e le sottosuccessioni monotòne di alcune delle successioni
introdotte nell’esempio 2.1.1.

Consideriamo la successione (rn)n∈N =
�

1/(5− 2n)
�

n∈N . Si ha

r0 =
1

5
<

1

3
= r1 ,
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quindi esiste un termine di indice maggiore di 0 che non è minore o uguale a r0 ; perciò 0
non è un picco. Analogamente, poiché r1 < r2 , 1 non è un picco. Si ha r2 > 0 e, per
n ≥ 3 , rn < 0 , quindi 2 è un picco. Infine, per n ≥ 3 , si ha

rn =−
1

2n− 5
<− 1

2n− 3
= rn+1 ,

quindi n non è un picco. Pertanto l’unico picco di (rn)n∈N è 2 .
Seguendo la dimostrazione del teorema 2.3.7, poiché l’insieme dei picchi è finito, è pos-

sibile estrarre una sottosuccessione crescente. Per questo scegliamo k0 maggiore di ogni
picco, ad esempio k0 = 3 . Poiché 3 non è un picco esiste un indice k1 maggiore di k0

e tale che rk1
> rk0

. Possiamo scegliere k1 = 4 . Poiché se n ≥ 3 si ha rn+1 > rn , il ra-
gionamento può essere ripetuto scegliendo ogni volta kn+1 = kn + 1 , quindi in generale
kn = n+ 3 . Pertanto si ha la sottosuccessione crescente

(rkn
)n∈N = (rn+3)n∈N =

�

− 1

n+ 1

�

n∈N
.

Consideriamo la successione (vn)n∈N =
�

(−1)n
�

n∈N . Ogni termine è minore o uguale
a 1 , pertanto se vn = 1 , cioè se n è pari, allora n è un picco. Se invece n è dispari, allora
vn =−1 , mentre vn+1 = 1> vn , pertanto n non è un picco. Quindi l’insieme dei picchi
è l’insieme dei numeri pari, che è infinito.

Come stabilito nella dimostrazione del teorema 2.3.7, la sottosuccessione di (vn)n∈N ot-
tenuta prendendo come indici i picchi è decrescente. Pertanto abbiamo la sottosuccessione
(v2n)n∈N = (1)n∈N . La sottosuccessione è costante, quindi è anche decrescente.

Consideriamo la successione (wn)n∈N =
�

(−1)n(n + 2)/(n + 1)
�

n∈N . Ogni termine di
indice pari è positivo, mentre ogni termine di indice dispari è negativo. Quindi, se n è
dispari, allora wn < 0<wn+1 , perciò n non è un picco. Se n è pari, allora wn è maggiore
di ogni termine di indice dispari. Inoltre risulta

wn =
n+ 2

n+ 1
= 1+

1

n+ 1
> 1+

1

n+ 3
=

n+ 4

n+ 3
= wn+2 .

Perciò ciascun termine di indice pari è maggiore anche di ogni termine di indice pari più
grande. Quindi ogni n pari è un picco.

Siamo nella stessa situazione vista per la successione (vn)n∈N , i picchi sono tutti e soli i
numeri pari, pertanto la sottosuccessione (w2n)n∈N =

�

(2n+2)/(2n+1)
�

n∈N è decrescente.

Consideriamo la successione (zn)n∈N =
�

(−1)n n
�

n∈N . Qualunque sia n pari, risulta
zn = n < n+ 2= zn+2 , quindi n non è un picco. Se n è dispari, allora si ha zn < 0< zn+1 ,
quindi, anche in questo caso, n non è un picco. Pertanto (zn)n∈N non ha picchi.

Come visto nella dimostrazione del teorema 2.3.7, per costruire una sottosuccessio-
ne crescente di (zn)n∈N scegliamo k0 = 0 . Successivamente scegliamo k1 > 0 tale che
zk1
> z0 ; possiamo scegliere k1 = 2 . Proseguendo, si può sempre scegliere kn = 2n .

Abbiamo quindi la sottosuccessione crescente (z2n)n∈N = (2n)n∈N .
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b Figura 2.3.3
Le successioni studiate nel-
l’esempio 2.3.8. Sono mes-
si in evidenza prima i ter-
mini corrispondenti ai pic-
chi e poi la sottosuccessio-
ne monotòna costruita nel-
la dimostrazione del teore-
ma 2.3.7.

Il teorema che segue è di fondamentale importanza, lo utilizzeremo per provare vari
teoremi dell’analisi. Osserviamo che nella dimostrazione si fa uso della convergenza delle
successioni monotòne, quindi si sfrutta la completezza di R .

2.3.9 Teorema (di Bolzano-Weierstrass6)

Sia (an)n∈N una successione in R . Se essa è limitata, allora esiste una sottosucces-
sione
�

akn

�

n∈N convergente.

6Il teorema prende il nome da Bernard Bolzano (Praga, 1781 - Praga, 1848) e da Karl Weierstrass (Ostenfelde,
Germania, 1815 - Berlino, 1897); Bolzano pubblicò il teorema in un articolo del 1817, che rimase quasi sconosciuto,
Weierstrass lo riscoprì nel 1874.

Bolzano ha contribuito a rendere rigorosi i fondamenti dell’analisi matematica.
Weierstrass ha dato fondamentali contributi in vari settori dell’analisi, soprattutto nella teoria delle funzioni di

variabile complessa.
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Dimostrazione. Per il teorema 2.3.7 esiste una sottosuccessione
�

akn

�

n∈N monotòna, che
ha limite per il teorema sul limite delle successioni monotòne 2.3.2. Se (an)n∈N è limitata,
anche
�

akn

�

n∈N è limitata, quindi, per il teorema sulla limitatezza delle successioni regola-

ri 2.2.21, il limite non può essere né +∞ , né −∞ , pertanto
�

akn

�

n∈N è convergente.

2.3.10 Esempio. Nell’esempio 2.3.8, con la procedura introdotta nella dimostrazione del
teorema 2.3.7, abbiamo costruito alcune successioni monotòne. Studiamone il limite.

Consideriamo la successione (rn)n∈N =
�

1/(5− 2n)
�

n∈N . Sappiamo che la sottosucces-
sione (rn+3)n∈N =

�

1/(−2n− 1)
�

n∈N è crescente (v. esempio 2.3.8) e che rn → 0 (v. esem-
pio 2.2.3). Pertanto, per il teorema sul limite delle sottosuccessioni 2.3.5, si ha rn+3→ 0 .

Consideriamo la successione (vn)n∈N =
�

(−1)n
�

n∈N . Sappiamo che è limitata (v. esem-
pio 2.1.3) e che la sottosuccessione (v2n)n∈N = (1)n∈N è decrescente (v. esempio 2.3.8).
Ovviamente tale successione ha limite 1 .

Consideriamo la successione (wn)n∈N =
�

(−1)n(n + 2)/(n + 1)
�

n∈N . Sappiamo che è
limitata (v. esempio 2.1.3) e che la sottosuccessione (v2n)n∈N =

�

(2n+ 2)/(2n+ 1)
�

n∈N è
decrescente (v. esempio 2.3.8). Quindi, per il teorema sul limite delle successioni monotò-
ne 2.3.2, tale successione è regolare; poiché è limitata il limite è reale. Si ha

w2n =
2n+ 2

2n+ 1
= 1+

1

2n+ 1
.

Poiché limn→+∞ n =+∞ (v. esempio 2.2.14), per i teoremi sul limite della somma 2.2.26,
sul limite del prodotto 2.2.28 e sul limite del reciproco 2.2.31, si ha w2n→ 1 .

Consideriamo la successione (zn)n∈N =
�

(−1)n n
�

n∈N . Nell’esempio 2.3.8 abbiamo
provato che la sottosuccessione (v2n)n∈N = (2n)n∈N è crescente. Tale successione è su-
periormente illimitata, quindi, per il teorema sul limite delle successioni monotòne 2.3.2,
tende a +∞ .

2.3.3 Successioni di Cauchy

Studiamo un’altra condizione che consente di stabilire se una successione è convergente
anche non conoscendo a priori il suo limite.

Sappiamo che, se una successione converge, allora i suoi termini di indice grande sono
vicini al limite, ma questo implica che tali termini sono vicini tra loro. Diamo un nome
alle successioni che hanno questa proprietà.

Definizione di successione di Cauchy7

Sia (an)n∈N una successione in R . Diciamo che (an)n∈N è una successione di
Cauchy (o che verifica la condizione di Cauchy) quando

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n, m ∈N , n, m > nǫ =⇒ |an − am |< ǫ .

7La condizione prende il nome da Augustin-Louis Cauchy (Parigi, 1789 - Sceaux, Francia, 1857), che la intro-
dusse in un trattato di analisi del 1821. Cauchy ha dato grandi contributi allo studio dell’analisi, dove ha introdotto
un maggior rigore rispetto a quanto era abituale a quei tempi.
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2.3.11 Esempio. Consideriamo la successione (pn)n∈N =
�

1/(n + 1)
�

n∈N , introdotta nel-
l’esempio 2.1.1; dimostriamo che è una successione di Cauchy.

Siano n, m ∈ N . Se n > m , allora si ha |an − am | = (1/m)− (1/n) < 1/m ; se invece
n > m , allora si ha |an − am |= (1/n)− (1/m)< 1/n . In tutti i casi risulta

|an − am |<max

§

1

m
,

1

n

ª

=
1

min{m, n} .

Pertanto, fissato ǫ ∈R+ , se n, m ∈N sono tali che n, m > 1/ǫ , risulta

|an − am |<
1

min{m, n} <
1

1/ǫ
= ǫ .

Quindi è verificata la condizione di Cauchy.

Consideriamo la successione (cn)n∈N , definita per ricorrenza nell’esempio 2.1.2; dimo-
striamo che è una successione di Cauchy.

Osserviamo che c0 = 0 e, se cn ≥ 0 , allora cn+1 = 2/(cn + 2)> 0 . Per induzione tutti i
termini, tranne il primo, risultano positivi. Sia n ∈N∗ ; per la definizione di cn si ha

|cn+1− cn |=
�

�

�

�

2

cn + 2
− 2

cn−1+ 2

�

�

�

�
=

�

�

�

�

2cn−1− 2cn

(cn + 2)(cn−1+ 2)

�

�

�

�
=

2|cn − cn−1|
(cn + 2)(cn−1+ 2)

<
|cn − cn−1|

2
.

Quindi si ha

|cn+1− cn|<
1

2
|cn − cn−1|<

1

22
|cn−1− cn−2|< · · ·<

1

2n
|c1− c0|=

1

2n
.

Pertanto, se n, m ∈N , con n > m , allora risulta

|cn − cm |=
�

�

�

�

n−1
∑

k=m

(ck+1− ck )

�

�

�

�
≤

n−1
∑

k=m

|ck+1− ck | ≤
n−1
∑

k=m

1

2k
=

n−m−1
∑

j=0

1

2m+ j
=

1

2m

n−m−1
∑

j=0

1

2 j
.

Per il teorema 1.3.19 si ha
n−m−1
∑

j=0

1

2 j
=

n−m−1
∑

j=0

�

1

2

� j

1m−n− j−1 =
1n−m − (1/2)n−m

1− (1/2) <
1

1− (1/2) = 2 ;

pertanto |cn − cm |< 1/2m−1 .
Poiché 1/2m→ 0 , per m→+∞ (v. esempio 2.2.32), < 1/2m−1→ 0 , pertanto, fissato

ǫ ∈ R+ , esiste nǫ ∈ N tale che, se m > nǫ , allora si ha < 1/2m−1 < ǫ , quindi, se n > m ,
allora |cn−cm |< ǫ . Una disuguaglianza analoga vale scambiando m con n , quindi (cn)n∈N
è una successione di Cauchy.

Consideriamo la successione (dn)n∈N , definita per ricorrenza nell’esempio 2.1.2; dimo-
striamo che non verifica la condizione di Cauchy.

Poiché, ∀n ∈N ,
dn+2 =−dn+1+ n+ 1=−(−dn + n)+ n+ 1= dn + 1 ,

risulta |dn+2 − dn | = dn+2 − dn = 1 . Pertanto, se si sceglie ǫ < 1 , possiamo trovare due
termini di indice arbitrariamente grande che distano tra loro più di ǫ ; quindi (dn)n∈N non
verifica la condizione di Cauchy.
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Proviamo che la condizione di Cauchy è necessaria e sufficiente per la convergenza di
una successione in R .

La dimostrazione della necessità è banale. La dimostrazione della sufficienza è invece più
complessa e la spezziamo in più teoremi. Proviamo che ogni successione di Cauchy è limita-
ta, quindi per il teorema di Bolzano-Weierstrass 2.3.9 ha una sottosuccessione convergente,
e che ogni successione di Cauchy che ha una sottosuccessione convergente è convergente.

2.3.12 Teorema

Sia (an)n∈N una successione in R . Se (an)n∈N è convergente, allora è di Cauchy.

Dimostrazione. Posto ℓ= limn→+∞ an , per definizione si ha:

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n ∈N , n > nǫ =⇒ |an − ℓ|< ǫ .

Pertanto, fissato ǫ ∈R+ , se n e m sono maggiori di nǫ si ha

|an − am |=
�

�(an − ℓ)+ (ℓ− am)
�

�≤ |an − ℓ|+ |ℓ− am |< 2ǫ ;

quindi è verificata la definizione di successione di Cauchy.

2.3.13 Teorema

Sia (an)n∈N una successione in R . Se (an)n∈N è di Cauchy, allora è limitata.

Dimostrazione. Supponiamo che (an)n∈N sia una successione di Cauchy, cioè tale che

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n, m ∈N , n, m > nǫ =⇒ |an − am |< ǫ .

Scelto ǫ = 1 , se n > n1 si ha |an − an1+1| < 1 , cioè an1+1− 1< an < an1+1+ 1 . Allo-
ra min{a1,a2, . . . ,an1

,an1+1 − 1} e max{a1,a2, . . . ,an1
,an1+1 + 1} sono rispettivamente un

minorante e un maggiorante dell’insieme dei termini della successione; pertanto essa è
limitata.

2.3.14 Teorema

Sia (an)n∈N una successione in R . Se (an)n∈N è di Cauchy e ha una sottosucces-
sione convergente, allora (an)n∈N è convergente.

Dimostrazione. Sia
�

akn

�

n∈N una sottosuccessione convergente. Posto ℓ= limn→+∞ akn
,

proviamo che an→ ℓ .
Poiché (an)n∈N è di Cauchy, si ha

∀ǫ ∈R+ , ∃nǫ ∈N : ∀n, m ∈N , n, m > nǫ =⇒ |an − am |< ǫ .

Poiché akn
→ ℓ si ha:

∀ǫ ∈R+ , ∃ jǫ ∈N : ∀n ∈N , n > jǫ =⇒ |akn
− ℓ|< ǫ .
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Scelto ǫ ∈R+ , sia n >max{nǫ, jǫ} ; poiché kn ≥ n , si ha anche kn > nǫ , quindi

|an − ℓ|=
�

�(an − akn
)+ (akn

− ℓ)��≤ |an − akn
|+ |akn

− ℓ|< 2ǫ .

Pertanto an→ ℓ .

2.3.15 Teorema

Sia (an)n∈N una successione in R . Se (an)n∈N è di Cauchy, allora è convergente.

Dimostrazione. Per il teorema 2.3.13 (an)n∈N è limitata, pertanto, per il teorema di Bolza-
no-Weierstrass 2.3.9, ha una sottosuccessione convergente; quindi, per il teorema 2.3.14,
(an)n∈N è convergente.

2.3.16 Esempio. Nell’esempio 2.3.11 abbiamo visto che la successione (cn)n∈N , definita
per ricorrenza nell’esempio 2.1.2 da







c0 = 1 ,

cn+1 =
2

cn + 2
, per n ∈N ,

è di Cauchy. Per il teorema 2.3.15 tale successione ha limite reale, indichiamolo con ℓ .
Ovviamente anche le successioni (cn+1)n∈N e

�

2/(cn + 2)
�

n∈N sono convergenti e hanno
limite ℓ e 2/(ℓ+2) , rispettivamente. Quindi ℓ= 2/(ℓ+2) , che equivale a ℓ2+2ℓ−2= 0 .
Questa uguaglianza è verificata se

ℓ=−1±
p

12+ 2=−1±
p

3 .

Poiché (cn)n∈N è a termini positivi (v. esempio 2.3.11) il limite non può essere negativo,
pertanto cn→−1+

p
3 .

2.3.4 Massimo limite e minimo limite

Introduciamo due concetti che sono utili per avere informazioni sul comportamento
per valori grandi dell’indice dei termini delle successioni oscillanti.

Sia (an)n∈N una successione convergente a ℓ ∈ R . Poiché ogni termine della suc-
cessione è minore o uguale di sup{an |n ∈ N} , per il teorema del confronto 2.2.5, si ha
ℓ≤ sup{an |n ∈N} . Scelto n ∈N poniamo

βn = sup{am |m ≥ n} ;
i termini della successione sono definitivamente minori o uguali a βn , quindi si ha anche
ℓ ≤ βn . Evidentemente {am |m ≥ n + 1} ⊆ {am |m ≥ n} , quindi l’estremo superiore
del primo insieme è minore o uguale a quello del secondo insieme, cioè βn+1 ≤ βn . Ab-
biamo quindi definito una successione (βn)n∈N , decrescente con βn ≥ ℓ ; pertanto tale
successione ha limite maggiore o uguale a ℓ . Per la definizione di limite, ∀ǫ ∈ R+ , esi-
ste nǫ ∈ N tale che se n > nǫ , allora an < ℓ+ ǫ , quindi per tali n si ha βn ≤ ℓ+ ǫ ,
pertanto limn→+∞βn ≤ ℓ+ ǫ , quindi, per l’arbitrarietà di ǫ , risulta limn→+∞βn ≤ ℓ .
Perciò limn→+∞βn = ℓ . Il limite della successione (an)n∈N è quindi anche limite di una
successione decrescente, che la “controlla dal di sopra”.
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In modo analogo, ponendo, ∀n ∈N ,

αn = inf{am |m ≥ n} ,

otteniamo una successione crescente che converge a ℓ e “controlla dal di sotto” la succes-
sione (an)n∈N .

La costruzione delle successioni (an)n∈N e (βn)n∈N può essere fatta a partire da qualun-
que successione limitata, anche se non è convergente, ottenendo due successioni monotòne,
con la proprietà che, ∀n ∈N , si ha

αn ≤ an ≤βn .

Tali successioni hanno limite e i limiti ci danno indicazioni sul comportamento di (an)n∈N
per n grande.

Formalizziamo i discorsi fatti, considerando anche successioni illimitate. Per definire
tali concetti è necessario il seguente teorema.

2.3.17 Teorema

Sia (an)n∈N una successione in R .

I) Supponiamo (an)n∈N inferiormente limitata. Posto, ∀n ∈N ,

αn = inf{am |m ≥ n} ,

la successione (αn)n∈N è crescente.

II) Supponiamo (an)n∈N superiormente limitata. Posto, ∀n ∈N ,

βn = sup{am |m ≥ n} ,

la successione (βn)n∈N è decrescente.

Le ipotesi di limitatezza richieste assicurano che αn e βn sono numeri reali.

Dimostrazione. I) Poiché, ∀n ∈N , si ha {am |m ≥ n+ 1} ⊆ {am |m ≥ n} , risulta

αn+1 = inf{am |m ≥ n+ 1} ≥ inf{am |m ≥ n}= αn .

II) La dimostrazione è simile a quella dell’affermazione I.

Per il teorema sul limite delle successioni monotòne 2.3.2, ogni successione monotòna
è regolare, quindi è giustificata la definizione seguente.

Definizione di massimo limite e di minimo limite

Sia (an)n∈N una successione in R .
Se (an)n∈N è superiormente limitata chiamiamo massimo limite (o anche limite

superiore) di (an)n∈N il numero reale esteso

maxlim
n→+∞

an = lim
n→+∞

sup{am |m ≥ n} .
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Se (an)n∈N è superiormente illimitata poniamo maxlimn→+∞ an =+∞ .
Se (an)n∈N è inferiormente limitata chiamiamo minimo limite (o anche limite

inferiore) di (an)n∈N il numero reale esteso

minlim
n→+∞

an = lim
n→+∞

inf{am |m ≥ n} .

Se (an)n∈N è inferiormente illimitata poniamo minlimn→+∞ an =−∞ .

Quando si usano i termini “limite superiore” e “limite inferiore” si usano le notazioni
lim supn→+∞an e lim infn→+∞an .

2.3.18 Esempio. Determiniamomassimo limite eminimo limite di alcune delle successioni
introdotte nell’esempio 2.1.1.

Consideriamo la successione (vn)n∈N =
�

(−1)n
�

n∈N . Poiché definitivamente esistono
termini della successione uguali a 1 e termini della successione uguali a −1 , si ha, ∀n ∈N ,
{am |m ≥ n}= {−1,1} , pertanto

maxlim
n→+∞

(−1)n = lim
n→+∞

sup{−1,1}= lim
n→+∞

1= 1 ,

min lim
n→+∞

(−1)n = lim
n→+∞

inf{−1,1}= lim
n→+∞

(−1) =−1 .

Consideriamo la successione (wn)n∈N =
�

(−1)n(n+ 2)/(n+ 1)
�

n∈N .
Nell’esempio 2.1.3 abbiamo osservato che, se n è dispari, allora wn < 0 e wn < wn+2 ;

se invece n è pari, allora wn > 0 . Perciò, se n è dispari, allora, qualunque sia m ≥ n , risul-
ta wn < wm , quindi, con le notazioni del teorema 2.3.17, si ha αn = inf{wm |m ≥ n}=wn .
Se invece n è pari, allora wn > 0> wn+1 e, poiché n+1 è dispari, wn+1 < wm , qualunque
sia m > n+ 1 ; pertanto αn = inf{wm |m ≥ n}=wn+1 . Quindi risulta

αn =











wn+1 =−
n+ 3

n+ 2
, se n è pari,

wn =−
n+ 2

n+ 1
, se n è dispari.

Si ha

− n+ 3

n+ 2
=−1− 1

n+ 2
, − n+ 2

n+ 1
=−1− 1

n+ 1

ed è facile verificare che −1− 1/(n+ 1)<−1− 1/(n+ 2) , quindi risulta, ∀n ∈N ,

−1− 1

n+ 1
≤ αn ≤−1− 1

n+ 2
.

Poiché la prima e l’ultima successione hanno limite −1 , per il teorema dei due carabinie-
ri 2.2.11 αn→−1 , pertanto minlimn→+∞wn =−1 .

In modo analogo si prova che maxlimn→+∞wn = 1 .

Consideriamo la successione (zn)n∈N =
�

(−1)n n
�

n∈N . Nell’esempio 2.1.3 abbiamo
stabilito che (zn)n∈N è illimitata sia inferiormente che superiormente. Pertanto

minlim
n→+∞

zn =−∞ , max lim
n→+∞

wn =+∞ .



98 Capitolo 2. Successioni di numeri reali

Dal teorema sul limite delle successioni monotòne 2.3.2 si ottiene il seguente teorema.

2.3.19 Teorema

Sia (an)n∈N una successione in R .
Se (an)n∈N è superiormente limitata, allora

maxlim
n→+∞

an = inf
�

sup{am |m ≥ n}
�

�n ∈N
	

.

Se (an)n∈N è inferiormente limitata, allora

minlim
n→+∞

an = sup
�

inf{am |m ≥ n} ��n ∈N	 .

Le affermazioni del teorema sono valide anche se non sono verificate le ipotesi di limi-
tatezza, considerando sup e inf nel senso di R . Infatti se (an)n∈N è superiormente illi-
mitata, quindi maxlimn→+∞ an = +∞ , si ha, ∀n ∈ N , sup{am |m ≥ n} = +∞ , quindi
inf
�

sup{am |m ≥ n} ��n ∈N
	

=+∞ .
Con una notazione meno precisa, possiamo scrivere le uguaglianze stabilite in questo

teorema come:

maxlim
n→+∞

an = inf
n∈N

sup
m≥n

am , min lim
n→+∞

an = sup
n∈N

inf
m≥n

am .

Studiamo le proprietà di massimo limite e minimo limite.

2.3.20 Teorema

Sia (an)n∈N una successione in R . Allora

minlim
n→+∞

an ≤maxlim
n→+∞

an .

Dimostrazione. Se la successione (an)n∈N è illimitata, allora minlimn→+∞ an = −∞
oppure maxlimn→+∞ an =+∞ , quindi la tesi è verificata. Se (an)n∈N è limitata, allo-
ra, ∀n ∈ N , si ha inf{am |m ≥ n} ≤ sup{am |m ≥ n} , pertanto, per il teorema del
confronto 2.2.19,

minlim
n→+∞

an = lim
n→+∞

inf{am |m ≥ n} ≤ lim
n→+∞

sup{am |m ≥ n}=maxlim
n→+∞

an .

2.3.21 Teorema

Siano (an)n∈N una successione in R e
�

akn

�

n∈N una sua sottosuccessione regolare.
Allora

minlim
n→+∞

an ≤ lim
n→+∞

akn
≤maxlim

n→+∞
an .
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Dimostrazione. Dimostriamo la disuguaglianza relativa al massimo limite, quella relativa
al minimo limite si prova in modo analogo.

Se maxlimn→+∞ an =+∞ la disuguaglianza è evidentemente verificata.
Se maxlimn→+∞ an < +∞ , poiché ∀n ∈ N , si ha kn ≥ n (v. teorema 2.3.4), risulta

akn
≤ sup{am |m ≥ n} , pertanto, per il teorema del confronto 2.2.19, si ha

lim
n→+∞

akn
≤ lim

n→+∞
sup{am |m ≥ n}=maxlim

n→+∞
an .

2.3.22 Teorema

Sia (an)n∈N una successione in R . Allora esistono
�

akn

�

n∈N e
�

ahn

�

n∈N , sottosuc-
cessioni di (an)n∈N tali che

lim
n→+∞

akn
=maxlim

n→+∞
an , lim

n→+∞
ahn
=minlim

n→+∞
an .

Dimostrazione. Dimostriamo l’affermazione relativa al massimo limite, quella relativa al
minimo limite si dimostra in modo analogo.

Consideriamo anzitutto il caso maxlimn→+∞ an = +∞ , cioè (an)n∈N superiormente
illimitata. Allora {an |n > m} è superiormente illimitato qualunque sia m ∈ N , perché
eliminando un numero finito di elementi da un insieme superiormente illimitato si ottie-
ne un insieme che è ancora superiormente illimitato. Il numero 0 non è maggiorante di
{an |n ∈N} , quindi ∃k0 ∈N tale che ak0

> 0 . Analogamente 1 non è maggiorante di
{an |n > k0} , quindi esiste k1 > k0 tale che ak1

> 1 . Proseguendo, scelto kn , esiste
kn+1 > kn e tale che akn+1

> n + 1 . In questo modo si costruisce una sottosuccessione
�

akn

�

n∈N tale che, ∀n ∈N , si ha akn
> n , quindi akn

→+∞ .

Consideriamo il caso maxlimn→+∞ an =−∞ . Per n ∈N si ha an ≤ sup{am |m ≥ n} ,
inoltre

lim
n→+∞

sup{am |m ≥ n}=maxlim
n→+∞

an =−∞ ,

pertanto, per il teorema 2.2.15, affermazione II, an→−∞ .
Infine sia maxlimn→+∞ an = ℓ ∈ R . Con le notazioni del teorema 2.3.17, la succes-

sione (βn)n∈N è decrescente e βn → ℓ , quindi risulta βn ≥ ℓ qualunque sia n ∈ N . In
particolare β0 > ℓ− 1 , quindi, per la caratterizzazione dell’estremo superiore 1.2.42, esi-
ste k0 tale che ak0

> ℓ− 1 . Evidentemente ak0
≤ sup{am |m ≥ k0} =βk0

. Analogamente
βk0+1 > ℓ− (1/2) , quindi esiste k1 ≥ k0+ 1> k0 , tale che ak1

> ℓ− (1/2) . Risulta inoltre
ak1
≤βk1

. Proseguendo si costruisce una sottosuccessione
�

akn

�

n∈N tale che, ∀n ∈N , si ha

ℓ− 1

n+ 1
< akn
≤βkn

.

Si ha ℓ− �1/(n + 1)
�→ ℓ e, per il teorema sul limite delle sottosuccessioni 2.3.5, risulta

βkn
→ ℓ , quindi, per il teorema dei due carabinieri 2.2.11, limn→+∞ akn

= ℓ .

2.3.23 Osservazione. Per i teoremi 2.3.21 e 2.3.22 minlimn→+∞ an è il minimo dei limiti
delle sottosuccessioni regolari di (an)n∈N ; analogamente maxlimn→+∞ an è il massimo di
tali limiti.
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In particolare minlimn→+∞ an =−∞ se e solo se esiste una sottosuccessione di (an)n∈N
divergente a −∞ e maxlimn→+∞ an = +∞ se e solo se se esiste una sottosuccessione di
(an)n∈N divergente a +∞ .

2.3.24 Teorema

Sia (an)n∈N una successione in R . Le seguenti affermazioni sono equivalenti:

I) (an)n∈N è regolare;

II) minlimn→+∞ an =maxlimn→+∞ an .

Se tali affermazioni sono vere risulta

lim
n→+∞

an =minlim
n→+∞

an =maxlim
n→+∞

an .

Dimostrazione. I =⇒ II) Per il teorema 2.3.22 esiste una sottosuccessione (akn
)n∈N tale

che limn→+∞ akn
=maxlimn→+∞ an ; per il teorema sul limite delle sottosuccessioni 2.3.5,

ogni sottosuccessione ha lo stesso limite di (an)n∈N . Pertanto limn→+∞ akn
= limn→+∞ an ,

quindi maxlimn→+∞ an = limn→+∞ an .
Per motivi analoghi anche minlimn→+∞ an = limn→+∞ an .

II =⇒ I) Poniamo ℓ=minlimn→+∞ an =maxlimn→+∞ an .
Supponiamo ℓ ∈R . Poiché, ∀n ∈N , si ha

inf{am |m ≥ n} ≤ an ≤ sup{am |m ≥ n} ,
per il teorema dei due carabinieri 2.2.11 limn→+∞ an = ℓ .

Se ℓ = +∞ , poiché, ∀n ∈ N , si ha inf{am |m ≥ n} ≤ an , per il teorema 2.2.15,
affermazione I, risulta limn→+∞ an =+∞ .

Se ℓ=−∞ la dimostrazione è analoga.

2.3.25 Osservazione. Se minlimn→+∞ an =+∞ , allora, per il teorema 2.3.20, si ha anche
maxlimn→+∞ an =+∞ , quindi, per il teorema precedente, limn→+∞ an =+∞ .

Analogamente, se maxlimn→+∞ an =−∞ , allora limn→+∞ an =−∞ .

Studiamo il comportamento di massimo limite e minimo limite rispetto all’addizione e
alla moltiplicazione per uno scalare.

2.3.26 Teorema

Siano (an)n∈N e (bn)n∈N successioni in R .

I) Se minlimn→+∞ an ∈R e minlimn→+∞ bn ∈R , allora

minlim
n→+∞

(an + bn)≥minlim
n→+∞

an +minlim
n→+∞

bn .

II) Se minlimn→+∞ an =+∞ e minlimn→+∞ bn >−∞ , allora

minlim
n→+∞

(an + bn) = +∞ .
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III) Se maxlimn→+∞ an ∈R e maxlimn→+∞ bn ∈R , allora

maxlim
n→+∞

(an + bn)≤maxlim
n→+∞

an +maxlim
n→+∞

bn .

IV) Se maxlimn→+∞ an =−∞ e maxlimn→+∞ bn <+∞ , allora

maxlim
n→+∞

(an + bn) =−∞ .

Dimostrazione. I) Per n ∈N , se k ≥ n , allora si ha

ak + bk ≥ inf{am |m ≥ n}+ inf{bm |m ≥ n} ,
pertanto

inf{ak + bk |k ≥ n} ≥ inf{am |m ≥ n}+ inf{bm |m ≥ n} .
Passando al limite per n→+∞ , si ottiene

minlim
n→+∞

(an + bn) = lim
n→+∞

inf{ak + bk |k ≥ n} ≥

≥ lim
n→+∞

�

inf{am |m ≥ n}+ inf{bm |m ≥ n}�=
= lim

n→+∞
inf{am |m ≥ n}+ lim

n→+∞
inf{bm |m ≥ n}=minlim

n→+∞
an +minlim

n→+∞
bn .

II) Se minlimn→+∞ an =+∞ , allora limn→+∞ an =+∞ (v. osservazione 2.3.25), inol-
tre se minlimn→+∞ bn > −∞ , allora (bn)n∈N è inferiormente limitata, quindi, per il
teorema sul limite della somma 2.2.26, affermazione II, si ha limn→+∞(an + bn) = +∞ .

III) La dimostrazione è analoga a quella dell’affermazione I.

IV) La dimostrazione è analoga a quella dell’affermazione II.

2.3.27 Esempio. Nelle affermazioni I e III di questo teorema è stabilito che il minimo
limite della somma è minore o uguale della somma dei minimi limiti, mentre il massimo
limite della somma è minore o uguale della somma dei massimi limiti. In generale non vale
l’uguaglianza.

Consideriamo le successioni (an)n∈N =
�

(−1)n
�

n∈N e (bn)n∈N =
�

(−1)n+1
�

n∈N . Eviden-
temente, ∀n ∈N , si ha {am |m ≥ n}= {−1,1} e {bm |m ≥ n}= {−1,1} , pertanto

minlim
n→+∞

an =minlim
n→+∞

bn =−1 ,

max lim
n→+∞

an =maxlim
n→+∞

bn = 1 .

Inoltre
an + bn = (−1)n + (−1)n+1 = (−1)n

�

1+ (−1)
�

= 0 ,

pertanto la successione (an + bn)n∈N ha limite 0 . Perciò

minlim
n→+∞

an +minlim
n→+∞

bn =−2< 0=minlim
n→+∞

(an + bn) ,

max lim
n→+∞

an +maxlim
n→+∞

bn = 2> 0=maxlim
n→+∞

(an + bn) .
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2.3.28 Teorema

Siano (an)n∈N una successione in R e λ ∈R∗ .
I) Supponiamo minlimn→+∞ an ∈R . Se λ> 0 , allora

minlim
n→+∞

(λan) = λminlim
n→+∞

an ;

se λ < 0 , allora
maxlim

n→+∞
(λan) = λminlim

n→+∞
an .

II) Supponiamo minlimn→+∞ an ∈ {−∞,+∞} . Se λ> 0 , allora

minlim
n→+∞

(λan) =minlim
n→+∞

an ;

se λ < 0 , allora
maxlim

n→+∞
(λan) =−minlim

n→+∞
an .

III) Supponiamo maxlimn→+∞ an ∈R . Se λ > 0 , allora

maxlim
n→+∞

(λan) = λmaxlim
n→+∞

an ;

se λ < 0 , allora
minlim

n→+∞
(λan) = λmaxlim

n→+∞
an .

IV) Supponiamo maxlimn→+∞ an ∈ {−∞,+∞} . Se λ > 0 , allora

maxlim
n→+∞

(λan) =maxlim
n→+∞

an ;

se λ < 0 , allora
minlim

n→+∞
(λan) =−maxlim

n→+∞
an .

Dimostrazione. I) Poniamo ℓ=minlimn→+∞ an . Per il teorema 2.3.22 esiste una sotto-
successione
�

akn

�

n∈N tale che akn
→ ℓ ; inoltre, per il teorema 2.3.21, ogni sottosuccessione

regolare ha limite minore o uguale a ℓ .
Sia λ > 0 . Evidentemente λakn

→ λℓ e ogni sottosuccessione regolare di (λan)n∈N ha
limite minore o uguale a λℓ . Allora, per l’osservazione 2.3.23, minlimn→+∞(λan) = λℓ .

Sia λ < 0 . Evidentemente λakn
→ λℓ e ogni sottosuccessione regolare di (λan)n∈N ha

limite maggiore o uguale a λℓ . Allora, per l’osservazione 2.3.23, maxlimn→+∞(λan) = λℓ .

II) Supponiamo minlimn→+∞ an =−∞ ; allora esiste una sottosuccessione
�

akn

�

n∈N tale
che akn

→ −∞ . Se λ > 0 , allora λakn
→ −∞ , quindi minlimn→+∞(λan) = −∞ ; se

invece λ < 0 , allora λakn
→+∞ , quindi maxlimn→+∞(λan) = +∞ .

Supponiamo ora minlimn→+∞ an = +∞ ; risulta limn→+∞ an = +∞ (v. osservazio-
ne 2.3.25). Se λ > 0 , allora λan → +∞ , perciò minlimn→+∞(λan) = +∞ ; se invece
λ< 0 , allora λan→−∞ , quindi maxlimn→+∞(λan) =−∞ .

III) La dimostrazione è analoga a quella dell’affermazione I.

IV) La dimostrazione è analoga a quella dell’affermazione II.



3
Limiti e continuità di funzioni
reali di variabile reale

3.1 Topologia dell’insieme dei numeri reali

In questo capitolo iniziamo lo studio delle funzioni da sottoinsiemi di R a R . Tali
funzioni sono dette anche funzioni reali di variabile reale. Prima di affrontare questo
studio è opportuno introdurre alcuni concetti relativi ai sottoinsiemi di R ; sono i concetti
di base di un ampio capitolo della matematica chiamato “topologia”.

Scelto A⊆R , classifichiamo i punti di R a seconda della loro “vicinanza” ad A o a ∁A .

Definizione di punto interno, punto esterno, punto di frontiera

Siano A⊆R e c ∈R .
Diciamo che c è punto interno ad A quando ∃U ∈Ic tale che U ⊆A .
Diciamo che c è punto esterno ad A quando ∃U ∈Ic tale che U ∩A=∅ .
Diciamo che c è punto di frontiera per A quando non è né punto interno né

punto esterno ad A .

Poiché U ⊆ A se e solo se U ∩ ∁A = ∅ , i punti interni ad A sono quelli “lontani”
da ∁A ; analogamente i punti esterni sono quelli “lontani” da A ; i punti di frontiera sono
“vicini” sia ad A che a ∁A .

Dalle definizioni è evidente che i punti interni ad A appartengono ad A e quelli esterni
non appartengono ad A . Inoltre si ha U ⊆A se e solo se U∩∁A=∅ , quindi i punti interni
ad A sono quelli esterni a ∁A e viceversa i punti esterni ad A sono quelli interni a ∁A .

Definizione di interno, frontiera, chiusura di un sottoinsieme di R

Sia A⊆R .
Chiamiamo interno di A e indichiamo con int A l’insieme dei punti interni ad A .
Chiamiamo frontiera di A e indichiamo con ∂ A l’insieme dei punti di frontiera

per A .

Chiamiamo chiusura di A e indichiamo con A l’insieme intA∪ ∂ A .

Poiché ogni numero reale è interno o esterno o di frontiera per un insieme, R è l’unione
dei tre insiemi, a due a due disgiunti, int A , int (∁A) e ∂ A .
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Si verifica facilmente, negando la definizione di punto interno e di punto esterno, che
vale il seguente teorema.

3.1.1 Teorema

Siano A⊆R e c ∈R ; c ∈ ∂ A se e solo se

∀U ∈ Ic , (U ∩A 6=∅) ∧ (U ∩ ∁A 6=∅) .

3.1.2 Osservazione. Poiché ∁(∁A) = A da questo teorema segue immediatamente che un
punto è di frontiera per A se e solo se è di frontiera per ∁A , cioè ∂ A= ∂ (∁A) . Pertanto

∁A= int(∁A)∪ ∂ A .

Poiché int A , int (∁A) e ∂ A sono a due a due disgiunti, è evidente che A∩∁A= ∂ A .

3.1.3 Esempio. Poiché ogni intorno di un numero reale è incluso in R , ogni punto di R
è interno a R . Quindi R non ha né punti di frontiera né punti esterni.

Poiché ∅ ha intersezione vuota con qualunque insieme, ogni numero reale è esterno
a ∅ . Quindi ∅ non ha né punti interni né punti di frontiera.

L’insieme Z non ha punti interni. Infatti non esistono intervalli inclusi in Z , quindi
nessun punto ha un intorno incluso in Z . Da qui segue che ogni punto di Z è di frontiera.
Infine ogni punto di ∁Z è esterno a Z . Infatti se c /∈ Z , allora [c] < c < [c] + 1 e non
esistono interi compresi tra [c] e [c] + 1 . Posto δ = min

�

c − [c], [c] + 1− c
	

, risulta
[c]≤ c −δ e c +δ ≤ [c]+ 1 , pertanto

]c −δ, c +δ[⊆
�

[c], [c]+ 1
�

⊆ ∁Z .

Quindi c è esterno a Z .
Abbiamo quindi intZ=∅ , ∂ Z=Z e Z=Z .
Ogni punto di R è di frontiera per Q . Infatti, se c ∈ R , allora, per il teorema 1.4.7,

∀δ ∈R+ , esistono x ∈ Q e y ∈ R \Q compresi tra c − δ e c + δ ; pertanto risulta
]c −δ, c +δ[∩Q 6= ∅ e ]c −δ, c +δ[∩ ∁Q 6= ∅ . Quindi, per il teorema 3.1.1, c è un
punto di frontiera per Q . Poiché tutti gli elementi di R sono di frontiera, Q non ha né
punti interni, né punti esterni

Abbiamo quindi intQ=∅ , ∂ Q=R e Q=R .

3.1.4 Esempio. Siano

A1 = {0} , A2 = ]1,2[ , A3 = [1,2] , A4 = ]0,1[∪ ]1,2[ ,

A5 = {0}∪ [1,2] , A6 = ]0,+∞[ , A7 = [0,+∞[ , A8 =

§

1

n

�

�

�

�
n ∈N∗
ª

.

Il punto 0 è di frontiera per A1 . Infatti non è interno ad A1 , perché qualunque intorno
di 0 contiene numeri diversi da 0 , quindi non è incluso in A1 ; inoltre non è esterno ad A1 ,
perché appartiene all’insieme.

Se c /∈A1 , allora c è esterno ad A1 . Infatti 0 /∈
�

c−|c |, c+|c |
�

, quindi c ha un intorno
incluso in ∁A1 .

Quindi si ha intA1 =∅ , ∂ A1 = {0} e A1 = {0} .
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A1
0

A2
1 2

A3
1 2

A4
0 1 2

A5
0 1 2

A6
0

A7
0

A8
11/2

Figura 3.1.1
Gli insiemi studiati nell’esempio 3.1.4

Se c ∈ ]1,2[ , allora c è interno ad A2 . Infatti, posto δ = min{c − 1,2− c} , risulta
]c −δ, c +δ[⊆ ]1,2[ .

Il punto 1 è di frontiera per A2 . Infatti ogni intorno di 1 contiene numeri minori di 1 ,
quindi non è incluso in A2 , e numeri compresi tra 1 e 2 , quindi non è incluso in ∁A2 . Per
motivi analoghi 2 è di frontiera per A2 .

Se c ∈ ]2,+∞[ , allora c è esterno ad A2 , perché
�

c−(c−2), c+(c−2)
�

= ]2,2c−2[ è
un intorno di c disgiunto da A2 . Analogamente se c ∈ ]−∞, 1[ , allora c è esterno ad A2 ,
perché
�

c − (1− c), c + (1− c)
�

= ]2c − 1,1[ è un intorno di c disgiunto da A2 .

Quindi si ha intA2 = ]1,2[ , ∂ A2 = {1,2} e A2 = [1,2] .

Ragionando come per A2 , si prova che int A3 = ]1,2[ , ∂ A3 = {1,2} e A3 = [1,2] .

Poiché A2 ⊆A4 , i punti interni ad A2 sono interni ad A4 , quindi se c ∈ ]1,2[ , allora è
interno ad A4 . Con ragionamenti analoghi a quelli fatti per A2 si prova che se c ∈ ]0,1[ ,
allora c è interno ad A4 .

I punti 0 , 1 e 2 sono di frontiera per A4 . Infatti ciascuno di essi non appartiene
ad A4 , quindi non è interno, e si prova facilmente che ogni intorno di uno di tali punti
interseca A4 , quindi non sono punti esterni.

Se c ∈ ]2,+∞[ , allora c è esterno ad A4 , perché
�

c−(c−2), c+(c−2)
�

= ]2,2c−2[ è
un intorno di c disgiunto da A4 . Analogamente se c ∈ ]−∞, 0[ , allora c è esterno ad A4 ,
perché
�

c − (−c), c + (−c)
�

= ]2c , 0[ è un intorno di c disgiunto da A4 .

Quindi si ha intA4 = ]0,1[∪ ]1,2[ , ∂ A4 = {0,1, 2} e A4 = [0,2] .

Poiché A2 ⊆A5 , i punti interni ad A2 sono interni ad A5 , quindi se c ∈ ]1,2[ , allora c
è interno ad A5 .
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I punti 0 , 1 e 2 sono di frontiera per A5 , perché essi appartengono ad A5 , quindi non
sono esterni, e si verifica facilmente che ogni loro intorno non è contenuto in A5 , quindi
non sono interni.

Con ragionamenti analoghi a quelli fatti per gli insiemi precedenti, si prova che ogni
punto di ]−∞, 0[∪ ]0,1[∪ ]2,+∞[ è esterno ad A5 .

Quindi si ha intA5 = ]1,2[ , ∂ A5 = {0,1, 2} e A5 = {0}∪ [1,2] .

Se c ∈ ]0,+∞[ , allora ]c − c , c + c[⊆ ]0,+∞[ , quindi c è interno ad A6 .
Ogni intorno di 0 contiene sia numeri positivi che numeri negativi, quindi ha interse-

zione non vuota sia con A6 che con il suo complementare; perciò 0 è punto di frontiera
per A6 .

Se c ∈ ]−∞, 0[ , allora
�

c − (−c), c+(−c)
�∩ ]0,+∞[ =∅ , quindi c è esterno ad A6 .

Quindi si ha intA6 = ]0,+∞[ , ∂ A6 = {0} e A6 = [0,+∞[ .
Ragionando come per A6 , si prova che int A7 = ]0,+∞[ , ∂ A7 = {0} e A7 = [0,+∞[ .
L’insieme A8 non contiene intervalli, quindi non può contenere un intorno di un punto;

pertanto A8 non ha punti interni. Quindi ogni punto di A8 è di frontiera.
Il punto 0 è di frontiera per A8 . Infatti la successione (1/n)n∈N∗ converge a 0 (v. esem-

pio 2.2.12), quindi, ∀δ ∈ R+ , definitivamente si ha 1/n ∈ ]−δ,δ[ , pertanto ogni intor-
no di 0 ha intersezione non vuota con A8 . Poiché 0 /∈ A8 , ogni intorno di 0 ha anche
intersezione non vuota con ∁A8 , pertanto, per il teorema 3.1.1, 0 è punto di frontiera.

Se c ∈ ]1,+∞[ , allora
�

c−(c−1), c+(c−1)
�

= ]1,2c−1[ è un intorno di c disgiunto
da A8 quindi c è esterno ad A8 . Se c ∈ ]−∞, 0[ , allora

�

c − (−c), c + (−c)
�

= ]2c , 0[ è
un intorno di c disgiunto da A8 , quindi c è esterno ad A8 . . Se c ∈ ]0,1[ \A8 , allora
esiste n ∈N∗ tale che si ha 1/(n+ 1)< c < 1/n . Posto δ =min

�

c−1/(n+1), (1/n)− c
	

,
risulta ]c −δ, c +δ[⊆

�

1/n, 1/(n+ 1)
�

⊆ ∁A8 . Pertanto c è esterno ad A8 .

Quindi si ha intA8 =∅ , ∂ A8 =A8 ∪ {0} e A8 =A8 ∪ {0} .

Dalle definizioni si ottiene immediatamente il seguente teorema.

3.1.5 Teorema

Sia A⊆R . Allora:

I) int A⊆A⊆A ;

II) A=A∪ ∂ A .

Anche il teorema seguente è una semplice conseguenza delle definizioni.

3.1.6 Teorema

Siano A,B ⊆R .
I) Se A⊆ B , allora intA⊆ int B ;

II) Se A⊆ B , allora ogni punto esterno a B è esterno ad A ;

III) int(A∩B) = int A∩ intB .
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Dimostrazione. I, II) Sono immediata conseguenza della definizione.

III) Per l’affermazione I si ha int(A∩ B) ⊆ int A e int(A∩ B) ⊆ int B , pertanto risulta
int(A∩B)⊆ int A∩ intB .

Viceversa se c ∈ intA∩ int B , allora esistono UA, UB ∈ Ic tali che UA ⊆ A e UB ⊆ B .
Pertanto risulta UA ∩UB ∈ Ic e UA ∩ UB ⊆ A∩ B ; quindi c ∈ int(A∩ B) . Perciò si ha
int A∩ intB ⊆ int(A∩B) .

I punti interni, esterni e di frontiera e la chiusura di un insieme possono essere caratte-
rizzati mediante successioni convergenti, come risulta dal seguente teorema.

3.1.7 Teorema

Siano A⊆R e c ∈R .
I) Il punto c appartiene ad A se e solo se esiste (an)n∈N successione in A conver-

gente a c .

II) Il punto c è interno ad A se e solo se, qualunque sia (an)n∈N , successione in R
convergente a c , definitivamente an ∈A .

III) Il punto c è esterno ad A se e solo se, qualunque sia (an)n∈N , successione in R
convergente a c , definitivamente an /∈A .

IV) Il punto c è di frontiera per A se e solo se esistono (an)n∈N successione in A e
(bn)n∈N successione in ∁A convergenti a c .

Per l’affermazione I, A è l’insieme dei punti che sono limite di successioni in A .

Dimostrazione. I) Se c ∈ A , allora c non è interno a ∁A , quindi ∀U ∈ Ic non si ha
U ⊆ ∁A , pertanto U ∩A 6=∅ . Quindi, ∀n ∈N , si ha

�

c−1/(n+1), c+1/(n+1)
�

∩A 6=∅ ,
perciò esiste an ∈A tale che c − 1/(n+ 1)< an < c + 1/(n+ 1) . Poiché

lim
n→+∞

�

c − 1

n+ 1

�

= lim
n→+∞

�

c +
1

n+ 1

�

= c ,

per il teorema dei due carabinieri 2.2.11 an→ c .

Viceversa, se c /∈ A , allora c è interno a ∁A , quindi esiste U ∈ Ic incluso in ∁A . Se
(an)n∈N è una successione convergente a c , allora definitivamente an ∈ U , quindi an ∈ ∁A .
Pertanto non esistono successioni in A convergenti a c .

II) Se c è interno ad A , allora esiste U ∈ Ic incluso in A . Se (an)n∈N è una successione
convergente a c , allora definitivamente an ∈ U , quindi definitivamente an ∈A .

Viceversa, se c non è interno ad A , allora c ∈ ∁A , quindi, per l’affermazione I, esiste
(an)n∈N successione in ∁A convergente a c . Pertanto non è vero che, qualunque sia (an)n∈N
successione in R convergente a c , definitivamente si ha an ∈A .

III) Segue dall’affermazione II, perché i punti esterni ad A sono quelli interni a ∁A .

IV) Per l’osservazione 3.1.2, c ∈ ∂ A se e solo se c ∈ A∩ ∁A . Per l’affermazione I, que-
sto equivale al fatto che esistano (an)n∈N successione in A e (bn)n∈N successione in ∁A
convergenti a c .
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Definizione di insieme aperto, chiuso

Sia A⊆R .
Diciamo che A è aperto quando A= int A .

Diciamo che A è chiuso quando A=A .

Vale la seguente semplice caratterizzazione degli aperti e dei chiusi.

3.1.8 Teorema

Sia A⊆R .
I) L’insieme A è aperto se e solo se A∩ ∂ A=∅ .

II) L’insieme A è chiuso se e solo se ∂ A⊆A .

Dimostrazione. I) Poiché int A∩ ∂ A=∅ , se A= int A si ha A∩ ∂ A=∅ .
Viceversa, poiché A⊆ intA∪ ∂ A , se A∩ ∂ A=∅ , allora A⊆ int A .

II) Si ha A=A se e solo se A∪ ∂ A=A e questo equivale a ∂ A⊆A .

Si verifica facilmente che gli intervalli che abbiamo chiamato aperti sono insiemi aperti
secondo questa definizione, mentre gli intervalli che abbiamo chiamato chiusi sono chiusi
secondo questa definizione.

3.1.9 Osservazione. L’insieme R è aperto, perché ogni punto è interno, ed è chiuso,
perché, non avendo punti di frontiera, coincide con l’unione dell’interno con la frontiera.

Anche ∅ è sia aperto che chiuso, perché non ha né punti interni né punti di frontiera,
quindi coincide sia con il suo interno che con la sua chiusura.

Gli insiemi ∅ e R sono gli unici sottoinsiemi di R che sono sia aperti che chiusi. Infatti
se A è sia aperto che chiuso, allora, per il teorema 3.1.8, ∂ A è incluso in A , ma è disgiunto
da A , quindi ∂ A=∅ . Gli unici insiemi che hanno frontiera vuota sono R e ∅ .

Infatti, sia A⊆R non vuoto e diverso da R . Allora esistono a ∈A e b ∈R\A . Suppo-
niamo a < b , in caso contrario la dimostrazione è analoga. Posto C = {x ∈A| x < b} , si
ha a ∈C , quindi C 6=∅ , e b è un maggiorante di C , quindi C è superiormente limitato.
Posto c = supC , proviamo che risulta c ∈ ∂ A . Infatti, ∀δ ∈ R+ , si ha c −δ < sup C ,
quindi esiste un elemento di C compreso tra c − δ e c , ma C ⊆ A , quindi esiste un
elemento di A appartenente a ]c−δ, c[⊆ ]c−δ, c+δ[ , quindi ogni intorno di c interse-
ca A . Inoltre, se c < b , allora ogni elemento di ]c , b ] non appartiene ad A , e, ∀δ ∈R+ ,
]c −δ, c +δ[ interseca tale intervallo, quindi non è incluso in A . Se invece c = b , allora
ogni intorno di c contiene b che non appartiene ad A , quindi tale intorno non è incluso
in A . Pertanto c non è né interno né esterno ad A , quindi è di frontiera.

3.1.10 Esempio. Ricordando l’esempio 3.1.3, Z è chiuso, Q non è né aperto né chiuso.
Determiniamo quali degli insiemi introdotti nell’esempio 3.1.4 sono aperti o chiusi.

Ricordando quanto provato in tale esempio, gli insiemi A2 = ]1,2[ , A4 = ]0,1[∪ ]1,2[ e
A6 = ]0,+∞[ sono aperti, mentre gli insiemi A1 = {0} , A3 = [1,2] , A5 = {0} ∪ [1,2]
e A7 = [0,+∞[ sono chiusi, infine l’insieme A8 = {1/n |n ∈ N∗} non è né aperto né
chiuso.
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3.1.11 Teorema

Sia A⊆R .
I) A è aperto se e solo se ∁A è chiuso.

II) A è chiuso se e solo se ∁A è aperto.

Dimostrazione. I) Ricordiamo che ∂ A = ∂ (∁A) (v. osservazione 3.1.2). Per il teore-
ma 3.1.8, A è aperto se e solo se A∩ ∂ A=∅ , cioè ∂ A= ∂ (∁A)⊆ ∁A e questo equivale al
fatto che ∁A sia chiuso.

II) Segue subito da I, applicata a ∁A .

La proprietà di essere aperto e quella di essere chiuso si conservano per unioni e inter-
sezioni. Per la precisione valgono i seguenti teoremi.

3.1.12 Teorema

Sia {Ai | i ∈ I } una famiglia di insiemi.

I) Se ∀i ∈ I , Ai è aperto, allora
⋃

i∈I
Ai è aperto.

II) Se ∀i ∈ I , Ai è chiuso, allora
⋂

i∈I
Ai è chiuso.

Dimostrazione. I) Sia c ∈
⋃

i∈I
Ai , dimostriamo che c è un punto interno a tale insie-

me. Sia j ∈ I tale che c ∈Aj ; poiché Aj è aperto, esiste U ∈ Ic tale che U ⊆Aj , quindi
U ⊆
⋃

i∈I
Ai , perciò c è interno a

⋃

i∈I
Ai .

Pertanto ogni punto di
⋃

i∈I
Ai è interno, perciò

⋃

i∈I
Ai è aperto.

II) Si ha ∁
�⋂

i∈I
Ai

�

=
⋃

i∈I
∁Ai . Per il teorema 3.1.11, ∀i ∈ I , ∁Ai è aperto, quindi, per

l’affermazione I,
⋃

i∈I
∁Ai è aperto, pertanto, nuovamente per il teorema 3.1.11,

⋂

i∈I
Ai

è chiuso.

3.1.13 Teorema

Siano A,B ⊆R .
I) Se A e B sono aperti, allora A∩B è aperto.

II) Se A e B sono chiusi, allora A∪B è chiuso.

Dimostrazione. I) Sia c ∈A∩B , dimostriamo che c ∈ int(A∩B) . Poiché A e B sono
aperti, c è interno ad A e a B , quindi ∃UA, UB ∈ Ic tali che UA ⊆ A e UB ⊆ B . Posto
U =UA∩UB , si ha U ∈ Ic , U ⊆UA⊆A e U ⊆UB ⊆ B , pertanto U ⊆A∩B , quindi c
è interno ad A∩B .

Poiché ogni punto di A∩B è interno, A∩B è aperto.

II) Si ha ∁(A∪ B) = ∁A∩ ∁B . Per il teorema 3.1.11 ∁A e ∁B sono aperti, quindi, per
l’affermazione I, ∁A∩ ∁B è aperto, pertanto, nuovamente per il teorema 3.1.11, A∪ B è
chiuso.
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Da questo teorema segue che se A , B e C sono tre insiemi aperti, allora A∩B è aperto
e quindi anche (A∩B)∩C è aperto; quest’ultimo è l’intersezione dei tra insiemi. Ripetendo
il ragionamento si prova che l’intersezione di un numero finito di insiemi aperti è aperta.

In modo analogo si ha che l’unione di un numero finito di insiemi chiusi è chiusa.

3.1.14 Osservazione. Tra i teoremi 3.1.12 e 3.1.13 c’è una differenza fondamentale: nel
primo si considerano unioni e intersezioni di una famiglia di insiemi anche infinita, nel
secondo unioni e intersezioni di due insiemi. Come osservato sopra, dal fatto che una pro-
prietà si conserva per unione o intersezione di due insiemi segue che si conserva per unione
o intersezione di un numero finito di insiemi, ma non si può trarre la stessa conclusione per
famiglie infinite di insiemi. In particolare il teorema 3.1.13 è falso per intersezioni e unioni
di famiglie infinite.

Per ogni n ∈N∗ l’insieme ]−1/n, 1/n[ è aperto. Si ha

⋂

n∈N∗

�

− 1

n
,

1

n

�

= {0} ,

perché se x appartiene a tale intersezione, risulta, ∀n ∈ N∗ , x ≤ 1/n , quindi x ≤ 0 , e
x ≥−1/n , quindi x ≥ 0 . L’insieme {0} ha interno vuoto (v. esempio 3.1.4), quindi non
è aperto. Pertanto la famiglia di insiemi aperti

�

]−1/n, 1/n[
�

�n ∈N∗
	

ha intersezione che
non è aperta.

Considerando i complementari di questi insiemi, abbiamo la famiglia di insiemi chiusi
�

]−∞,−1/n]∪ [1/n,+∞[ ��n ∈N∗	 , la cui unione è R∗ che non è chiuso.

3.1.15 Teorema

Sia A⊆R . Allora:

I) int A è aperto;

II) A è chiuso.

Dimostrazione. I) Dobbiamo provare che int(int A) = intA . Poiché intA ⊆ A , per
il teorema 3.1.6, affermazione I, si ha int(int A) ⊆ int A , quindi resta da dimostrare che
int A⊆ int(int A) .

Se c ∈ int A , allora esiste δ ∈ R+ tale che ]c −δ, c +δ[ ⊆ A . Se x ∈ ]c −δ, c +δ[ ,
allora, posto η=min

�

(c +δ)− x, x − (c −δ)	 si ha

x − η≥ x −
�

x − (c −δ)
�

= c −δ ,

x + η≤ x +
�

(c +δ)− x
�

= c +δ ,

quindi
]x − η, x + η[⊆ ]c −δ, c +δ[⊆A;

pertanto x ∈ int A . Perciò ]c − δ, c +δ[ ⊆ intA , ma tale intervallo è un intorno di c ,
pertanto c ∈ int(int A) . Quindi intA⊆ int(int A) .

II) Poiché A = intA∪ ∂ A , ∁A è costituito dai punti esterni ad A , cioè ∁A = int(∁A) .
Poiché, per l’affermazione I, int(∁A) è aperto, per il teorema 3.1.11, A è chiuso.
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Definizione di insieme compatto

Sia A ⊆ R . Diciamo che A è compatto quando ogni (an)n∈N successione in A
ha una sottosuccessione convergente a un elemento di A .

Gli insiemi compatti possono essere caratterizzati sulla base di concetti già definiti.

3.1.16 Teorema (caratterizzazione degli insiemi compatti)

Sia A⊆R . Le seguenti affermazioni sono equivalenti:

I) A è compatto;

II) A è chiuso e limitato.

Dimostrazione. I =⇒ II) Dimostriamo che se A non è chiuso oppure non è limitato,
allora non è compatto.

Supponiamo che A non sia superiormente limitato. Allora ∀n ∈N esiste un elemento
di A , che indichiamo con an , tale che an > n . Per il teorema 2.2.15, affermazione I,
an→+∞ , quindi, per il teorema 2.3.5, ogni sua sottosuccessione diverge, cioè (an)n∈N
non ha sottosuccessioni convergenti a un elemento di A . Pertanto A non è compatto.

La dimostrazione è analoga se A è inferiormente illimitato.

Supponiamo ora che A non sia chiuso, cioè che esista c ∈ A\A . Poiché c ∈A , per il
teorema 3.1.7, affermazione I, esiste una successione (an)n∈N in A convergente a c . Ogni
sottosuccessione di (an)n∈N converge a c che non appartiene ad A , quindi (an)n∈N non
ha sottosuccessioni convergenti a un elemento di A . Pertanto A non è compatto.
II =⇒ I) Sia (an)n∈N una successione in A . Poiché A è limitato, (an)n∈N è limitata; per
il teorema di Bolzano-Weierstrass 2.3.9, esiste una sottosuccessione

�

akn

�

n∈N convergente.

Per il teorema 3.1.7, affermazione I, si ha limn→+∞ akn
∈A=A . Quindi A è compatto.

3.1.17 Esempio. Consideriamo gli insiemi studiati negli esempi 3.1.4 e 3.1.10.
Gli insiemi A1 = {0} , A3 = [1,2] e A5 = {0}∪[1,2] sono chiusi e limitati, quindi, per il

teorema 3.1.16, sono compatti. L’insieme A7 = [0,+∞[ non è limitato, quindi non è com-
patto. Gli insiemi A2 = ]1,2[ , A4 = ]0,1[∪ ]1,2[ , A6 = ]0,+∞[ e A8 = {1/n |n ∈N∗}
non sono chiusi, quindi non sono compatti.

Per lo studio dei limiti, hanno interesse i punti che sono “vicini” a un insieme privato
del punto stesso. Risulta quindi utile la seguente definizione, che estendiamo ai punti di R .

Definizione di punto limite, punto di accumulazione, punto isolato, insieme
derivato di un sottoinsieme di R

Siano A⊆R e c ∈R .
Diciamo che c è punto limite di A quando, ∀U ∈ Ic , si ha A∩U \ {c} 6=∅ .
Indichiamo con P L(A) l’insieme dei punti limite di A .
Diciamo che c è punto di accumulazione per A quando c è un punto limite

di A che appartiene a R .
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Chiamiamo insieme derivato di A e indichiamo con D(A) l’insieme dei punti di
accumulazione per A .

Diciamo che c è un punto isolato per A quando c ∈A\D(A) .

Dalle definizioni segue subito che è D(A) = P L(A)∩R .
Per definizione, la condizione che c ∈R sia punto di accumulazione per A equivale al

fatto che c non sia esterno ad A\ {c} , cioè che sia c ∈A\ {c} .
3.1.18 Osservazione. Sia A ⊆ R ; si ha +∞ ∈ P L(A) se e solo se, ∀M ∈ R , risulta
A∩ ]M ,+∞[ 6=∅ , cioè esiste un elemento di A maggiore di M . Quindi +∞∈ P L(A) se
e solo se A è superiormente illimitato.

Analogamente −∞∈ P L(A) se e solo se A è inferiormente illimitato.
Per definizione, c ∈A è punto isolato per A se e solo se non è vero che

∀δ ∈R+ , A∩ ]c −δ, c +δ[ \ {c} 6=∅ ,
cioè

∃δ ∈R+ : A∩ ]c −δ, c +δ[ \ {c}=∅ ;

si ha A∩ ]c −δ, c +δ[ \ {c} =∅ se e solo se A∩ ]c −δ , c +δ[ = {c} , quindi c è punto
isolato per A se e solo se

∃δ ∈R+ : A∩ ]c −δ, c +δ[ = {c} .

Il teorema seguente mette in relazione il concetto di punto di accumulazione con quello
di punto interno e di punto di frontiera.

3.1.19 Teorema

Sia A⊆R . Allora:

I) int A⊆D(A)⊆A ;

II) ∂ A\A⊆D(A) .

Dimostrazione. I) Se c ∈ int A , allora esiste U ∈Ic tale che U ⊆A , quindi qualunque
sia V ∈ Ic si ha A∩V \ {c} ⊇ U ∩V \ {c} . Poiché U ∩V è un intervallo, ha più di un
elemento, quindi U ∩V \ {c} 6=∅ , pertanto anche A∩V \ {c} 6=∅ ; perciò c ∈ D(A) .

Se c ∈ D(A) , allora, ∀U ∈ Ic , si ha A∩U \ {c} 6=∅ , quindi A∩U 6=∅ , pertanto c

non è esterno ad A , cioè c ∈A .

II) Se c ∈ ∂ A \ A , allora, qualunque sia U ∈ Ic , si ha A∩ U 6= ∅ . Poiché c /∈ A ,
A∩U =A∩U \ {c} , pertanto A∩U \ {c} 6=∅ . Quindi c ∈ D(A) .

3.1.20 Esempio. Determiniamo il derivato degli insiemi introdotti nell’esempio 3.1.4. Uti-
lizzeremo ripetutamente il fatto che int A ⊆ D(A) ⊆ A e che ∂ A \A ⊆ D(A) (v. teore-
ma 3.1.19).

Consideriamo A1 = {0} . Si ha D(A1) ⊆ A1 = {0} . Qualunque sia U ∈ I0 , risulta
A1 ∩U \ {0}= {0} \ {0}=∅ ; quindi 0 /∈D(A) .

Pertanto D(A1) =∅ e 0 è un punto isolato per A1 .
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Consideriamo A2 = ]1,2[ . Si ha

]1,2[ = int A2 ⊆D(A2)⊆A2 = [1,2] .

I punti 1 e 2 sono punti di frontiera che non appartengono ad A2 , quindi sono punti di
accumulazione.

Pertanto D(A2) = [1,2] .
Consideriamo A3 = [1,2] . Poiché A2 ⊆A3 si ha D(A2)⊆D(A3) , pertanto

[1,2] =D(A2)⊆D(A3)⊆A3 = [1,2] .

Pertanto D(A3) = [1,2] .
Consideriamo A4 = ]0,1[∪ ]1,2[ . Si ha

]0,1[∪ ]1,2[ = int A4 ⊆D(A4)⊆A4 = [0,2] .

I punti 0 , 1 e 2 sono punti di frontiera che non appartengono ad A2 , quindi sono punti
di accumulazione.

Pertanto D(A4) = [0,2] .
Consideriamo A5 = {0}∪ [1,2] . Si ha

]1,2[ = intA5 ⊆D(A5)⊆A5 = {0}∪ [1,2] .

Poiché A2 ⊆ A5 e 1 e 2 sono punti di accumulazione per A2 , essi sono di accumulazione
anche per A5 . Il punto 0 non è di accumulazione per A5 , perché il suo intorno ]−1/2,1/2[
interseca A5 solo in 0 .

Pertanto D(A5) = [1,2] e 0 è un punto isolato per A5 .
Consideriamo A6 = ]0,+∞[ . Si ha

]0,+∞[ = int A6 ⊆D(A6)⊆A6 = [0,+∞[ .
Il punto 0 è punto di frontiera che non appartiene ad A6 , quindi è di accumulazione.

Pertanto D(A6) = [0,+∞[ .
Consideriamo A7 = [0,+∞[ . Poiché A6 ⊆A7 si ha D(A6)⊆D(A7) , quindi

[0,+∞[ =D(A6)⊆D(A7)⊆A7 = [0,+∞[ .
Pertanto D(A7) = [0,+∞[ .
Consideriamo A8 = {1/n |n ∈N∗} . Si ha D(A8)⊆A8 =A8 ∪ {0} . Inoltre

A8 ∩
�

1− 1

2
,1+

1

2

�

=A8 ∩
�

1

2
,
3

2

�

= {1} ,

pertanto 1 non è punto di accumulazione. Se n ∈N∗\{1} , allora 1/(n+1)< 1/n < 1(n−1)
e 1/n è l’unico elemento di A8 compreso tra tali numeri. Pertanto, ponendo

δ =min

§

1

n
− 1

n+ 1
,

1

n− 1
− 1

n

ª

=min

§

1

n(n + 1)
,

1

n(n − 1)

ª

=
1

n(n + 1)
,

risulta A8 ∩ ]1/n −δ, 1/n +δ[ = {1/n} , pertanto 1/n non è di accumulazione per A8 .
Poiché 0 è un punto di frontiera e non appartiene ad A8 , 0 è un punto di accumulazione.

Pertanto D(A8) = {0} e tutti i punti di A8 sono punti isolati.
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I punti limite possono essere caratterizzati anche mediante le successioni, come mostra
il seguente teorema.

3.1.21 Teorema

Siano A ⊆ R e c ∈ R . Risulta c ∈ P L(A) se e solo se esiste una successione
(an)n∈N in A\ {c} che tende a c .

Dimostrazione. Sia c ∈ P L(A) , proviamo che esiste una successione in A\ {c} che ten-
de a c .

Se c ∈R , allora c non è esterno ad A\{c} , cioè c ∈A\ {c} quindi, per il teorema 3.1.7,
affermazione I, esiste una successione in A\ {c} convergente a c .

Se c =+∞ , allora, ∀n ∈N , si ha ]n,+∞[∩A 6=∅ , pertanto esiste an ∈ A= A\ {c}
tale che an > n . Per il teorema 2.2.15, affermazione I, an→+∞ .

Se c =−∞ la dimostrazione è analoga, considerando gli intorni del tipo ]−∞,−n[ .
Viceversa, sia (an)n∈N una successione in A\{c} tale che an→ c . Per la definizione di

limite si ha
∀U ∈Ic , ∃nU ∈N : ∀n ∈N , n > nU =⇒ an ∈ U .

Pertanto, ∀U ∈ Ic , si ha anU+1 ∈ U ; poiché ogni termine della successione appartiene ad
A\{c} , si ha anche anU+1 ∈ U ∩A\{c} , quindi U ∩A\{c} 6=∅ ; pertanto c ∈ P L(A) .

3.2 Estremi e limitatezza di funzioni

Le definizioni che seguono sono del tutto analoghe a quelle date per le successioni di
numeri reali; invece dell’insieme dei termini, si considera l’immagine della funzione.

Definizione di funzione superiormente limitata, superiormente illimitata e di
estremo superiore di una funzione

Siano A⊆R e f : A→R .
Diciamo che f è superiormente limitata quando Im( f ) è superiormente limita-

ta. In tal caso chiamiamo estremo superiore di f e indichiamo con sup f l’estremo
superiore di Im( f ) .

Diciamo che f è superiormente illimitata quando Im( f ) è superiormente illi-
mitata. In tal caso poniamo sup f =+∞ .

Definizione di funzione inferiormente limitata, inferiormente illimitata e di
estremo inferiore di una funzione

Siano A⊆R e f : A→R .
Diciamo che f è inferiormente limitata quando Im( f ) è inferiormente limita-

ta. In tal caso chiamiamo estremo inferiore di f e indichiamo con inf f l’estremo
inferiore di Im( f ) .

Diciamo che f è inferiormente illimitata quando Im( f ) è inferiormente illimi-
tata. In tal caso poniamo inf f =−∞ .
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Definizione di funzione limitata

Siano A⊆R e f : A→R . Diciamo che f è limitata quando Im( f ) è limitata.

È conseguenza immediata di queste definizioni il fatto che una funzione f : A→R è
superiormente limitata se e solo se esiste M ∈R tale che, ∀x ∈A , si ha f (x)≤M , mentre
è inferiormente limitata se e solo se esiste M ∈R tale che, ∀x ∈A , si ha f (x)≥M .

3.2.1 Esempio. Consideriamo le funzioni:

f1 : R→R , f1(x) = x2− 1 ,

f2 : R→R , f2(x) =
1

x2+ 1
,

f3 : ]−1,1[→R , f3(x) =
x

1− x2
.

f1

−1 1

−1

f2

1

f3

1

−1

Figura 3.2.1
Le funzioni studiate nell’esempio 3.2.1.

Per x ∈ R si ha f1(x) = x2 − 1 ≥ −1 , quindi f1 è inferiormente limitata. Inoltre,
poiché f1(0) =−1 , si ha −1=min Im( f1) .

Se x > 1 , allora x2 > x , quindi f1(x)> x−1 . Pertanto, se y > 0 , allora f1(y+1)> y ,
quindi y non è maggiorante dell’immagine di f1 , pertanto f1 è superiormente illimitata.

Il fatto che f1 è superiormente illimitata può essere provato anche osservando che la
successione
�

f1(n)
�

n∈N = (n
2 − 1)n∈N ha limite +∞ , quindi, per il teorema sulla limita-

tezza delle successioni regolari 2.2.21 è superiormente illimitata. Poiché
�

f1(n)
�

�n ∈N	⊆
Im( f1) , anche Im( f1) è superiormente illimitata.

Evidentemente, ∀x ∈R , f2(x)> 0 , quindi f2 è inferiormente limitata e 0 è un mino-
rante di Im( f2) . Inoltre la successione

�

f2(n)
�

n∈N = (1/(n
2+1))n∈N converge a 0 , pertanto,

qualunque sia ǫ ∈ R+ , ǫ non è un minorante della successione, quindi non è neppure un
minorante di Im( f2) . Pertanto inf f2 = 0 .

Per x ∈R si ha x2+1≥ 1 , quindi f2(x) = 1/(x2+1)≤ 1 . Pertanto f2 è superiormente
limitata, inoltre 1= f2(0) =max Im( f2) .
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Si ha

f3

�

n

n+ 1

�

=
n/(n+ 1)

1− n2/(n+ 1)2
=

n(n + 1)

(n+ 1)2− n2
=

n(n+ 1)

2n+ 1
−−−→
n→+∞

+∞ .

Quindi
¦

f3
�

n/(n+ 1)
�
�

�

�n ∈N
©

è superiormente illimitato, per il teorema sulla limitatezza

delle successioni regolari 2.2.21. Poiché Im( f3) contiene tale insieme, è anch’esso superior-
mente illimitato, quindi sup f3 =+∞ .

Considerando la successione
�

f3
�−n/(n + 1)
��

n∈N e ragionando in modo analogo, si
dimostra che inf f3 =−∞ .

3.3 Limiti di funzioni

3.3.1 Definizioni

Estendiamo il concetto di limite, che abbiamo definito per le successioni, alle funzioni
reali di variabile reale.

Nella sezione 2.2 abbiamo definito il limite di una successione per n → +∞ , di-
stinguendo il caso di limite reale o +∞ o −∞ , abbiamo poi unificato le definizioni
utilizzando gli intorni di un punto di R ; si ha an→ ℓ ∈R se e solo se

∀U ∈Iℓ , ∃nU ∈N : ∀n ∈N , n > nU =⇒ an ∈U .

La condizione n > nU equivale a n ∈ ]nU ,+∞[ e questo insieme è un intorno di +∞ .
Quindi, se è verificata la definizione di limite, allora esiste V ∈ I+∞ tale che, per n ∈N , ri-
sulta n ∈V =⇒ an ∈U . Viceversa, supponiamo che esista V ∈I+∞ tale che, per n ∈N ,
si ha n ∈V =⇒ an ∈ U ; allora risulta V = ]M ,+∞[ , per un M ∈R , scelto nU ∈N mag-
giore o uguale a M , se n > nU si ha n ∈ V , quindi an ∈ U . Pertanto la definizione di
limite è equivalente a

∀U ∈ Iℓ , ∃VU ∈ I+∞ : ∀n ∈N , n ∈VU =⇒ an ∈U .

Questa definizione può essere immediatamente estesa alle funzioni reali di variabile
reale. Occorre però tenere presente che, assegnata una funzione f : A→R , ha senso chie-
dersi come si comporta f (x) per x → +∞ solo se la funzione è definita per valori di x
arbitrariamente “grandi”, cioè se A è superiormente illimitato. Come visto nell’osserva-
zione 3.1.18 ciò equivale al fatto che sia +∞∈ P L(A) , cioè che ogni intorno di +∞ abbia
intersezione non vuota con A . Sotto questa condizione su A , possiamo dire che f (x) ha
limite ℓ ∈R , per x→+∞ , quando

∀U ∈Iℓ , ∃VU ∈ I+∞ : ∀x ∈A, x ∈VU =⇒ f (x) ∈U .

La definizione può essere facilmente modificata in modo da tenere conto del compor-
tamento di f (x) quando x si “avvicina” a un numero reale c o a −∞ , basta chiedere
l’esistenza di un intorno di c o di −∞ , anziché di un intorno di +∞ . Nel caso del nu-
mero reale c risulta utile considerare il comportamento della funzione nei punti vicini, ma
diversi da c , pertanto nella definizione si considerano solo gli elementi di A\ {c} .
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Perché la definizione abbia qualche interesse è necessario che, qualunque sia V ∈ Ic ,
esistano in V elementi di A\{c} ; in caso contrario, scegliendo come VU un intorno di c
che ha intersezione vuota con A\ {c} , l’implicazione x ∈ VU =⇒ f (x) ∈ U è sempre
verificata, portando a concludere che qualunque elemento di R è limite di f (x) . Nel dare
la definizione di limite per x → c è quindi necessario supporre che c sia un punto limite
del dominio di f .

Diamo quindi la seguente definizione.

Definizione di limite di una funzione

Siano A⊆R , f : A→R , c ∈ P L(A) e ℓ ∈R .
Diciamo che f (x) ha limite ℓ per x che tende a c e scriviamo limx→c f (x) = ℓ

(o anche f (x)→ ℓ per x→ c ) quando

∀U ∈ Iℓ , ∃VU ∈ Ic : ∀x ∈A\ {c} , x ∈VU =⇒ f (x) ∈U .

La definizione di limite si può scrivere anche in un’altra forma, che cambia a seconda
che c e ℓ siano reali o no. Esplicitando la definizione di intorno, abbiamo quanto segue.

Se c ∈R e ℓ ∈R , si ha limx→c f (x) = ℓ se e solo se

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x ∈A\ {c} , x ∈ ]c −δǫ, c +δǫ[ =⇒
�

� f (x)− ℓ
�

�< ǫ .

Se c ∈R e ℓ=+∞ , si ha limx→c f (x) = +∞ se e solo se

∀M ∈R , ∃δM ∈R+ : ∀x ∈A\ {c} , x ∈ ]c −δM , c +δM [ =⇒ f (x)>M .

Se c ∈R e ℓ=−∞ , si ha limx→c f (x) =−∞ se e solo se

∀M ∈R , ∃δM ∈R+ : ∀x ∈A\ {c} , x ∈ ]c −δM , c +δM [ =⇒ f (x)<M .

Se c =+∞ e ℓ ∈R , si ha limx→+∞ f (x) = ℓ se e solo se

∀ǫ ∈R+ , ∃Kǫ ∈R : ∀x ∈A, x ∈ ]Kǫ,+∞[ =⇒
�

� f (x)− ℓ��< ǫ .

Se c =+∞ e ℓ=+∞ , si ha limx→+∞ f (x) = +∞ se e solo se

∀M ∈R , ∃KM ∈R : ∀x ∈A, x ∈ ]KM ,+∞[ =⇒ f (x)>M .

Se c =+∞ e ℓ=−∞ , si ha limx→+∞ f (x) =−∞ se e solo se

∀M ∈R , ∃KM ∈R : ∀x ∈A, x ∈ ]KM ,+∞[ =⇒ f (x)<M .

Se c =−∞ e ℓ ∈R , si ha limx→−∞ f (x) = ℓ se e solo se

∀ǫ ∈R+ , ∃Kǫ ∈R : ∀x ∈A, x ∈ ]−∞,Kǫ[ =⇒
�

� f (x)− ℓ��< ǫ .

Se c =−∞ e ℓ=+∞ , si ha limx→−∞ f (x) = +∞ se e solo se

∀M ∈R , ∃KM ∈R : ∀x ∈A, x ∈ ]−∞,KM [ =⇒ f (x)>M .

Se c =−∞ e ℓ=−∞ , si ha limx→−∞ f (x) =−∞ se e solo se

∀M ∈R , ∃KM ∈R : ∀x ∈A, x ∈ ]−∞,KM [ =⇒ f (x)<M .
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ℓ+ ǫ

ℓ

ℓ− ǫ

c +δǫcc −δǫ

M

c +δMcc −δM

Figura 3.3.1
Definizioni di limx→c f (x) = ℓ ∈R (a sinistra) e di limx→c f (x) = +∞ (a destra).
A sinistra: se x è compreso tra c−δǫ e c+δǫ , allora f (x) è compreso tra ℓ−ǫ e ℓ+ǫ .
A destra: se x è compreso tra c −δM e c +δM , allora f (x) è maggiore di M .

Osserviamo che nel caso ℓ ∈ R la condizione
�

� f (x)− ℓ�� < ǫ è tanto più restrittiva
quanto più ǫ è piccolo: se essa è verificata per un certo valore di ǫ , allora è verificata anche
per ogni valore più grande. Nella definizione di limite +∞ , se la condizione f (x)>M è
verificata per un certo M , allora è verificata per tutti gli M più piccoli; ad esempio se la
condizione è verificata per ogni M ∈R+ , allora è verificata per ogni M ∈R . Nel caso di
limite −∞ si ha analogamente che è sufficiente chiedere che sia verificata la condizione per
ogni M ∈R− .

Analogamente, quando c = +∞ , se si può scegliere un certo Kǫ , allora anche ogni
numero più grande verifica la condizione; in particolare nella definizione si può richiedere
che sia Kǫ > 0 . Se invece c =−∞ , allora si può richiedere che sia Kǫ < 0 .

Per indicare che una funzione ha limite utilizziamo una terminologia analoga a quella
introdotta per le successioni.

Definizione di funzione convergente, divergente, regolare, oscillante

Siano A⊆R , f : A→R e c ∈ P L(A) .
Diciamo che f (x) è convergente per x che tende a c quando esiste limx→c f (x)

e esso e appartiene a R .
Diciamo che f (x) è divergente per x che tende a c quando f (x) ha limite +∞

oppure −∞ per x che tende a c ; in particolare diciamo che f (x) è divergente
positivamente nel primo caso, divergente negativamente nel secondo caso.

Diciamo che f (x) è regolare per x che tende a c quando è convergente oppure
divergente.

Diciamo che f (x) è oscillante per x che tende a c quando non è regolare.
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Un particolare esempio di funzioni convergenti sono le funzioni costanti, cioè quelle
che a ogni elemento del dominio fanno corrispondere lo stesso valore. È ovvio infatti che
se f è tale che, ∀x ∈ D( f ) , si ha f (x) = m , allora limx→c f (x) = m , qualunque sia
c ∈ P L
�D( f )� .

3.3.1 Esempio. Consideriamo le funzioni:

f4 : R∗→R , f4(x) =
1

x
,

f5 : [0,+∞[→R , f5(x) =
p

x + 1−px ,

f6 : [0,1[∪ ]1,+∞[→R , f6(x) =
x −px

x − 1
.

f4

1

1
−1

−1

f5

1

3

2−
p

3

f6

1 4

2/3

Figura 3.3.2
Le funzioni studiate nell’esempio 3.3.1.

Studiamone alcuni limiti.
Proviamo che limx→−∞ f4(x) = 0 . Fissato ǫ ∈ R+ , si ha | f4(x)− 0| < ǫ se e solo se

|1/x| < ǫ , che equivale a |x| > 1/ǫ , cioè x > 1/ǫ o x < −1/ǫ . Pertanto, se x < −1/ǫ ,
allora | f4(x)− 0|< ǫ , quindi f4(x)→ 0 , per x→−∞ .

Da ciò segue che anche per x > 1/ǫ si ha | f4(x)− 0|< ǫ , quindi risulta f4(x)→ 0 , per
x→+∞ .

La funzione f4 è superiormente e inferiormente illimitata in ogni intorno di 0 . Infatti
siano δ, M ∈R+ . Se x ∈ �0,min{δ, 1/M}� , allora x ∈ ]−δ,δ[ \ {0} e f4(x) = 1/x >M ,
pertanto f4
�

]−δ,δ[ \ {0}
�

è superiormente illimitato. In modo analogo si dimostra che
tale insieme è inferiormente illimitato. Pertanto, per il teorema 3.3.12, f4 non ha limite
per x→ 0 .

Dimostriamo che f5(x)→ 0 , per x→+∞ . Sia ǫ ∈R+ . Poiché, ∀x ∈ [0,+∞[ , si hap
x + 1>

p
x , risulta
�

� f5(x)
�

�< ǫ se e solo se
p

x + 1−px < ǫ . Ciò equivale a
p

x + 1<
p

x + ǫ ,

x + 1< x + 2ǫ
p

x + ǫ2 ,

1− ǫ2 < 2ǫ
p

x .
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Se ǫ > 1 la disequazione è verificata per x ∈ [0,+∞[ , mentre se ǫ ≤ 1 è verificata per
x ∈ �(1− ǫ2)2/(4ǫ2),+∞� . Pertanto f5(x)→ 0 , per x→+∞ .

Proviamo che f6(x)→ 1/2 , per x→ 1 .
Fissato ǫ ∈ R+ , studiamo la disequazione

�

� f6(x) − (1/2)
�

� < ǫ . Tale disequazione
equivale al sistema











x −px

x − 1
− 1

2
< ǫ ,

x −px

x − 1
− 1

2
>−ǫ ,

e quindi equivale a













2
�

x −px
�− (x − 1)− 2ǫ(x − 1)

2(x − 1)
< 0 ,

2
�

x −px
�− (x − 1)+ 2ǫ(x − 1)

2(x − 1)
> 0 ,













(1− 2ǫ)x − 2
p

x + 1+ 2ǫ

2(x − 1)
< 0 ,

(1+ 2ǫ)x − 2
p

x + 1− 2ǫ

2(x − 1)
> 0 .

Studiamo il segno del numeratore di ciascuna delle due frazioni. Ponendo y =
p

x , dob-
biamo studiare il segno dei seguenti trinomi di secondo grado:

(1− 2ǫ)y2− 2y + 1+ 2ǫ , (1+ 2ǫ)y2− 2y + 1− 2ǫ .

Per studiare il segno del primo occorre distinguere a seconda che il coefficiente 1− 2ǫ sia
positivo, nullo o negativo; tale coefficiente è positivo per ǫ < 1/2 , quindi è sufficiente
studiare questo caso. Il primo trinomio si annulla per

y =
1±
p

12− (1− 2ǫ)(1+ 2ǫ)

1− 2ǫ
=

1±
p

4ǫ2

1− 2ǫ
=

1± 2ǫ

1− 2ǫ
=







1+ 2ǫ

1− 2ǫ
,

1 .

Il secondo trinomio si annulla per

y =
1±
p

12− (1+ 2ǫ)(1− 2ǫ)

1+ 2ǫ
=

1±
p

4ǫ2

1+ 2ǫ
=

1± 2ǫ

1+ 2ǫ
=







1 ,

1− 2ǫ

1+ 2ǫ
.

Pertanto

(1− 2ǫ)y2− 2y + 1+ 2ǫ= (1− 2ǫ)(y − 1)
�

y − 1+ 2ǫ

1− 2ǫ

�

,

(1+ 2ǫ)y2− 2y + 1− 2ǫ= (1+ 2ǫ)(y − 1)
�

y − 1− 2ǫ

1+ 2ǫ

�

.
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Pertanto il sistema equivale a











1− 2ǫ

2

p
x − 1

x − 1

�p
x − 1+ 2ǫ

1− 2ǫ

�

< 0 ,

1+ 2ǫ

2

p
x − 1

x − 1

�p
x − 1− 2ǫ

1+ 2ǫ

�

> 0 .

Poiché, ∀x ∈ [0,1[∪ ]1,+∞[ , si ha �px − 1
�

/(x − 1)> 0 , il sistema equivale a










p
x <

1+ 2ǫ

1− 2ǫ
,

p
x >

1− 2ǫ

1+ 2ǫ
.

che è verificato per
(1− 2ǫ)2

(1+ 2ǫ)2
< x <

(1+ 2ǫ)2

(1− 2ǫ)2
.

Pertanto, posto

δ =min

§

1− (1− 2ǫ)2

(1+ 2ǫ)2
,
(1+ 2ǫ)2

(1− 2ǫ)2
− 1

ª

,

se x ∈D( f6) è tale che x ∈ ]1−δ, 1+δ[ , allora
�

� f6(x)− (1/2)
�

�< ǫ .
Quindi limx→1 f6(x) = 1/2 .
Proviamo che limx→+∞ f6(x) = 1 .
Fissato ǫ ∈ R+ , studiamo la disequazione

�

� f6(x)− 1
�

� < ǫ . Poiché studiamo il limite
per x → +∞ , per semplificare la risoluzione possiamo considerare x > 1 , per cui risulta
x −px < x − 1 , perciò f6(x)< 1 . Quindi la disequazione equivale a

1− x −px

x − 1
< ǫ ,

(ǫ− 1)(x − 1)+
�

x −px
�

x − 1
> 0 ,

ǫx −px + 1− ǫ > 0 .

Posto y =
p

x , la disequazione diventa ǫy2 − y + 1− ǫ > 0 . Il trinomio di secondo gra-
do ǫy2 − y + 1− ǫ ha coefficiente di y2 positivo, quindi esiste K (che possiamo sceglie-
re positivo) tale che per y > K il trinomio è positivo; pertanto se x > K2 , allora si ha
ǫx −px + 1− ǫ > 0 .

Questo prova che f6(x)→ 1 , per x→+∞ .

Risulta chiaro dalle premesse fatte che il concetto di limite di funzione è strettamente
collegato a quello di limite di successione. Precisiamo questo legame.

Anzitutto una successione di numeri reali è una funzione da N a R , quindi essa è
anche una funzione reale di variabile reale; poiché P L(N) = {+∞} per una tale funzione
è definito il limite solo quando l’argomento tende a +∞ . Si verifica facilmente che in tale
caso il concetto di limite di funzione coincide con il concetto di limite di successione.
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Inoltre i limiti di funzioni sono legati ai limiti di successioni dal teorema seguente, che in
molti casi consente di dedurre facilmente un teorema per i limiti di funzioni da un analogo
teorema relativo ai limiti di successioni.

3.3.2 Teorema (di relazione tra limite di funzione e limite di successione)

Siano A ⊆ R , f : A→ R , c ∈ P L(A) e ℓ ∈ R . Le seguenti affermazioni sono
equivalenti:

I) limx→c f (x) = ℓ ;

II) per ogni (an)n∈N , successione in A\{c} che tende a c , si ha limn→+∞ f (an) = ℓ .

Dimostrazione. I =⇒ II) Consideriamo una successione (an)n∈N in A \ {c} che ten-
de a c .

Per la definizione di limite si ha:

∀U ∈ Iℓ , ∃VU ∈Ic : ∀x ∈A\ {c} , x ∈VU =⇒ f (x) ∈ U ,

mentre per la definizione di an→ c si ha

∀W ∈ Ic , ∃nW ∈N : ∀n ∈N , n > nW =⇒ an ∈W .

Fissato U ∈ Iℓ , poniamo W = VU . Se n ∈ N è tale che n > nVU
, allora risulta

an ∈VU ∩A\ {c} , quindi f (an) ∈U . Perciò

n > nVU
=⇒ f (an) ∈ U ,

quindi è verificata la definizione di f (an)→ ℓ .
II =⇒ I) Dimostriamo che, se l’affermazione I è falsa, allora è falsa anche la II; cioè pro-
viamo che, se non si ha limx→c f (x) = ℓ , allora esiste una successione (an)n∈N in A\ {c}
tale che an→ c , ma non si ha f (an)→ ℓ .

Se non si ha limx→c f (x) = ℓ , allora

∃U ∈Iℓ : ∀V ∈ Ic , ∃x ∈A\ {c} : x ∈V ∧ f (x) /∈ U .

Se c ∈ R , allora, ∀n ∈ N , si ha ]c − 1/(n + 1), c + 1/(n + 1)[ ∈ Ic , pertanto esiste
un elemento di A∩ ]c − 1/(n + 1), c + 1/(n + 1)[ \ {c} , che indichiamo con an , tale che
f (an) /∈ U . La successione (an)n∈N così costruita ha termini in A\ {c} ; inoltre, ∀n ∈ N ,
risulta

c − 1

n+ 1
< an < c +

1

n+ 1
,

quindi, per il teorema dei due carabinieri 2.2.11 si ha an→ c . D’altra parte, ∀n ∈N , si ha
f (an) /∈ U , quindi la successione

�

f (an)
�

n∈N non può avere limite ℓ . Perciò l’affermazio-
ne II non è verificata.

Se invece c = +∞ si procede in modo analogo considerando gli intorni di +∞ del
tipo ]n,+∞[ .

Infine se c = −∞ si procede in modo analogo considerando gli intorni di −∞ del
tipo ]−∞,−n[ .



3.3. Limiti di funzioni 123

3.3.3 Esempio. Consideriamo la funzione

f7 : R→R , f7(x) = x .

Sia c ∈R . Allora c ∈ P L(R) e, qualunque sia (an)n∈N successione in R \ {c} , si ha
lim

n→+∞
f7(an) = lim

n→+∞
an = c .

Pertanto, per il teorema di relazione tra limite di funzione e limite di successione 3.3.2,
∀c ∈R , si ha limx→c x = c .

3.3.4 Esempio. Consideriamo un polinomio p di grado k ∈N∗ . Sia cioè

p(x) =
k
∑

j=0

α j x j ,

con α0,α1, . . . ,αk−1 ∈R e αk ∈R∗ .
Sia c ∈ R . Dai teoremi sul limite della somma 2.2.26 e sul limite del prodotto 2.2.28

segue che, qualunque sia (an)n∈N , successione in R \ {c} convergente a c , si ha

lim
n→+∞

p(an) = lim
n→+∞

k
∑

j=0

α j a
j
n =

k
∑

j=0

α j

�

lim
n→+∞

an

� j
=

k
∑

j=0

α j c
j = p(c) .

Pertanto, per il teorema di relazione tra limite di funzione e limite di successione 3.3.2, si ha

lim
x→c

p(x) = p(c) .

Sia (an)n∈N una successione in R divergente a +∞ . Si ha, per n ∈N tale che an 6= 0 ,

p(an) =
k
∑

j=0

α j a
j
n = αk ak

n

k
∑

j=0

α j

αk

a
j−k
n = αk ak

n

�k−1
∑

j=0

α j

αk

a
j−k
n + 1

�

.

Per j = 0,1, . . . , k − 1 si ha k − j > 0 , quindi a j−k
n = 1/ak− j

n → 0 , pertanto

k−1
∑

j=0

α j

αk

n j−k + 1→ 1 .

Poiché αk ak
n → sgn(αk )∞ , risulta p(an)→ sgn(αk )∞ . Pertanto, per il teorema di relazio-

ne tra limite di funzione e limite di successione 3.3.2, si ha

lim
x→+∞

p(x) = sgn(αk )∞ .

Sia (an)n∈N una successione in R divergente a −∞ . Come nel caso in cui an→+∞ ,
p(an) può essere scritto come prodotto di αk ak

n per il termine n -simo di una successione
che converge a 1 . Quindi limn→+∞ p(an) = limn→+∞ αkak

n . Se k è pari, allora ak
n →+∞ ,

mentre se k è dispari, allora ak
n →−∞ ; perciò, se k è pari si ha αk ak

n → sgn(αk )∞ , se k

è dispari si ha αk ak
n → sgn(−αk )∞ . Pertanto, per il teorema di relazione tra limite di

funzione e limite di successione 3.3.2, si ha

lim
x→−∞

p(x) =

¨

sgn(αk )∞ , se k è pari ,

sgn(−αk )∞ , se k è dispari .
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3.3.5 Osservazione. Per il teorema di relazione tra limite di funzione e limite di succes-
sione 3.3.2, se esiste limx→c f (x) , allora, date due successioni (an)n∈N e (bn)n∈N in A\{c}
convergenti a c , le successioni

�

f (an)
�

n∈N e
�

f (bn)
�

n∈N sono regolari e hanno lo stes-
so limite. Pertanto se due successioni di tale tipo hanno limite diverso, allora non esiste
limx→c f (x) .

3.3.6 Esempio. L’osservazione 3.3.5 può essere utilizzata per dare una dimostrazione di-
versa da quella dell’esempio 3.3.1 del fatto che non esiste limx→0(1/x) . Infatti le successioni
�

1/(n+ 1)
�

n∈N e
�−1/(n+ 1)
�

n∈N convergono a 0 , ma

1

1/(n+ 1)
= n+ 1→+∞ ,

1

−1/(n+ 1)
=−n− 1→−∞ .

3.3.2 Teoremi fondamentali sui limiti

Riprendiamo ora i teoremi fondamentali sui limiti di successioni, studiati nella sezio-
ne 2.2, e studiamo i teoremi corrispondenti relativi ai limiti di funzioni. In molti casi il teo-
rema di relazione tra limite di funzione e limite di successione 3.3.2 consente di dimostrare
facilmente questi teoremi.

Per utilizzare la notazione limx→c f (x) senza ambiguità è necessario assicurarsi che
una funzione non possa avere due limiti distinti per x che tende a uno stesso punto. Ciò è
garantito dal teorema seguente.

3.3.7 Teorema (di unicità del limite)

Siano A⊆R , f : A→R , c ∈ P L(A) e ℓ, m ∈R . Se ℓ e m sono entrambi limite
di f (x) , per x→ c , allora ℓ= m .

Dimostrazione. Sia (an)n∈N una successione in A\ {c} che ha limite c (tale successione
esiste per il teorema 3.1.21). Allora, per il teorema di relazione tra limite di funzione e
limite di successione 3.3.2, la successione

�

f (an)
�

n∈N ha come limite sia ℓ che m , quindi,
per il teorema di unicità del limite 2.2.22, si ha ℓ= m .

È evidente dalla definizione che il limite di una funzione dipende solo dai valori che essa
assume in punti del dominio vicini a c (e diversi da c stesso). In altre parole: se si modifica
una funzione al di fuori di un intorno di c il limite per x→ c , se esiste, non cambia. Ciò
si traduce nel teorema seguente.

3.3.8 Teorema

Siano A,B ⊆ R , f : A→ R , g : B → R e c ∈ P L(A)∩ P L(B) . Supponiamo che
esista W ∈ Ic tale che

a) A∩W \ {c}= B ∩W \ {c} ,
b) ∀x ∈A∩W \ {c} , si ha f (x) = g (x) .

Se f (x) è regolare per x → c , allora anche g (x) è regolare per x → c e risulta
limx→c f (x) = limx→c g (x) .
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Dimostrazione. Poniamo ℓ= limx→c f (x) . Per la definizione di limite risulta

∀U ∈ Iℓ , ∃VU ∈Ic : ∀x ∈A\ {c} , x ∈VU =⇒ f (x) ∈ U .

Fissato U ∈ Iℓ , si ha A∩VU ∩W \ {c}= B ∩VU ∩W \ {c} , quindi

x ∈ B ∩VU ∩W \ {c} =⇒ x ∈A∩VU \ {c} =⇒ f (x) ∈ U ;
inoltre

x ∈ B ∩VU ∩W \ {c} =⇒ x ∈ B ∩W \ {c} =⇒ f (x) = g (x) ,

perciò
x ∈ B ∩VU ∩W \ {c} =⇒ g (x) ∈ U ;

poiché VU ∩W è un intorno di c , è verificata la definizione di limx→c g (x) = ℓ .

Questo teorema assicura che i teoremi che seguono sono applicabili anche se le ipotesi
sono verificate solo in un intorno del punto a cui tende la variabile, escluso il punto stesso,
e non in tutto il dominio.

3.3.9 Teorema (del confronto)

Siano A⊆R , f , g : A→R , c ∈ P L(A) . Supponiamo che f (x) e g (x) siano rego-
lari per x→ c . Se ∀x ∈A\{c} , si ha f (x)≤ g (x) , allora limx→c f (x)≤ limx→c g (x) .

Dimostrazione. Sia (an)n∈N una successione in A \ {c} che tende a c ; si ha, ∀n ∈ N ,
f (an)≤ g (an) . Per il teorema di relazione tra limite di funzione e limite di successione 3.3.2
risulta limn→+∞ f (an) = limx→c f (x) e limn→+∞ g (an) = limx→c g (x) . Per il teorema del
confronto per limiti di successioni 2.2.19 si ha limn→+∞ f (an) ≤ limn→+∞ g (an) , quindi
limx→c f (x)≤ limx→c g (x) .

3.3.10 Teorema (della permanenza del segno)

Siano A⊆R , f : A→R , c ∈ P L(A) e m ∈R . Supponiamo che f (x) sia regolare
per x→ c .

I) Se limx→c f (x) > m , allora esiste W ∈ Ic tale che, ∀x ∈ A∩W \ {c} , si ha
f (x)> m .

II) Se limx→c f (x) < m , allora esiste W ∈ Ic tale che, ∀x ∈ A∩W \ {c} , si ha
f (x)< m .

Dimostrazione. I) Poniamo ℓ= limx→c f (x) . Per la definizione di limite si ha

∀U ∈ Iℓ , ∃VU ∈Ic : ∀x ∈A\ {c} , x ∈VU =⇒ f (x) ∈ U .

Se m =−∞ la tesi è verificata; non può essere m =+∞ , perché m < ℓ .
Consideriamo il caso m ∈R . Poiché ℓ > m , si ha ℓ 6=−∞ . Poniamo U = ]m,+∞[

se ℓ=+∞ , mentre poniamo U =
�

ℓ− (ℓ−m),ℓ+ (ℓ−m)
�

se ℓ ∈ R . In ciascuno dei
due casi ogni elemento di U è maggiore di m , quindi x ∈A∩VU \ {c} =⇒ f (x)> m .

II) La dimostrazione è analoga a quella dell’affermazione I.
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3.3.11 Teorema (dei due carabinieri)

Siano A⊆R , f : A→R , g : A→R , h : A→ R e c ∈ P L(A) . Supponiamo che,
∀x ∈A\ {c} , sia f (x)≤ g (x)≤ h(x) .

I) Se f (x) e h(x) sono convergenti per x→ c e

lim
x→c

f (x) = lim
x→c

h(x) ,

allora g (x) è convergente per x→ c e

lim
x→c

g (x) = lim
x→c

f (x) = lim
x→c

h(x) .

II) Se f (x)→+∞ , per x→ c , allora g (x)→+∞ , per x→ c .

III) Se h(x)→−∞ , per x→ c , allora g (x)→−∞ , per x→ c .

Dimostrazione. I) Poniamo ℓ= limx→c f (x) = limx→c h(x) . Per il teorema di relazione
tra limite di funzione e limite di successione 3.3.2, qualunque sia (an)n∈N , successione in
A\ {c} convergente a c , si ha

lim
n→+∞

f (an) = lim
n→+∞

h(an) = ℓ ;

poiché, ∀n ∈N , sia f (an)≤ g (an)≤ h(an) , per il teorema dei due carabinieri 2.2.11 risulta
limn→+∞ g (an) = ℓ . Pertanto, utilizzando nuovamente il teorema di relazione 3.3.2, si può
concludere che limx→c g (x) = ℓ .

II, III) La dimostrazione è analoga a quella dell’affermazione I.

A differenza dei teoremi visti finora, per cui la versione relativa alle funzioni si ottiene
con ovvie modifiche dal corrispondente teorema per le successioni, il teorema sulla limi-
tatezza delle successioni regolari 3.3.12 nell’ambito delle funzioni ha un corrispondente
sostanzialmente diverso.

Ciò si comprende facilmente esaminando la dimostrazione della limitatezza delle succes-
sioni convergenti. Anzitutto dalla convergenza di una successione si deduce che l’insieme
dei termini che hanno indice oltre una certa soglia è limitato; successivamente si osserva
che i termini con indice inferiore alla soglia sono in numero finito, quindi costituiscono
un insieme limitato. Perciò l’insieme dei termini è unione di due insiemi limitati, quindi è
limitato. Analogamente, nel caso delle funzioni, se f (x) converge per x→ c , allora esiste
un intorno di c in cui f è limitata; non c’è però alcun motivo per cui, in generale, f sia
limitata fuori da tale intorno.

Abbiamo quindi il seguente teorema.

3.3.12 Teorema (sulla limitatezza delle funzioni regolari)

Siano A⊆R , f : A→R e c ∈ P L(A) .

I) Se f (x) è convergente per x → c , allora esiste W ∈ Ic tale che f (A∩W ) è
limitato.
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II) Se f (x) → +∞ , per x → c , allora, ∀V ∈ Ic , f (A ∩ V ) è superiormente
illimitato ed esiste W ∈ Ic tale che f (A∩W ) è inferiormente limitato.

III) Se f (x) → −∞ , per x → c , allora, ∀V ∈ Ic , f (A ∩ V ) è inferiormente
illimitato ed esiste W ∈ Ic tale che f (A∩W ) è superiormente limitato.

Dimostrazione. I) Scelto un arbitrario intorno di limx→c f (x) , questo è limitato; poi-
ché, per la definizione di limite, esiste V ∈ Ic tale che f

�

A∩V \ {c}� è incluso in tale
intorno, risulta f

�

A∩V \ {c}
�

limitato. Se c /∈ A tale insieme coincide con f (A∩VU ) ,
che quindi è limitato; in caso contrario f (A∩VU ) =

�

f (c)
	

∪ f
�

A∩V \{c}
�

, che è limitato,
perché unione di due insiemi limitati.

II) Sia V ∈ Ic . Poiché c ∈ P L(A) , per il teorema 3.1.21 esiste (an)n∈N successione in
A\ {c} che ha limite c . Esiste n tale che per n ≥ n si ha an ∈ V , quindi la successio-
ne (an+n)n∈N , è una successione in A∩V \ {c} convergente a c . Per il teorema di rela-
zione tra limite di funzione e limite di successione 3.3.2, si ha limn→+∞ f (an+n) = +∞ ,
pertanto, per il teorema sulla limitatezza delle successioni regolari 2.2.21, affermazione II,
�

f (an+n)
�

�n ∈ N	 è superiormente illimitato. Perciò anche f (A∩V ) , che contiene tale
insieme, è superiormente illimitato.

Poiché ogni intorno di +∞ è inferiormente limitato, come nella dimostrazione del-
l’affermazione I si prova che esiste W ∈ Ic tale che f (A∩W ) è inferiormente limitato.

III) La dimostrazione è analoga a quella dell’affermazione II.

Studiamo il limite della restrizione di una funzione. Si tratta di un teorema che non ha
corrispondente nell’ambito delle successioni.

3.3.13 Teorema (sul limite della restrizione)

Siano A⊆R , B ⊆A , f : A→R e c ∈ P L(B) . Se esiste limx→c f (x) , allora esiste
limx→c f
�

�

B
(x) e si ha

lim
x→c

f
�

�

B
(x) = lim

x→c
f (x) .

Dimostrazione. Poniamo ℓ= limx→c f (x) . Per la definizione di limite si ha

∀U ∈ Iℓ , ∃VU ∈Ic : ∀x ∈A\ {c} , x ∈VU =⇒ f (x) ∈ U .

Poiché B ⊆A e, ∀x ∈ B , si ha f
�

�

B
(x) = f (x) , qualunque sia U ∈ Iℓ , se x ∈ B∩VU \{c} ,

allora si ha f
�

�

B
(x) ∈U ; perciò limx→c f

�

�

B
(x) = ℓ .

Studiamo il limite della composizione di due funzioni f e g , supponendo che esista
tale composizione, cioè sia Im( f )⊆D(g ) . Per determinare il limite di g ◦ f in un punto c

occorre conoscere (g ◦ f )(x) = g
�

f (x)
�

per x vicino a c . Ciò significa anzitutto conoscere
f (x) per x vicino a c ; per questo supponiamo che esista limx→c f (x) = ℓ . Sotto questa
condizione, se x è vicino a c , l’argomento di g nella funzione composta è f (x) che è
vicino a ℓ . Quindi per determinare limx→c (g ◦ f )(x) , interessa limy→ℓ g (y) e non, come
si potrebbe erroneamente pensare, il limite di g in c .
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3.3.14 Teorema (sul limite della composizione)

Siano A,B ⊆ R , f : A → R , g : B → R , c ∈ P L(A) , ℓ ∈ P L(B) e m ∈ R .
Supponiamo che sia f (A) ⊆ B , che esistano limx→c f (x) = ℓ e limy→ℓ g (y) = m e
che sia verificata una delle seguenti condizioni:

a) ∀x ∈A\ {c} , si ha f (x) 6= ℓ ,
b) ℓ ∈ B e g (ℓ) = m .

Allora esiste limx→c (g ◦ f )(x) e tale limite è uguale a m .

Dimostrazione. Per la definizione di limite si ha:

∀U ∈ Im , ∃VU ∈ Iℓ : ∀y ∈ B \ {ℓ} , y ∈VU =⇒ g (y) ∈ U ,

∀W ∈ Iℓ , ∃ZW ∈Ic : ∀x ∈A\ {c} , x ∈ ZW =⇒ f (x) ∈W .

Scelto U ∈ Im , per x ∈ A∩ ZVU
\ {c} si ha f (x) ∈ VU ; poiché l’immagine di f è

inclusa in B , è anche f (x) ∈ B ∩VU .
Per poter proseguire nella dimostrazione bisogna utilizzare una delle condizioni a) e b).
Se vale a), allora si ha sempre f (x) 6= ℓ , quindi

x ∈A∩ZVU
\ {c} =⇒ f (x) ∈ B ∩VU \ {ℓ}

=⇒ g
�

f (x)
�

∈ U ;

perciò risulta limx→c g
�

f (x)
�

= m .
Se invece vale b), allora si ha

y ∈ B ∩VU =⇒
�

y ∈ B ∩VU \ {ℓ} ∨ y = ℓ
�

=⇒ �g (y) ∈ U ∨ g (y) = m
�

=⇒ g (y) ∈U ∪ {m}=U ,

quindi

x ∈A∩ZVU
\ {c} =⇒ f (x) ∈ B ∩VU

=⇒ g
�

f (x)
�

∈ U .

Anche in questo caso risulta limx→c g
�

f (x)
�

= m .

Notiamo che, se ℓ=±∞ , allora è verificata l’ipotesi a), perché f assume valori reali.

3.3.15 Osservazione. Il teorema sul limite della composizione, oltre alla naturale richiesta
dell’esistenza dei limiti delle funzioni che si compongono, ha una ipotesi aggiuntiva. Come
risulta evidente dalla dimostrazione, ciò è necessario perché, se ℓ appartiene al dominio
di g , per studiare il limite della funzione composta sono necessarie informazioni su g (ℓ) ,
che non seguono dalla conoscenza di limy→ℓ g (y) .

Vediamo, con un esempio, che se non è verificata nessuna delle due ipotesi aggiuntive,
allora può non essere verificata la tesi del teorema.
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Siano

f9 : R→R , f9(x) =−1 ,

g9 : R→R , g9(y) =

�

2y , se y 6=−1,
−3 , se y =−1.

Risulta limx→0 f9(x) =−1 e limy→−1 g9(y) =−2 , ma

lim
x→0
(g9 ◦ f9)(x) = lim

x→0
g9

�

f (x)
�

= lim
x→0

g9(−1) = lim
x→0
(−3) =−3 .

Quindi, con le notazioni del teorema, limx→c (g9 ◦ f9)(x) 6= m .

f9

−1

g9

−1

−3

Figura 3.3.3
Le funzioni f9 e g9 studiate
nell’osservazione 3.3.15.

3.3.16 Esempio. Consideriamo le funzioni:

f6 : [0,1[∪ ]1,+∞[→R , f6(x) =
x −px

x − 1
,

f8 : ]−1,0[∪ ]0,1[→R , f8(x) = x + 1 .

Nell’esempio 3.3.1 abbiamo provato che limx→1 f6(x) = 1/2 . La funzione f8 è restri-
zione di una funzione polinomiale, quindi, per x→ 0 , tende al valore del polinomio in 0

(v. esempio 3.3.4), cioè limx→0 f8(x) = 1 . Si ha f8
�

]−1,0[ ∪ ]0,1[
� ⊆ [0,1[ ∪ ]1,+∞[ ,

quindi è definita la composizione f6 ◦ f8 e si ha

( f6 ◦ f8)(x) =
x + 1−px + 1

x
.

Applichiamo il teorema sul limite della composizione 3.3.14 per calcolare il limite per
x→ 0 di questa funzione. Con le notazioni dell’enunciato del teorema, si ha c = 0 , ℓ= 1 ,

lim
x→ℓ

f6(x) = lim
x→1

x −px

x − 1
=

1

2
,

quindi m = 1/2 . Inoltre è verificata la condizione a), perché se x ∈ ]−1,0[∪ ]0,1[ , allora
si ha x + 1 6= 1= ℓ .

Pertanto si ha

lim
x→0

x + 1−px + 1

x
=

1

2
.
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3.3.3 Limite sinistro e limite destro

Studiamo limiti di particolari restrizioni di una funzione che hanno un notevole inte-
resse.

Definizione di limite sinistro e limite destro di una funzione

Siano A⊆R , f : A→R e c ∈R .
Se c ∈ D
�

A∩ ]−∞, c[
�

, diciamo che f (x) ha limite sinistro ℓ per x che ten-
de a c (o anche f (x) ha limite ℓ per x che tende a c da sinistra) e scriviamo
limx→c− f (x) = ℓ quando limx→c f

�

�

A∩]−∞,c[
(x) = ℓ .

Se c ∈ D
�

A∩ ]c ,+∞[
�

, diciamo che f (x) ha limite destro ℓ per x che ten-
de a c (o anche f (x) ha limite ℓ per x che tende a c da destra) e scriviamo
limx→c+ f (x) = ℓ quando limx→c f

�

�

A∩]c ,+∞[
(x) = ℓ .

3.3.17 Esempio. Sia c ∈R e consideriamo la funzione

f10 : R \ {c}→R , f10(x) =
1

x − c
.

Studiamo i limiti sinistro e destro di tale funzione in c .
Qualunque sia (an)n∈N , successione in

�

R\{c}
�

∩]−∞, c[ = ]−∞, c[ convergente a c ,
si ha an − c → 0 e an − c < 0 , per n ∈ N . Allora, per il teorema 2.2.31, affermazione III,
risulta f10(an) = 1/(an − c)→−∞ . Pertanto limx→c− f10(x) =−∞ .

Qualunque sia (an)n∈N , successione in
�

R\{c}
�

∩]c ,+∞[ = ]c ,+∞[ convergente a c ,
si ha an − c → 0 e an − c > 0 , per n ∈ N . Allora, per il teorema 2.2.31, affermazione II,
risulta f10(an) = 1/(an − c)→+∞ . Pertanto limx→c+ f10(x) = +∞ .

3.3.18 Osservazione. Dalla definizione segue che limx→c− f (x) = ℓ se e solo se

∀U ∈Iℓ , ∃δU ∈R+ : ∀x ∈A, x ∈ ]c −δU , c[ =⇒ f (x) ∈ U ,

mentre limx→c+ f (x) = ℓ se e solo se

∀U ∈Iℓ , ∃δU ∈R+ : ∀x ∈A, x ∈ ]c , c +δU [ =⇒ f (x) ∈ U .

Il limite sinistro e il limite destro rientrano nella definizione generale di limite per fun-
zioni reali di variabile reale, perciò per essi sono validi tutti i teoremi sui limiti, sia quelli
già enunciati che quelli che verranno enunciati in seguito.

Per il teorema sul limite della restrizione 3.3.13 è evidente che se una funzione ha
limite per x → c , con c ∈ R , allora essa ha anche limite sinistro e limite destro per
x → c , purché le corrispondenti definizioni abbiano senso; cioè, se limx→c f (x) = ℓ e
c ∈ D
�

A∩ ]−∞, c[
�

, allora si ha anche limx→c− f (x) = ℓ e analogamente per il limite
destro.

Se è possibile definire il limite sinistro di una funzione per x→ c , ma non il corrispon-
dente limite destro, cioè se c ∈D

�

A∩ ]−∞, c[
�

, ma c /∈D
�

A∩ ]c ,+∞[
�

, allora c ∈ D(A)

e le definizioni di limite e di limite sinistro sono equivalenti, quindi o esistono entrambi e
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sono uguali, oppure nessuno dei due esiste. Infatti, se c /∈ D
�

A∩ ]c ,+∞[� , allora ∃δ ∈R+
tale che, se δ < δ , allora

�

A∩ ]c ,+∞[
�

∩ ]c −δ, c +δ[ = ∅ , cioè A∩ ]c , c +δ[ = ∅ ;
pertanto si ha A∩ ]c −δ, c +δ[\ {c}=A∩ ]c−δ, c[ . Poiché nella definizione di limite si

può scegliere δǫ ≤ δ , le due condizioni x ∈A∩ ]c−δǫ, c+δǫ[\ {c} e x ∈A∩ ]c−δǫ, c[
coincidono, quindi la definizione di limite coincide con quella di limite sinistro.

Analogamente, se non è definito il limite sinistro, allora la definizione di limite e di
limite destro coincidono.

Nel caso che abbiano senso sia il limite destro che il limite sinistro si ha il teorema
seguente.

3.3.19 Teorema (di relazione tra limiti unilateri e limite bilatero)

Siano A⊆ R , f : A→ R , c ∈ D
�

A∩ ]−∞, c[
�

∩D
�

A∩ ]c ,+∞[
�

e ℓ ∈ R . Le
seguenti affermazioni sono equivalenti:

I) limx→c f (x) = ℓ ;

II) limx→c− f (x) = ℓ e limx→c+ f (x) = ℓ .

Dimostrazione. I =⇒ II) È una ovvia conseguenza del teorema sul limite della restri-
zione 3.3.13, perché limite sinistro e limite destro sono limiti di restrizioni.

II =⇒ I) Supponiamo che sia limx→c− f (x) = limx→c+ f (x) = ℓ .
Per la definizione di limite sinistro e destro (v. osservazione 3.3.18) si ha

∀U ∈ Iℓ , ∃ρU ∈R+ : ∀x ∈A, x ∈ ]c −ρU , c[ =⇒ f (x) ∈ U ,

∀U ∈Iℓ , ∃σU ∈R+ : ∀x ∈A, x ∈ ]c , c +σU [ =⇒ f (x) ∈U .

Fissato U ∈ Ic , poniamo δU =min{ρU ,σU } . Si ha
]c −δU , c +δU [ \ {c}= ]c −δU , c[∪ ]c , c +δU [⊆ ]c −ρU , c[∪ ]c , c +σU [ ;

quindi, se x ∈A∩]c−δU , c+δU [\{c} , allora x ∈A∩]c−ρU , c[ oppure x ∈A∩]c , c+σU [ ,
in ciascuno dei due casi f (x) ∈ U . Pertanto limx→c f (x) = ℓ .

3.3.20 Esempio. Sia c ∈R e consideriamo la funzione

f10 : R \ {c}→R , f10(x) =
1

x − c
.

Nell’esempio 3.3.17 abbiamo visto che limx→c− f10(x) =−∞ e limx→c+ f10(x) = +∞ .
Poiché limx→c− f10(x) 6= limx→c+ f10(x) , per il teorema di relazione tra limiti unilateri e
limite bilatero 3.3.19, non esiste limx→c f10(x) .

3.3.4 Operazioni sui limiti

I teoremi che seguono sono del tutto analoghi ai teoremi relativi alle operazioni per i
limiti di successioni (teoremi 2.2.26, 2.2.28, 2.2.31 e 2.2.33); essi sono dimostrabili a par-
tire da tali teoremi, utilizzando il teorema di relazione tra limite di funzione e limite di
successione 3.3.2.
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3.3.21 Teorema (sul limite della somma)

Siano A⊆R , f , g : A→R e c ∈ P L(A) .

I) Se f (x) e g (x) sono convergenti per x→ c , allora f (x) + g (x) è convergente
per x→ c e

lim
x→c

�

f (x)+ g (x)
�

= lim
x→c

f (x)+ lim
x→c

g (x) .

II) Se limx→c f (x) = +∞ e g è inferiormente limitata, allora

lim
x→c

�

f (x)+ g (x)
�

=+∞ .

III) Se limx→c f (x) = +∞ e g (x) ha limite diverso da −∞ , per x→ c , allora

lim
x→c

�

f (x)+ g (x)
�

=+∞ .

IV) Se limx→c f (x) =−∞ e g è superiormente limitata, allora

lim
x→c

�

f (x)+ g (x)
�

=−∞ .

V) Se limx→c f (x) =−∞ e g (x) ha limite diverso da +∞ , per x→ c , allora

lim
x→c

�

f (x)+ g (x)
�

=−∞ .

Come nel caso delle successioni, questo teorema consente di calcolare il limite della som-
ma di due funzioni quando si conosce il limite di ciascuno dei due addendi, con l’esclusione
del caso in cui una delle due funzioni diverge a +∞ e l’altra diverge a −∞ . In tal caso
diciamo che si ha un limite in forma indeterminata.

3.3.22 Teorema (sul limite del prodotto)

Siano A⊆R , f , g : A→R e c ∈ P L(A) .

I) Se f (x) e g (x) sono convergenti per x→ c , allora f (x)g (x) è convergente per
x→ c e

lim
x→c

�

f (x)g (x)
�

= lim
x→c

f (x) lim
x→c

g (x) .

II) Se f (x) è divergente per x→ c e inf g
�

A\ {c}�> 0 , allora

lim
x→c

�

f (x)g (x)
�

= lim
x→c

f (x) .

III) Se f (x) è divergente per x → c e g (x) ha limite maggiore di 0 , per x → c ,
allora

lim
x→c

�

f (x)g (x)
�

= lim
x→c

f (x) .

IV) Se f (x) è divergente per x→ c e sup g
�

A\ {c}�< 0 , allora

lim
x→c

�

f (x)g (x)
�

=− lim
x→c

f (x) .
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V) Se f (x) è divergente per x→ c e g (x) ha limite minore di 0 , per x→ c , allora

lim
x→c

�

f (x)g (x)
�

=− lim
x→c

f (x) .

VI) Se limx→c f (x) = 0 e g è limitata, allora

lim
x→c

�

f (x)g (x)
�

= 0 .

Come nel caso delle successioni, questo teorema consente di calcolare il limite del pro-
dotto di due funzioni quando si conosce il limite di ciascuno dei due fattori, con l’esclusione
del caso in cui una delle funzioni diverge (positivamente o negativamente) e l’altra converge
a 0 . In tal caso diciamo che si ha un limite in forma indeterminata.

3.3.23 Teorema (sul limite del reciproco)

Siano A⊆R , f : A→R \ {0} e c ∈ P L(A) .

I) Se f (x) è convergente per x → c e limx→c f (x) 6= 0 , allora 1/ f (x) è conver-
gente per x→ c e

lim
x→c

1

f (x)
=

1

limx→c f (x)
.

II) Se limx→c f (x) = 0 e, ∀x ∈A\ {c} , si ha f (x)> 0 , allora

lim
x→c

1

f (x)
= +∞ .

III) Se limx→c f (x) = 0 e, ∀x ∈A\ {c} , si ha f (x)< 0 , allora

lim
x→c

1

f (x)
=−∞ .

IV) Se f (x) è divergente per x→ c , allora

lim
x→c

1

f (x)
= 0 .

3.3.24 Esempio. Consideriamo una funzione razionale fratta r . Siano cioè

p(x) =
k
∑

j=0

α j x j , q(x) =
m
∑

j=0

β j x j ,

con k ∈ N , m ∈ N∗ , α0,α1, . . . ,αk−1,β0,β1, . . . ,βm−1 ∈ R e αk ,βm ∈ R∗ e poniamo
r (x) = p(x)/q(x) per gli x ∈R che non annullano il denominatore. Poiché un polinomio
ha al più un numero finito di radici, r (x) è definito per gli x reali, escluso al più un numero
finito.
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Sia c ∈R . Poiché p e q sono polinomi, si ha limx→c p(x) = p(c) e limx→c q(x) = q(c)
(v. esempio 3.3.4).

Se q(c) 6= 0 , per i teoremi sul limite del prodotto 3.3.22 e sul limite del reciproco 3.3.23,
si ha

lim
x→c

r (x) = lim
x→c

p(x)

q(x)
=

limx→c p(x)

limx→c q(x)
=

p(c)

q(c)
= r (c) .

Se q(c) = 0 , allora esistono un polinomio q1 , che non si annulla in c , e ρ ∈ N∗ tale
che q(x) = q1(x)(x − c)ρ , quindi

r (x) =
p(x)

q1(x)

1

(x − c)ρ
.

Risulta limx→c p(x)/q1(x) = p(c)/q1(c) . Sappiamo che si ha limx→c+
�

1/(x − c)
�

=+∞ e
limx→c−
�

1/(x− c)
�

=−∞ (v. esempio 3.3.17); quindi, per il teorema sul limite del prodot-
to 3.3.22, risulta limx→c+

�

1/(x− c)ρ
�

=+∞ ; se ρ è pari si ha limx→c−
�

1/(x − c)ρ
�

=+∞
e se ρ è dispari si ha limx→c−

�

1/(x − c)ρ
�

=−∞ .
Se p(c) 6= 0 si ha quindi

lim
x→c+

r (x) = sgn
�

p(c)

q1(c)

�

∞ ,

lim
x→c−

r (x) =













sgn
�

p(c)

q1(c)

�

∞ , se ρ è pari ,

sgn
�

− p(c)

q1(c)

�

∞ , se ρ è dispari .

Se p(c) = 0 , la scomposizione

r (x) =
p(x)

q1(x)

1

(x − c)ρ
.

ci dà un limite per x→ c in forma indeterminata. Per determinare il limite osserviamo che
esistono un polinomio p1 , che non si annulla in c , e σ ∈N∗ tale che p(x) = p1(x)(x−c)σ ,
quindi risulta r (x) =

�

p1(x)/q1(x)
�

(x − c)σ−ρ . Ripetendo i ragionamenti precedenti si ha

lim
x→c

r (x) =



















0 , se σ > ρ ,

p1(c)

q1(c)
, se σ = ρ ,

sgn
�

p1(c)

q1(c)

�

∞ , se σ < ρ e ρ−σ è pari ,

lim
x→c+

r (x) = sgn

�

p1(c)

q1(c)

�

∞ , se σ < ρ e ρ−σ è dispari,

lim
x→c−

r (x) = sgn

�

− p1(c)

q1(c)

�

∞ , se σ < ρ e ρ−σ è dispari.
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3.3.25 Teorema (sul limite del valore assoluto)

Siano A⊆R , f : A→R e c ∈ P L(A) .

I) Se f (x) è convergente per x→ c , allora
�

� f (x)
�

� è convergente per x→ c e

lim
x→c

�

� f (x)
�

�=
�

�

�lim
x→c

f (x)
�

�

� .

II) Se f (x) è divergente per x→ c , allora

lim
x→c

�

� f (x)
�

�=+∞ .

III) Se limx→c

�

� f (x)
�

�= 0 , allora
lim
x→c

f (x) = 0 .

3.3.5 Simboli di Landau

Introduciamo i simboli di Landau per le funzioni, riprendendo quanto fatto nella sot-
tosezione 2.2.6 per le successioni. Elenchiamo definizioni e teoremi analoghi a quelli visti
per le successioni in tale sottosezione. Le dimostrazioni sono del tutto analoghe.

I simboli di Landau sono strettamente collegati ai limiti. Per un limite di funzione
è necessario precisare a quale punto tende la variabile da cui dipende la funzione. Tale
precisazione è indispensabile anche quando si utilizzano i simboli di Landau per le funzioni.

Definizione di funzione asintotica

Siano A ⊆ R , f , g : A → R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
g (x) 6= 0 . Diciamo che f è asintotica (o equivalente) a g , per x→ c , quando esiste
limx→c f (x)/g (x) = 1 . In tal caso scriviamo f (x)∼ g (x) , per x→ c .

3.3.26 Teorema

Siano A⊆ R , f , g , h : A→ R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
f (x) 6= 0 , g (x) 6= 0 e h(x) 6= 0 Allora, per x→ c :

I) f (x)∼ f (x) ;

II) f (x)∼ g (x) =⇒ g (x)∼ f (x) ;

III)
�

f (x)∼ g (x) ∧ g (x)∼ h(x)
�

=⇒ f (x)∼ h(x) .

3.3.27 Teorema

Siano A ⊆ R , f , g : A → R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
g (x) 6= 0 e che sia f (x) ∼ g (x) , per x → c . Per x → c la funzione f (x) è regolare
se e solo se g (x) è regolare e in tal caso si ha

lim
x→c

f (x) = lim
x→c

g (x) .
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3.3.28 Teorema

Siano A⊆R , f , g , h, k : A→R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
h(x) 6= 0 e k(x) 6= 0 .

I) Se, per x→ c , f (x)∼ h(x) e g (x)∼ k(x) , allora f (x)g (x)∼ h(x)k(x) .

II) Se, per x→ c , h(x)∼ k(x) , allora 1/h(x)∼ 1/k(x) .

3.3.29 Esempio. Consideriamo un polinomio p di grado k ∈N∗ . Sia cioè

p(x) =
k
∑

j=0

α j x j ,

con α0,α1, . . . ,αk−1 ∈R e αk ∈R∗ .
Si ha, ∀x ∈R∗ ,

p(x) =
k
∑

j=0

α j x j = αk xk
k
∑

j=0

α j

αk

x j−k = αk xk

�k−1
∑

j=0

α j

αk

x j−k + 1

�

.

Per j = 0,1, . . . , k − 1 si ha j − k < 0 , quindi x j−k = (1/x)k− j → 0 , per x → ±∞
(v. esempio 3.3.1), pertanto

k−1
∑

j=0

α j

αk

x j−k + 1−−−→
x→±∞

1 .

Quindi si ha p(x)∼ αk xk .

3.3.30 Esempio. Consideriamo una funzione razionale fratta r . Siano cioè

p(x) =
k
∑

j=0

α j x j , q(x) =
m
∑

j=0

β j x j ,

con k ∈ N , m ∈ N∗ , α0,α1, . . . ,αk−1,β0,β1, . . . ,βm−1 ∈ R e αk ,βm ∈ R∗ e poniamo
r (x) = p(x)/q(x) per gli x ∈R che non annullano il denominatore. Poiché un polinomio
ha al più un numero finito di radici, r (x) è definito per gli x reali, escluso al più un numero
finito, quindi è definito in un insieme illimitato sia superiormente che inferiormente.

Come visto nell’esempio 3.3.29, si ha, per x →±∞ , p(x) ∼ αk xk e q(x) ∼ βm xm .
Pertanto, per il teorema 3.3.28, si ha

r (x) = p(x)
1

q(x)
∼ αk xk 1

βm xm
=
αk

βm

xk−m .

Definizione di funzione trascurabile

Siano A ⊆ R , f , g : A → R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
g (x) 6= 0 . Diciamo che f è trascurabile rispetto a g , per x → c , quando esiste
limx→c f (x)/g (x) = 0 . In tal caso scriviamo f (x) = o

�

g (x)
�

, per x→ c .
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3.3.31 Teorema

Siano A ⊆ R , f , g : A → R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
g (x) 6= 0 . Per x→ c risulta f (x)∼ g (x) se e solo se f (x) = g (x)+ o

�

g (x)
�

.

3.3.32 Teorema (regole di calcolo per o piccolo)

Siano A ⊆ R , f , g , h, k : A → R , c ∈ P L(A) e m ∈ R∗ ; supponiamo che,
∀x ∈A\ {c} , sia h(x) 6= 0 e k(x) 6= 0 . Per x→ c vale quanto segue.

I) Se f (x) = o
�

h(x)
�

e g (x) = o
�

h(x)
�

, allora f (x)+ g (x) = o
�

h(x)
�

.

II) Se f (x) = o
�

h(x)
�

, allora m f (x) = o
�

h(x)
�

.

III) Se f (x) = o
�

h(x)
�

, allora f (x)k(x) = o
�

h(x)k(x)
�

.

IV) Se f (x) = o
�

h(x)
�

e g (x) = o
�

k(x)
�

, allora f (x)g (x) = o
�

h(x)k(x)
�

.

V) Se f (x) = o
�

h(x)
�

e h(x) = o
�

k(x)
�

, allora f (x) = o
�

k(x)
�

.

VI) Se f (x) = o
�

h(x)
�

e h(x)∼ k(x) , allora f (x) = o
�

k(x)
�

.

Definizione di funzione controllata

Siano A ⊆ R , f , g : A → R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
g (x) 6= 0 . Diciamo che f è controllata da g , per x → c , quando esiste V ∈ Ic
tale che la funzione x 7→ f (x)/g (x) è limitata in A∩V \ {c} . In tal caso scriviamo
f (x) =O
�

g (x)
�

, per x→ c .

3.3.33 Teorema

Siano A ⊆ R , f , g : A → R e c ∈ P L(A) ; supponiamo che, ∀x ∈A\ {c} , sia
g (x) 6= 0 .

I) Se, per x→ c , f (x)∼ g (x) , allora f (x) =O(g (x)) .

II) Se, per x→ c , f (x) = o(g (x)) , allora f (x) =O(g (x)) .

3.3.34 Teorema (regole di calcolo per o grande)

Siano A ⊆ R , f , g , h, k : A → R , c ∈ P L(A) e m ∈ R∗ ; supponiamo che,
∀x ∈A\ {c} , sia h(x) 6= 0 e k(x) 6= 0 . Per x→ c vale quanto segue.

I) Se f (x) =O
�

h(x)
�

e g (x) =O
�

h(x)
�

, allora f (x)+ g (x) =O
�

h(x)
�

.

II) Se f (x) =O
�

h(x)
�

, allora m f (x) =O
�

h(x)
�

.

III) Se f (x) =O
�

h(x)
�

, allora f (x)k(x) =O
�

h(x)k(x)
�

.

IV) Se f (x) =O
�

h(x)
�

e g (x) =O
�

k(x)
�

, allora f (x)g (x) =O
�

h(x)k(x)
�

.
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V) Se f (x) =O
�

h(x)
�

e h(x) =O
�

k(x)
�

, allora f (x) =O
�

k(x)
�

.

VI) Se f (x) =O
�

h(x)
�

e h(x)∼ k(x) , allora f (x) =O
�

k(x)
�

.

3.3.35 Teorema

Siano A ⊆ R , f , g , h, k : A → R , c ∈ P L(A) e m ∈ R∗ ; supponiamo che,
∀x ∈A\ {c} , sia h(x) 6= 0 e k(x) 6= 0 . Per x→ c vale quanto segue.

I) Se f (x) = o
�

h(x)
�

e g (x) =O
�

h(x)
�

, allora f (x)+ g (x) =O
�

h(x)
�

.

II) Se f (x) = o
�

h(x)
�

e g (x) =O
�

k(x)
�

, allora f (x)g (x) = o
�

h(x)k(x)
�

.

III) Se f (x) = o
�

h(x)
�

e h(x) =O
�

k(x)
�

, allora f (x) = o
�

k(x)
�

.

IV) Se f (x) =O
�

h(x)
�

e h(x) = o
�

k(x)
�

, allora f (x) = o
�

k(x)
�

.

3.4 Condizioni per la regolarità di funzioni

3.4.1 Funzioni monotòne

Estendiamo alle funzioni il concetto di monotonia, già definito per le successioni. Ri-
cordiamo che chiamiamo crescente una successione (an)n∈N tale che si ha an+1 ≥ an , per
ogni n ∈N . Questa definizione è motivata dal fatto che n+1 è il più piccolo naturale mag-
giore di n . In generale, se si considerano funzioni con dominio un arbitrario sottoinsieme
di R , non esiste un più piccolo elemento del dominio maggiore di un elemento fissato,
quindi, per trasportare alle funzioni questo concetto, è opportuno partire dalla condizione
(equivalente alla crescenza) ∀m, n ∈N , m < n =⇒ am ≤ an .

Risultano quindi naturali le seguenti definizioni.

Definizione di funzione crescente, decrescente, monotòna

Siano A⊆R e f : A→R .
Diciamo che f è crescente quando

∀x, y ∈A, x < y =⇒ f (x)≤ f (y) .

Diciamo che f è strettamente crescente quando

∀x, y ∈A, x < y =⇒ f (x)< f (y) .

Diciamo che f è decrescente quando

∀x, y ∈A, x < y =⇒ f (x)≥ f (y) .

Diciamo che f è strettamente decrescente quando

∀x, y ∈A, x < y =⇒ f (x)> f (y) .

Diciamo che f è monotòna quando è crescente o decrescente.
Diciamo che f è strettamente monotòna quando è strettamente crescente o

strettamente decrescente.
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Ogni funzione strettamente crescente è anche crescente e ogni funzione strettamente
decrescente è anche decrescente. Inoltre una funzione costante è sia crescente che decre-
scente.

In particolare se f ha come dominio l’insieme dei naturali, cioè se f è una successione,
queste definizioni sono equivalenti alle corrispondenti definizioni date per le successioni.

3.4.1 Teorema

Siano A⊆R , f : A→R . Se f è strettamente monotòna, allora è iniettiva e f −1

è strettamente monotòna.

Dimostrazione. Supponiamo, ad esempio, f strettamente crescente.
Se x, y ∈A e x 6= y , allora o x < y , quindi f (x)< f (y) , o x > y , quindi f (x)> f (y) ;

in ogni caso f (x) 6= f (y) , quindi f è iniettiva.
Inoltre, siano z , w ∈ f (A) , con z < w . Non può essere f −1(z) ≥ f −1(w) , perché

sarebbe f
�

f −1(z)
�

≥ f
�

f −1(w)
�

, cioè z ≥ w . Pertanto f −1(z)< f −1(w) .

3.4.2 Esempio. Consideriamo le seguenti funzioni:

f11 : R→R , f11(x) = x3 ,

f12 : R→R , f12(x) = [x] ,

f13 : R∗→R , f13(x) =
1

x
.

f10

−1

−1
1

1

f11

1

1
−1

−1

f12

−1

−1
1

1

Figura 3.4.1
Le funzioni studiate nell’esempio 3.4.2.

La funzione f11 è strettamente crescente. Infatti se x, y ∈R , con x < y , risulta

f11(y)− f11(x) = y3− x3 = (y − x)(x2+ xy + y2) .

Si ha

x2+ xy + y2 = x2+ xy +
1

4
y2+

3

4
y2 =

�

x +
1

2
y
�2

+
3

4
y2 ≥ 0 ;

Pertanto f11(y)− f11(x) è prodotto di numeri non negativi, quindi è non negativo, perciò f11

è crescente. Inoltre
�

x + (1/2)y
�2
+ (3/4)y2 = 0 se e solo se x + (1/2)y = 0 e y = 0 , cioè
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x = y = 0 , ma ciò è impossibile, perché x < y . Pertanto f11(y)− f11(x) è prodotto di
numeri positivi, quindi è positivo, perciò f11 è strettamente crescente.

Se x, y ∈ R , con x < y , allora [x] ≤ x < y , quindi [x] è un numero intero minore
di y , pertanto è minore o uguale a [y] . Quindi f12 è crescente.

La funzione non è strettamente crescente, perché si ha, ad esempio, [1] = 1 = [3/2] ,
pur essendo 1< 3/2 .

La funzione f13 non è monotona. Infatti f13(−1) =−1< 1= f13(1) , pertanto f13 non
è decrescente; inoltre f13(1) = 1> 1/2= f13(2) , quindi f13 non è crescente.

Sappiamo che, dati due numeri positivi x e y , se x < y , allora 1/x > 1/y , (v. teore-
ma 1.2.24). Pertanto f13

�

�

R+
è strettamente decrescente.

Inoltre, se x, y < 0 e x < y , allora −x > −y e −x,−y > 0 , quindi −1/x < −1/y ,
perciò 1/x > 1/y . Pertanto f13

�

�

R−
è strettamente decrescente.

Per il teorema sul limite delle successioni monotòne 2.3.2 ogni successione monotòna
è regolare. Per estendere alle funzioni tale teorema occorre tenere presente una differen-
za fondamentale: per una successione ha senso solo il limite per n → +∞ , mentre per
le funzioni si può considerare il limite per x che tende a un qualunque punto limite del
dominio.

Osserviamo inoltre che dall’esempio precedente risulta che una funzione monotòna
può non avere limite per x che tende a un punto di accumulazione del dominio. Infatti la
funzione f12 , cioè la funzione parte intera, è crescente, ma non esiste limx→0[x] . Questo
perché se x ∈ ]−1,0[ , allora [x] = −1 , pertanto limx→0− [x] = −1 , mentre se x ∈ ]0,1[ ,
allora [x] = 0 , pertanto limx→0+ [x] = 0 .

Per evitare questo problema occorre considerare solo i limiti unilateri. Rientrano tra
questi anche i limiti per x→+∞ o per x→−∞ , che coinvolgono i valori della funzione
solo “a sinistra”, nel primo caso, o solo “a destra”, nel secondo caso, del punto a cui tende x .

Abbiamo quindi il teorema seguente.

3.4.3 Teorema (sul limite delle funzioni monotòne)

Siano A⊆R , f : A→R e c ∈R . Supponiamo f crescente.

I) Se A è superiormente illimitato, allora esiste limx→+∞ f (x) e si ha

lim
x→+∞

f (x) = sup f .

II) Se c ∈D
�

A∩ ]c ,+∞[
�

, allora esiste limx→c+ f (x) e si ha

lim
x→c+

f (x) = inf f
�

A∩ ]c ,+∞[
�

.

III) Se c ∈D
�

A∩ ]−∞, c[
�

, allora esiste limx→c− f (x) e si ha

lim
x→c−

f (x) = sup f
�

A∩ ]−∞, c[
�

.

IV) Se A è inferiormente illimitato, allora esiste limx→−∞ f (x) e si ha

lim
x→−∞

f (x) = inf f .



3.4. Condizioni per la regolarità di funzioni 141

Dimostrazione. I) Supponiamo sup f = +∞ . Allora ogni M ∈R non è un maggio-
rante di f (A) , perciò ∃xM ∈A tale che f (xM )>M . Poiché f è crescente

x ∈A∩ ]xM ,+∞[ =⇒ f (x)≥ f (xM )>M .

Per l’arbitrarietà di M è verificata la definizione di limx→+∞ f (x) = +∞ .
Supponiamo ora sup f = ℓ ∈ R . Qualunque sia ǫ ∈ R+ , ℓ − ǫ non è un mag-

giorante di f (A) , quindi esiste xǫ ∈ A tale che f (xǫ) > ℓ − ǫ . Poiché f è crescen-
te, se x ∈A∩ ]xǫ,+∞[ , allora si ha f (x) ≥ f (xǫ) > ℓ − ǫ . Inoltre, ∀x ∈ A , si ha
f (x)≤ ℓ < ℓ+ ǫ , pertanto

x ∈A∩ ]xǫ,+∞[ =⇒ ℓ− ǫ < f (x)< ℓ+ ǫ .

Perciò limx→+∞ f (x) = ℓ .

II) Supponiamo inf f
�

A∩ ]c ,+∞[
�

=−∞ . Poiché ogni M ∈R non è un minorante di
f
�

A∩ ]c ,+∞[
�

, esiste xM ∈A∩ ]c ,+∞[ tale che f (xM )<M ; poiché f è crescente

x ∈A∩ ]c , xM [ =⇒ f (x)≤ f (xM )<M ;

perciò limx→c+ f (x) =−∞ .
Supponiamo inf f

�

A∩ ]c ,+∞[�= ℓ ∈R . Qualunque sia ǫ ∈R+ , ℓ+ ǫ non è un mi-
norante di f
�

A∩]c ,+∞[� , quindi esiste xǫ ∈A∩]c ,+∞[ tale che f (xǫ)< ℓ+ǫ . Poiché f

è crescente, se x ∈ A∩ ]c , xǫ[ , allora f (x) ≤ f (xǫ) < ℓ+ ǫ . Inoltre se x ∈A∩ ]c ,+∞[ ,
allora f (x)≥ ℓ > ℓ− ǫ , quindi

x ∈A∩ ]c , xǫ[ =⇒ ℓ− ǫ < f (x)< ℓ+ ǫ ;

perciò limx→c+ f (x) = ℓ .

III) La dimostrazione si ottiene con ovvie modifiche da quella dell’affermazione II.

IV) La dimostrazione si ottiene con ovvie modifiche da quella dell’affermazione I.

Un teorema analogo vale per funzioni decrescenti, l’unica differenza è che nell’enunciato
gli estremi superiori e gli estremi inferiori vanno scambiati tra loro.

3.4.4 Esempio. Consideriamo la funzione

f12 : R→R , f12(x) = [x] ,

già studiata nell’esempio 3.4.2, dove abbiamo dimostrato che è crescente.
Sia n ∈ Z . Per il teorema sul limite delle funzioni monotòne 3.4.3 si ha

lim
x→n−

[x] = sup
�

[x]
�

� x ∈ ]−∞, n[
	

= sup{k |k ∈Z , k < n}= n− 1 ,

lim
x→n+

[x] = inf
�

[x]
�

� x ∈ ]n,+∞[	= inf
�

k
�

�k ∈ Z , k ≥ n
	

= n .

Ciò può essere verificato anche osservando che in ]n − 1, n[ si ha [x] = n − 1 e in
]n, n+ 1[ si ha [x] = n .
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3.4.2 Condizione di Cauchy

Una successione converge se e solo se è di Cauchy; un fatto analogo vale per le funzioni.

Definizione di condizione di Cauchy per una funzione

Siano A⊆R , f : A→R e c ∈ P L(A) . Diciamo che f soddisfa la condizione di
Cauchy per x che tende a c quando

∀ǫ∈R+ , ∃Vǫ ∈ Ic : ∀x, y ∈A\ {c} , x, y ∈Vǫ =⇒
�

� f (x)− f (y)
�

�< ǫ .

3.4.5 Teorema

Siano A⊆ R , f : A→ R e c ∈ P L(A) . La funzione f è convergente per x → c
se e solo se soddisfa la condizione di Cauchy per x→ c .

Dimostrazione. Supponiamo che esista limx→c f (x) = ℓ ∈ R e dimostriamo che f sod-
disfa la condizione di Cauchy per x→ c .

Si ha

∀ǫ ∈R+ , ∃Vǫ ∈Ic : ∀x ∈A\ {c} , x ∈Vǫ =⇒
�

� f (x)− ℓ��< ǫ .

Quindi, fissato ǫ ∈R+ , se x e y appartengono ad A∩Vǫ \ {c} si ha:
�

� f (x)− f (y)
�

�=
�

�

�

f (x)− ℓ
�

+
�

ℓ− f (y)
��

�≤
�

� f (x)− ℓ
�

�+
�

�ℓ− f (y)
�

�< 2ǫ ;

pertanto è verificata la condizione di Cauchy.
Viceversa supponiamo che f (x) soddisfi la condizione di Cauchy per x → c e dimo-

striamo che è convergente.
Poiché c ∈ P L(A) , per il teorema 3.1.21 esiste una (an)n∈N , successione in A\{c} , tale

che an→ c . Dimostriamo che
�

f (an)
�

n∈N è di Cauchy. Per la condizione di Cauchy si ha

∀ǫ ∈R+ , ∃Vǫ ∈Ic : ∀x, y ∈A\ {c} , x, y ∈Vǫ =⇒
�

� f (x)− f (y)
�

�< ǫ ;

mentre, per la definizione di an→ c , si ha

∀W ∈ Ic , ∃nW ∈N : ∀n ∈N , n > nW =⇒ an ∈W .

Fissato ǫ ∈R+ , scelto W =Vǫ , si ha

n, m > nVǫ
=⇒ an ,am ∈Vǫ

=⇒ �� f (an)− f (am)
�

�< ǫ ,

quindi
�

f (an)
�

n∈N è di Cauchy, pertanto, per il teorema 2.3.15, ha limite reale. Sia ℓ tale
limite.

Si ha limx→c f (x) = ℓ . Infatti, fissato ǫ ∈ R+ , se x ∈ A∩ Vǫ \ {c} , allora, scelto
n > nVǫ

, si ha an ∈Vǫ , pertanto si ha

�

� f (x)− ℓ��= ��� f (x)− f (an)
�

+
�

f (an)− ℓ
��

�≤ �� f (x)− f (an)
�

�+
�

� f (an)− ℓ
�

�< 2ǫ .
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3.4.3 Massimo limite e minimo limite

Come abbiamo fatto per le successioni, definiamo massimo limite e minimo limite di
funzioni; questi concetti sono utili per avere informazioni sulle funzioni per cui non esiste
il limite per x che tende a un particolare punto limite del dominio.

Per definire il massimo limite di una successione (an)n∈N si considera sup{am |m ≥ n}
e si fa tendere n a +∞ . Corrispondentemente, se f : A → R e c ∈ D(A) possiamo
considerare sup

�

f (x)
�

� x ∈ A∩ ]c − r, c + r [ \ {c}	 , con r ∈ R+ , e fare tendere r a 0 .
Occorre trattare a parte il caso in cui, ∀r ∈ R+ , l’estremo superiore è +∞ , cioè f è
superiormente illimitata in ogni intorno di c ; in tal caso si ha maxlimx→c f (x) = +∞ .

Se A è superiormente illimitato possiamo fare considerazioni analoghe per definire
maxlimx→+∞ f (x) ; al posto di ]c − r, c + r [ , consideriamo gli intorni di +∞ del tipo
]r,+∞[ , con r ∈R , e facciamo tendere r a +∞ .

Ovvie modifiche per definire maxlimx→−∞ f (x) .
Questo modo di procedere ha il difetto di richiedere di dare definizioni distinte per

ciascuno dei casi c ∈ R , c = +∞ , c = −∞ e di dovere ulteriormente distinguere a
seconda che f sia o meno superiormente illimitata in ogni intorno di c . Cerchiamo di
dare la definizione evitando di distinguere i vari casi. Osserviamo anzitutto che l’insieme
]c − r, c + r [ cresce al crescere di r , quindi anche sup f

�

A∩ ]c − r, c + r [ \ {c}� cresce al
crescere di r , pertanto

lim
r→0+

sup f
�

A∩ ]c − r, c + r [ \ {c}
�

= inf
r∈R+

sup f
�

A∩ ]c − r, c + r [ \ {c}
�

,

cioè
lim

r→0+
sup f
�

A∩ ]c − r, c + r [ \ {c}
�

= inf
¦

sup f
�

A∩U \ {c}
�
�

�

�U ∈Ic

©

.

Se f è illimitata in ogni intorno di c , si ha, ∀U ∈Ic , sup f
�

A∩U \{c}�=+∞ , quindi,

nel senso dei sottoinsiemi di R , risulta infr∈R+ sup f
�

A∩ ]c − r, c + r [ \ {c}
�

=+∞ .
Perciò risultano naturali le seguenti definizioni.

Definizione di massimo limite e di minimo limite

Siano A⊆R , f : A→R e c ∈ P L(A) .
Chiamiamomassimo limite (o anche limite superiore) di f (x) per x che tende

a c il numero reale esteso

maxlim
x→c

f (x) = inf
¦

sup f
�

A∩U \ {c}�
�

�

�U ∈Ic

©

.

Chiamiamo minimo limite (o anche limite inferiore) di f (x) per x che tende
a c il numero reale esteso

minlim
x→c

f (x) = sup
¦

inf f
�

A∩U \ {c}�
�

�

�U ∈ Ic

©

.

Come già osservato, gli insiemi di cui si considerano gli estremi inferiore e superiore
sono, in generale, sottoinsiemi di R .

Quando si usano i termini “limite superiore” e “limite inferiore” si usano le notazioni
lim supx→c f (x) e lim infx→c f (x) .
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3.4.6 Esempio. Consideriamo la funzione

f4 : R∗→R , f4(x) =
1

x
,

già studiata nell’esempio 3.3.1.
In tale esempio abbiamo stabilito che la funzione non ha limite per x → 0 , perché

è sia superiormente che inferiormente illimitata in ogni intorno di 0 . Ciò significa che,
∀U ∈ Ic , si ha

inf f
�

U \ {0}�=−∞ , sup f
�

U \ {0}�=+∞ ,

quindi

minlim
x→0

1

x
=−∞ , max lim

x→0

1

x
=+∞ .

3.4.7 Esempio. Studiamo massimo limite e minimo limite per x → +∞ della funzione
coseno.

Sia U ∈ I+∞ . Poiché, ∀x ∈ R , si ha −1 ≤ cos x ≤ 1 , risulta inf{cos x | x ∈ U } ≥−1

e sup{cos x | x ∈ U } ≤ 1 ; inoltre U contiene punti del tipo 2kπ e 2kπ+π , con k ∈Z ,
quindi inf{cos x | x ∈ U } ≤ cos(2kπ+π) =−1 e sup{cos x | x ∈U } ≥ cos(2kπ) = 1 . Per-
tanto risulta inf{cos x | x ∈ U }=−1 e sup{cos x | x ∈ U }= 1 , perciò si ha

minlim
x→+∞

cos x =−1 , max lim
x→+∞

cos x = 1 .

In modo analogo si prova cheminlimx→−∞ cos x =−1 e maxlimx→−∞ cos x = 1 .

Per studiare le proprietà di massimo e minimo limite, risulta talvolta utile vederli come
limite di successioni, come affermato dal seguente teorema.

3.4.8 Teorema

Siano A⊆R , f : A→R e c ∈ P L(A) . Poniamo, ∀n ∈N ,

Un =













�

c − 1

n+ 1
, c +

1

n+ 1

�

, se c ∈R ,

]n,+∞[ , se c =+∞ ,

]−∞,−n[ , se c =−∞ .
Allora:

I) minlimx→c f (x) = sup
¦

inf f
�

A∩Un \ {c}
�
�

�

�n ∈N
©

;

II) se inoltre minlimx→c f (x) 6=−∞ , allora si ha

minlim
x→c

f (x) = lim
n→+∞

inf f
�

A∩Un \ {c}
�

;

III) maxlimx→c f (x) = inf
¦

sup f
�

A∩Un \ {c}
�
�

�

�n ∈N
©

;
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IV) se inoltre maxlimx→c f (x) 6=+∞ , allora si ha

maxlim
x→c

f (x) = lim
n→+∞

sup f
�

A∩Un \ {c}
�

.

Dimostrazione. I) Poiché, ∀n ∈N , si ha Un ∈ Ic , risulta

inf f
�

A∩Un \ {c}
�≤ sup
¦

inf f
�

A∩U \ {c}�
�

�

�U ∈ Ic

©

,

quindi

sup
¦

inf f
�

A∩Un \ {c}
�
�

�

�n ∈N
©

≤ sup
¦

inf f
�

A∩U \ {c}�
�

�

�U ∈ Ic

©

.

Viceversa, se U ∈ Ic , allora esiste n ∈N tale che Un ⊆U , quindi

inf f
�

A∩U \ {c}
�

≤ inf f
�

A∩Un \ {c}
�

,
pertanto

inf f
�

A∩U \ {c}�≤ sup
¦

inf f
�

A∩Un \ {c}
�
�

�

�n ∈N
©

.

Quindi si ha

sup
¦

inf f
�

A∩U \ {c}�
�

�

�U ∈Ic

©

≤ sup
¦

inf f
�

A∩Un \ {c}
�
�

�

�n ∈N
©

.

Pertanto risulta

sup
¦

inf f
�

A∩Un \ {c}
�
�

�

�n ∈N
©

= sup
¦

inf f
�

A∩U \ {c}
�
�

�

�U ∈Ic

©

=minlim
x→c

f (x) .

II) Per n ∈ N risulta Un+1 ⊆ Un , quindi inf f
�

A∩Un \ {c}
�

≤ inf f
�

A∩Un+1 \ {c}
�

; se
minlimx→c f (x) 6= −∞ , allora, non può essere inf f

�

A∩ Un \ {c}
�

= −∞ per ogni n ,
quindi definitivamente inf f

�

A∩Un \{c}
�

∈R . Poiché, al crescere di n , inf f
�

A∩Un \{c}
�

cresce, si ha

lim
n→+∞

inf f
�

A∩Un \ {c}
�

= sup
¦

inf f
�

A∩Un \ {c}
�
�

�

�n ∈N
©

=minlim
x→c

f (x) .

III) La dimostrazione è analoga a quella dell’affermazione I.

IV) La dimostrazione è analoga a quella dell’affermazione II.

Studiamo le proprietà del massimo limite e del minimo limite.

3.4.9 Teorema

Siano A⊆R , f : A→R e c ∈ P L(A) . Allora

minlim
x→c

f (x)≤maxlim
x→c

f (x) .
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Dimostrazione. Siano U ,V ∈Ic . Si ha U ∩V ∈Ic , U ∩V ⊆U e U ∩V ⊆U , quindi

inf f
�

A∩U \ {c}
�

≤ inf f
�

A∩U ∩V \ {c}
�

≤ sup f
�

A∩U ∩V \ {c}
�

≤ sup f
�

A∩V \ {c}
�

.

Pertanto, ∀V ∈Ic , si ha

minlim
x→c

f (x) = sup
¦

inf f
�

A∩U \ {c}�
�

�

�U ∈Ic

©

≤ sup f
�

A∩V \ {c}� ,

da cui segue

minlim
x→c

f (x)≤ inf
¦

inf f
�

A∩V \ {c}
�
�

�

�V ∈ Ic

©

=maxlim
x→c

f (x) .

3.4.10 Teorema

Siano A⊆ R , f : A→ R , c ∈ P L(A) e (an)n∈N una successione in A\ {c} che
tende a c . Allora

minlim
n→+∞

f (an)≥minlim
x→c

f (x) , max lim
n→+∞

f (an)≤maxlim
x→c

f (x) .

Dimostrazione. Dimostriamo la disuguaglianza relativa al massimo limite, quella relativa
al minimo limite si prova in modo analogo.

Sia U ∈ Ic . Poiché an→ c , esiste n ∈N tale che, per n ≥ n , si ha an ∈U , pertanto

sup
�

f (an)
�

�n ∈N , n ≥ n
	≤ sup f
�

A∩U \ {c}� .

Da ciò, sia nel caso maxlimn→+∞ f (an) = +∞ che nel caso maxlimn→+∞ f (an)<+∞ ,
segue

maxlim
n→+∞

f (an)≤ sup f
�

A∩U \ {c}� .

Poiché ciò vale ∀U ∈Ic , si ha

maxlim
n→+∞

f (an)≤ inf
¦

sup f
�

A∩U \ {c}�
�

�

�U ∈ Ic

©

=maxlim
x→c

f (x) .

3.4.11 Teorema

Siano A ⊆ R , f : A → R e c ∈ P L(A) . Allora esistono (an)n∈N e (bn)n∈N ,
successioni in A\ {c} che tendono a c tali che

lim
n→+∞

f (an) =minlim
x→c

f (x) , lim
n→+∞

f (bn) =maxlim
x→c

f (x) .

Dimostrazione. Dimostriamo l’affermazione relativa al massimo limite, quella relativa al
minimo limite si dimostra in modo analogo.

Per n ∈N , indichiamo con Un l’intorno di c definito nell’enunciato del teorema 3.4.8.
Consideriamo anzitutto il caso maxlimx→c f (x) = +∞ . Allora, ∀U ∈ Ic , si ha

sup f
�

A∩ U \ {c}
�

= +∞ ; in particolare, ∀n ∈ N , risulta sup f
�

A∩ Un \ {c}
�

= +∞ ,
pertanto esiste bn ∈A∩Un \{c} tale che f (bn)> n . Quindi (bn)n∈N è una successione in
A\ {c} che tende a c e tale che f (bn)→+∞=maxlimx→c f (x) .
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Consideriamo il caso maxlimx→c f (x) = −∞ . Per n ∈ N sia bn ∈ A∩ Un \ {c} .
Allora bn → c e f (bn) ≤ sup f

�

A∩Un \ {c}
�

. Per il teorema 3.4.8, affermazione IV, si ha
limn→+∞ sup f
�

A∩Un \ {c}
�

= maxlimx→c f (x) = −∞ , pertanto, per il teorema 2.2.15,
affermazione II, f (bn)→−∞ .

Infine sia maxlimx→c f (x) = ℓ ∈R . Definitivamente si ha sup f
�

A∩Un \{c}
�

<+∞ ,
per tali n sia bn ∈ A∩ Un \ {c} tale che f (bn) > sup f

�

A∩ Un \ {c}
�

− 1/(n + 1) ; se
sup f
�

A∩Un \{c}
�

=+∞ sia bn un arbitrario elemento di A∩Un \{c} . Definitivamente
si ha

sup f
�

A∩Un \ {c}
�

− 1

n+ 1
< f (bn)≤ sup f

�

A∩Un \ {c}
�

e, per il teorema 3.4.8, affermazione IV,

lim
n→+∞

�

sup f
�

A∩Un \ {c}
�

− 1

n+ 1

�

= lim
n→+∞

sup f
�

A∩Un \ {c}
�

= ℓ .

Pertanto, per il teorema dei due carabinieri 2.2.11, limn→+∞ f (bn) = ℓ .

3.4.12 Osservazione. Per i teoremi 3.4.10 e 3.4.11 minlimx→c f (x) = −∞ se e solo se
esiste (an)n∈N , successione in A\ {c} che tende a c , tale che

�

f (an)
�

n∈N diverge a −∞ e
maxlimx→c an =+∞ se e solo se esiste (an)n∈N , successione in A\{c} che tende a c , tale
che
�

f (an)
�

n∈N diverge a +∞ .

3.4.13 Teorema

Siano A⊆R , f : A→R e c ∈ P L(A) . Le seguenti affermazioni sono equivalenti:

I) f (x) è regolare per x→ c ;

II) minlimx→c f (x) =maxlimx→c f (x) .

Se tali affermazioni sono vere risulta

lim
x→c

f (x) =minlim
x→c

f (x) =maxlim
x→c

f (x) .

Dimostrazione. I =⇒ II) Per il teorema 3.4.11 esiste una successione (an)n∈N in A\{c}
che tende a c e tale che limn→+∞ f (an) = maxlimx→c f (x) ; per il teorema di relazione
tra limite di funzione e limite di successione 3.3.2, si ha limn→+∞ f (an) = limx→c f (x) .
Pertanto maxlimx→c f (x) = limx→c f (x) .

Per motivi analoghi anche minlimx→c f (x) = limx→c f (x) .

II =⇒ I) Poniamo ℓ=minlimx→c f (x) =maxlimx→c f (x) .
Sia (an)n∈N una successione in A\ {c} che tende a c . Per il teorema 3.4.10 si ha

ℓ≤minlim
n→+∞

f (an)≤maxlim
n→+∞

f (an)≤ ℓ ,

quindi
minlim

n→+∞
f (an) =maxlim

n→+∞
f (an) = ℓ ;

pertanto, per il teorema 2.3.24 si ha limn→+∞ f (an) = ℓ . Allora, per il teorema di relazione
tra limite di funzione e limite di successione 3.3.2, si ha limx→c f (x) = ℓ .
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3.4.14 Osservazione. Se minlimx→c f (x) = +∞ , allora, per il teorema 3.4.9, si ha anche
maxlimx→c f (x) = +∞ , quindi, per il teorema precedente, limx→c f (x) = +∞ .

Analogamente, se maxlimx→c f (x) =−∞ , allora limx→c f (x) =−∞ .

Studiamo il comportamento di massimo limite e minimo limite rispetto all’addizione e
alla moltiplicazione per uno scalare.

3.4.15 Teorema

Siano A⊆R , f , g : A→R e c ∈ P L(A) .

I) Se minlimx→c f (x) ∈R e minlimx→c g (x) ∈R , allora

minlim
x→c

�

f (x)+ g (x)
�≥minlim

x→c
f (x)+minlim

x→c
g (x) .

II) Se minlimx→c f (x) = +∞ e minlimx→c g (x)>−∞ , allora

minlim
x→c

�

f (x)+ g (x)
�

=+∞ .

III) Se maxlimx→c f (x) ∈R e maxlimx→c g (x) ∈R , allora

maxlim
x→c

�

f (x)+ g (x)
�≤maxlim

x→c
f (x)+maxlim

x→c
g (x) .

IV) Se maxlimx→c f (x) =−∞ e maxlimx→c g (x)<+∞ , allora

maxlim
x→c

�

f (x)+ g (x)
�

=−∞ .

Dimostrazione. I) Per il teorema 3.4.11 esiste (an)n∈N , successione in A\{c} che tende
a c , tale che limn→+∞

�

f (an) + g (an)
�

=minlimx→c

�

f (x) + g (x)
�

. Per il teorema 2.3.26,
affermazione I, risulta

lim
n→+∞

�

f (an)+ g (an)
�

≥minlim
n→+∞

f (an)+minlim
n→+∞

g (an)

quindi, per il teorema 3.4.10, si ha

minlim
x→c

�

f (x)+ g (x)
�≥minlim

n→+∞
f (an)+minlim

n→+∞
g (an)≥minlim

x→c
f (x)+minlim

x→c
g (x) .

II) Per il teorema 3.4.11 esiste (an)n∈N , successione in A \ {c} che tende a c , tale che
limn→+∞
�

f (an)+ g (an)
�

=minlimx→c

�

f (x)+ g (x)
�

. Per il teorema 3.4.10 risulta

minlim
n→+∞

f (an)≥minlim
x→c

f (x) = +∞ ,

quindi minlimn→+∞ f (an) = +∞ , e

minlim
n→+∞

g (an)≥minlim
x→c

g (x)>−∞ .

Pertanto, per il teorema 2.3.26, affermazione II, si ha limn→+∞
�

f (an)+ g (an)
�

=+∞ .

III) La dimostrazione è analoga a quella dell’affermazione I.
IV) La dimostrazione è analoga a quella dell’affermazione II.
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3.4.16 Teorema

Siano A⊆R , f : A→R , c ∈ P L(A) e λ ∈R∗ .
I) Supponiamo minlimx→c f (x) ∈R . Se λ > 0 , allora

minlim
x→c

�

λ f (x)
�

= λminlim
x→c

f (x) ;

se λ < 0 , allora
maxlim

x→c

�

λ f (x)
�

= λminlim
x→c

f (x) .

II) Supponiamo minlimx→c f (x) ∈ {−∞,+∞} . Se λ > 0 , allora

minlim
x→c

�

λ f (x)
�

=minlim
x→c

f (x) ;

se λ < 0 , allora
maxlim

x→c

�

λ f (x)
�

=−minlim
x→c

f (x) .

III) Supponiamo maxlimx→c f (x) ∈R . Se λ> 0 , allora

maxlim
x→c

�

λ f (x)
�

= λmaxlim
x→c

f (x) ;

se λ < 0 , allora
minlim

x→c

�

λ f (x)
�

= λmaxlim
x→c

f (x) .

IV) Supponiamo maxlimx→c f (x) ∈ {−∞,+∞} . Se λ> 0 , allora

maxlim
x→c

�

λ f (x)
�

=maxlim
x→c

f (x) ;

se λ < 0 , allora
minlim

x→c

�

λ f (x)
�

=−maxlim
x→c

f (x) .

Dimostrazione. Nella dimostrazione utilizziamo ripetutamente il teorema 3.4.11.

I) Poniamo ℓ =minlimx→c f (x) . Sia (an)n∈N una successione in A\ {c} che tende a c
tale che f (an)→ ℓ .

Sia λ > 0 . Si ha λ f (an) → λℓ , quindi λℓ ≥ minlimx→c

�

λ f (x)
�

. Inoltre esiste
(bn)n∈N successione in A\{c} che tende a c tale che λ f (bn)→minlimx→c

�

λ f (x)
�

; poiché
limn→+∞ f (bn)≥ ℓ , si ha

minlim
x→c

�

λ f (x)
�

= lim
n→+∞

�

λ f (bn)
�

= λ lim
n→+∞

f (bn)≥ λℓ .

Quindi risulta minlimx→c

�

λ f (x)
�

= λℓ .

Sia λ < 0 . Si ha λ f (an) → λℓ , quindi λℓ ≤ maxlimx→c

�

λ f (x)
�

. Inoltre esiste
(cn)n∈N successione in A\{c} che tende a c tale che λ f (cn)→maxlimx→c

�

λ f (x)
�

; poiché
limn→+∞ f (cn)≥ ℓ , si ha

maxlim
x→c

�

λ f (x)
�

= lim
n→+∞

�

λ f (cn)
�

= λ lim
n→+∞

f (cn)≤ λℓ .

Quindi risulta maxlimx→c

�

λ f (x)
�

= λℓ .
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II) Supponiamo minlimx→c f (x) = −∞ ; allora esiste (an)n∈N , successione in A \ {c}
che tende a c , tale che f (an) → −∞ . Se λ > 0 , allora λ f (an) → −∞ , quindi risul-
ta minlimx→c

�

λ f (x)
�

= −∞ ; se invece λ < 0 , allora λ f (an) → +∞ , pertanto risulta
maxlimx→c

�

λ f (x)
�

=+∞ .
Supponiamo ora minlimx→c f (x) = +∞ ; risulta limx→c f (x) = +∞ (v. osservazio-

ne 3.4.14). Se λ > 0 , allora λ f (x)→ +∞ , perciò minlimx→c

�

λ f (x)
�

=+∞ ; se invece
λ< 0 , allora λ f (x)→−∞ , quindi risulta maxlimx→c

�

λ f (x)
�

=−∞ .

III) La dimostrazione è analoga a quella dell’affermazione I.

IV) La dimostrazione è analoga a quella dell’affermazione II.

3.5 Funzioni continue

3.5.1 Definizioni e proprietà fondamentali

Studiamo le funzioni che si comportano “bene” rispetto ai limiti. Chiediamo che, in un
punto del dominio, che sia anche di accumulazione, esista il limite della funzione e questo
coincida col valore della funzione in tale punto. Pertanto, se f : A → R e c ∈ D(A) ,
chiediamo che sia

∀U ∈ I f (c) , ∃VU ∈Ic : ∀x ∈A\ {c} , x ∈VU =⇒ f (x) ∈ U .

Poiché, ∀U ∈ I f (c) , si ha f (c) ∈ U , è equivalente chiedere che sia x ∈VU =⇒ f (x) ∈U

per x ∈A\ {c} o per x ∈A . Pertanto la definizione equivale a

∀U ∈ I f (c) , ∃VU ∈ Ic : ∀x ∈A, x ∈VU =⇒ f (x) ∈U .

Questa condizione ha senso anche se c è un punto isolato di A ; in tal caso è evidentemente
verificata, è sufficiente scegliere come VU un qualunque intorno di c la cui intersezione
con A è {c} .

Definizione di funzione continua in un punto

Siano A⊆R , f : A→R e c ∈A . Diciamo che f è continua in c quando

∀U ∈I f (c) , ∃VU ∈ Ic : ∀x ∈A, x ∈VU =⇒ f (x) ∈ U .

La definizione di continuità riguarda un punto del dominio, ma solitamente una fun-
zione è continua in più punti; quindi è naturale definire la continuità in un insieme.

Definizione di funzione continua in un insieme

Siano A⊆R , B ⊆A e f : A→R .
Diciamo che f è continua in B quando è continua in ogni punto di B .
Diciamo che f è continua quando è continua in A .
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È evidente che f è continua in c se e solo se

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x ∈A, x ∈ ]c −δǫ, c +δǫ[ =⇒
�

� f (x)− f (c)
�

�< ǫ .

Dai discorsi introduttivi risulta evidente che vale il seguente teorema.

3.5.1 Teorema

Siano A⊆R , f : A→R e c ∈A .

I) Se c è un punto isolato per A , allora f è continua in c .

II) Se c ∈D(A) , f è continua in c se e solo se limx→c f (x) = f (c) .

3.5.2 Esempio. Utilizziamo questo teorema per stabilire la continuità di alcune funzioni.
Sia p un polinomio. Nell’esempio 3.3.4 abbiamo provato che, qualunque sia c ∈ R ,

risulta limx→c p(x) = p(c) . Pertanto la funzione x 7→ p(x) è continua.
Sia r una funzione razionale fratta. Nell’esempio 3.3.24 abbiamo provato che, qualun-

que sia c ∈R , che non annulla il denominatore di r , risulta limx→c r (x) = r (c) . Pertanto
la funzione x 7→ r (x) è continua.

3.5.3 Esempio. Consideriamo la funzione

f12 : R→R , f12(x) = [x] .

Nell’esempio 3.4.4 abbiamo provato che, ∀n ∈Z , si ha

lim
x→n−

[x] = n− 1 6= n = lim
x→n+

[x] .

Poiché limite destro e limite sinistro sono differenti tra loro, non esiste il limite. Pertanto f12

è discontinua in ciascun punto di Z .
Se c ∈R \Z esiste un intorno di c in cui f12 è costante, da ciò segue facilmente che in

tali punti f12 è continua.

Visto lo stretto collegamento tra limite e continuità, vale un teorema analogo al teorema
di relazione tra limite di funzione e limite di successione 3.3.2.

3.5.4 Teorema (caratterizzazione della continuità)

Siano A⊆R , f : A→R e c ∈A . Le seguenti affermazioni sono equivalenti:

I) la funzione f è continua in c ;

II) per ogni (an)n∈N successione in A convergente a c si ha limn→+∞ f (an) = f (c) .

Dimostrazione. I =⇒ II) Supponiamo che f sia continua in c e consideriamo una
successione (an)n∈N in A tale che an→ c .

Per la definizione di continuità si ha

∀U ∈ I f (c) , ∃VU ∈ Ic : ∀x ∈A, x ∈VU =⇒ f (x) ∈U ,
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mentre per la definizione di convergenza si ha

∀W ∈ Ic , ∃nW ∈N : ∀n ∈N , n > nW =⇒ an ∈W .

Scelto U ∈Iℓ , poniamo W =VU . Se n ∈N è tale che n > nVU
, allora si ha an ∈VU∩A ,

quindi f (an) ∈U . Perciò
n > nVU

=⇒ f (an) ∈ U ,

quindi è verificata la definizione di f (an)→ ℓ e vale l’affermazione II.

II =⇒ I) Dimostriamo che se l’affermazione I è falsa, allora è falsa anche la II; cioè pro-
viamo che, se f non è continua in c , allora esiste una successione (an)n∈N in A tale che
an→ c , ma non si ha f (an)→ f (c) .

Se f non è continua in c , allora si ha

∃U ∈ I f (c) : ∀V ∈ Ic , ∃x ∈A: x ∈V ∧ f (x) /∈ U .

Per ogni n ∈ N , si ha ]c − 1/(n + 1), c + 1/(n + 1)[ ∈ Ic , pertanto esiste un elemen-
to di A∩ ]c − 1/(n+ 1), c + 1/(n+ 1)[ , che indichiamo con an , tale che f (an) /∈ U . La
successione (an)n∈N così costruita ha termini in A ; inoltre, ∀n ∈N , risulta

c − 1

n+ 1
< an < c +

1

n+ 1
,

quindi, per il teorema dei due carabinieri 2.2.11, si ha an→ c . D’altra parte, ∀n ∈N , si ha
f (an) /∈ U , quindi la successione

�

f (an)
�

n∈N non ha limite f (c) . Perciò l’affermazione II
non è verificata.

I teoremi sul limite della somma 3.3.21, sul limite del prodotto 3.3.22 e sul limite del
reciproco 3.3.23 possono essere applicati alle funzioni continue, ottenendo il teorema se-
guente.

3.5.5 Teorema

Siano A⊆R , f : A→R , g : A→R e c ∈A . Supponiamo f e g continue in c .
Allora:

I) la funzione f + g è continua in c ;

II) la funzione f g è continua in c ;

III) se inoltre, ∀x ∈A , si ha g (x) 6= 0 , allora la funzione f /g è continua in c .

3.5.6 Teorema (sulla continuità della composizione)

Siano A,B ⊆ R , f : A→ B , g : B → R e c ∈ A . Se f è continua in c e g è
continua in f (c) , allora g ◦ f è continua in c .

Dimostrazione. Se (an)n∈N è una successione in A convergente a c , allora, per il teo-
rema 3.5.4, f (an) → f (c) , quindi, nuovamente per tale teorema, g

�

f (an)
� → g
�

f (c)
�

.
Perciò g ◦ f è continua in c .
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3.5.7 Esempio. È evidente che ogni funzione costante è continua.
La funzione idR , cioè la funzione da R a R tale che x 7→ x , è continua. Infatti se

c ∈R e ǫ ∈R+ , allora, ∀x ∈R , se x ∈ ]c − ǫ, c + ǫ[ si ha idR(x) ∈ ]c − ǫ, c + ǫ[ .
Il teorema 3.5.5 consente di provare la continuità delle funzioni polinomiali e raziona-

li fratte, già dimostrata nell’esempio 3.5.2. Infatti tali funzioni sono somma, prodotto e
quoziente di funzioni costanti e di idR .

3.5.2 Funzioni continue nel dominio

Studiamo alcune proprietà di cui godono le funzioni che sono continue in tutto il
dominio.

3.5.8 Teorema (di Weierstrass8)

Siano K ⊆R e f : K→R . Se f è continua e K è compatto, allora f è limitata
ed esistono massimo e minimo di f .

Dimostrazione. Dimostriamo anzitutto che f è superiormente limitata, successivamente
dimostriamo che ha massimo. In modo analogo si prova che f è inferiormente limitata e
che ha minimo.

Per dimostrare che se f è continua, allora è superiormente limitata, dimostriamo che,
viceversa, se sup f =+∞ , allora esiste un punto di K in cui f non è continua.

Se sup f = +∞ , allora ogni n ∈N non è maggiorante di f (K) , perciò esiste un ele-
mento di K , che indichiamo con an , tale che f (an) > n . Poiché K è compatto, esiste
una sottosuccessione

�

akn

�

n∈N convergente a un elemento c di K . Poiché, ∀n ∈N , si ha
f
�

akn

�

> kn ≥ n , risulta f
�

akn

�→+∞ 6= f (c) ; quindi f non è continua in c .

Dimostriamo ora che, posto M = sup f , risulta M ∈ f (K) . Per la caratterizzazione
dell’estremo superiore 1.2.42, qualunque sia n ∈N esiste un elemento di K , che indichiamo
con an , tale che f (an)>M −1/(n+1) . Poiché K è compatto, esiste una sottosuccessione
�

akn

�

n∈N convergente a un elemento c di K . Poiché f è continua in c si ha f
�

akn

�→ f (c) ,
d’altra parte, ∀n ∈N , si ha

M − (1/kn)< f
�

akn

�

≤M ,

quindi f
�

akn

�

→M ; pertanto M = f (c) ∈ f (K) .

3.5.9 Esempio. Osserviamo che una funzione continua in un insieme non compatto può
essere illimitata o, pur essendo limitata, non avere massimo o non avere minimo.

Le funzioni f1 , f2 e f3 , introdotte nell’esempio 3.2.1 sono polinomiali o razionali
fratte, quindi continue per l’esempio 3.5.7. Il dominio di f1 e f2 è R che non è limitato,
quindi non è compatto; il dominio di f3 è ]−1,1[ che non è chiuso, quindi non è compatto.
Le funzioni f1 e f3 non sono limitate, f2 è limitata, ma non ha minimo.

8Il teorema prende il nome dal già citato Karl Weierstrass (v. nota 6) che lo espose nelle sue lezioni tenute a
Berlino nel 1861.
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3.5.10 Teorema (di Bolzano9 o degli zeri)

Sia f : [a, b ]→ R . Se f (a) f (b ) < 0 e f è continua, allora esiste c ∈ ]a, b [ tale
che f (c) = 0 .

Dimostrazione. Consideriamo il caso f (a)< 0< f (b ) , il caso f (b )< 0< f (a) si tratta
in modo analogo.

Poniamo a0 = a , b0 = b e c0 = (a + b )/2 , cioè c0 è il punto medio dell’intervallo
[a, b ] . Se f (c0) = 0 , la tesi è verificata. Se f (c0) > 0 poniamo a1 = a0 e b1 = c0 , se
invece f (c0)< 0 poniamo a1 = c0 e b1 = b0 . In entrambi i casi risulta f (a1)< 0< f (b1) ,
a0 ≤ a1 < b1 ≤ b0 e b1− a1 = (b0− a0)/2 .

Poniamo poi c1 = (a1 + b1)/2 , cioè c1 è il punto medio dell’intervallo [a1, b1] . Pro-
cedendo come prima, se f (c1) = 0 la tesi è verificata. Se f (c1) > 0 poniamo a2 = a1

e b2 = c1 , se invece f (c1) < 0 poniamo a2 = c1 e b2 = b1 . In entrambi i casi risulta
f (a2)< 0< f (b2) , a1 ≤ a2 < b2 ≤ b1 e b2− a2 = (b1− a1)/2= (b0− a0)/2

2 .
Ripetiamo successivamente questa procedura. Se dopo un numero finito di passi la

funzione si annulla nel punto medio dell’intervallo la tesi è verificata; altrimenti si prosegue
costruendo due successioni (an)n∈N e (bn)n∈N tali che:

1. ∀n ∈N , si ha a0 ≤ an < bn ≤ b0 ;

2. la successione (an)n∈N è crescente e la successione (bn)n∈N è decrescente;

3. ∀n ∈N , si ha bn − an = (b0− a0)/2
n ;

4. ∀n ∈N , si ha f (an)< 0< f (bn) .

La successione (an)n∈N è crescente e superiormente limitata, perché b0 è un suo maggio-
rante; pertanto, per il teorema sul limite delle successioni monotòne 2.3.2, è convergente.
Sia c il suo limite che, per il teorema del confronto per le successioni 2.2.5, appartiene ad
[a, b ] . Si ha inoltre

lim
n→+∞

bn = lim
n→+∞

�

an +
b − a

2n

�

= c .

Poiché f è continua in c , per il teorema del confronto 2.2.5, si ha

f (c) = lim
n→+∞

f (an)≤ 0 , f (c) = lim
n→+∞

f (bn)≥ 0 .

Pertanto f (c) = 0 .

Il teorema di Bolzano assicura che una funzione continua in un intervallo chiuso e li-
mitato, se assume valore maggiore di 0 in un estremo dell’intervallo e valore minore di 0
nell’altro estremo, allora assume valore 0 in almeno un punto. Ovviamente la conclusione
vale anche se i punti il punto in cui f è maggiore di 0 e quello in cui è minore di 0 non
sono gli estremi dell’intervallo. Inoltre il risultato vale anche se si considera un qualunque
numero reale d al posto di 0 . Queste osservazioni portano al teorema seguente.

9Il teorema prende il nome dal già citato Bernard Bolzano (v. nota 6) che lo dimostrò nel 1817.
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3.5.11 Teorema (dei valori intermedi)

Siano I ⊆ R e f : I → R . Se I è un intervallo e f è continua, allora f (I ) è un
intervallo, eventualmente degenere.

Dimostrazione. Proviamo che, se a, b ∈ I sono tali che f (a) < f (b ) , allora qualunque
sia d ∈ � f (a), f (b )

�

risulta d ∈ f (I ) . Consideriamo il caso a < b , l’altro caso è analogo.
Sia g : [a, b ]→R tale che g (x) = f (x)− d . Poiché f è continua anche g è continua;

inoltre g (a) = f (a)− d < 0 , mentre g (b ) = f (b )− d > 0 . Pertanto, per il teorema degli
zeri, esiste c ∈ ]a, b [ tale che g (c) = 0 , cioè f (c) = d , quindi d ∈ f

�

]a, b [
�

⊆ f (I ) .

3.5.12 Esempio. Utilizziamo il teorema dei valori intermedi per dimostrare nuovamente,
in modo più semplice, il teorema sull’esistenza della radice n -sima 1.4.6.

Sia n ∈N \ {0,1} . Consideriamo la funzione

f14 : [0,+∞[→R , f14(x) = xn .

Si ha f14(0) = 0 e, ∀x ∈ [0,+∞[ , risulta f14(x)≥ 0 , quindi 0=min Im( f14) . Inoltre si ha
limx→+∞ xn = +∞ , quindi, per il teorema 3.3.12, affermazione II, f14 è superiormente
illimitata. Poiché f14 è continua e il suo dominio è un intervallo, per il teorema dei valori
intermedi 3.5.11, l’immagine di f14 è un intervallo. Poiché l’immagine ha minimo 0 ed è
superiormente illimitata, si ha Im( f14) = [0,+∞[ . Pertanto, qualunque sia a ∈ [0,+∞[ ,
si ha a ∈ Im( f14) , quindi esiste x ∈ [0,+∞[ tale che f14(x) = a , cioè xn = a .

Per le funzioni monotòne vale un teorema che, in un certo senso, è l’inverso di quello
dei valori intermedi.

3.5.13 Teorema

Siano A⊆ R e f : A→ R . Se f è monotòna e f (A) è un intervallo, allora f è
continua.

Dimostrazione. Sia f : A→ R crescente e dimostriamo che se f non è continua, allo-
ra f (A) non è un intervallo. Se f è decrescente la dimostrazione è analoga.

Sia c ∈A tale che f non è continua in c . Poiché una funzione è continua nei punti iso-
lati del dominio, si ha c ∈D(A) , quindi c ∈ D

�

A∩ ]−∞, c[
�

oppure c ∈D
�

A∩ ]c ,+∞[
�

.
Per il teorema sul limite delle funzioni monotòne 3.4.3, nel primo caso esiste limx→c− f (x)
e nel secondo caso esiste limx→c+ f (x) ; poiché f non è continua in c , almeno uno di tali
limiti è diverso da f (c) .

Supponiamo ad esempio che sia c ∈D
�

A∩ ]−∞, c[
�

e limx→c− f (x) 6= f (c) . Poiché f

è crescente, ∀x ∈ A∩ ]−∞, c[ si ha f (x) ≤ f (c) , quindi sup f
�

A∩ ]−∞, c[
� ≤ f (c) .

D’altra parte, per il teorema sul limite delle funzioni monotòne 3.4.3, affermazione III, si
ha sup f
�

A∩ ]−∞, c[
�

= limx→c− f (x) 6= f (c) , quindi sup f
�

A∩ ]−∞, c[
�

< f (c) .

Qualunque sia x ∈A , se x < c , allora f (x)≤ sup f
�

A∩]−∞, c[
�

, se invece x ≥ c , allo-
ra f (x)≥ f (c) , pertanto se y è compreso tra sup f

�

A∩]−∞, c[
�

e f (c) , allora y /∈ f (A) .
Scelto x ∈ A∩ ]−∞, c[ , tali y sono compresi tra f (x) e f (c) , perciò f (A) non è un
intervallo.
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Studiamo la continuità dell’inversa di una funzione iniettiva. Come mostra il seguente
esempio, in generale funzione iniettiva continua può avere inversa discontinua.

3.5.14 Esempio. Sia

f15 : [0,1]∪ ]2,3]→R , f15(x) =

¨

x , se x ∈ [0,1] ,

x − 1 , se x ∈ ]2,3] .

f14

2

1

3

2

1

f −1
14

1

2

2

3

1
Figura 3.5.1
La funzione f14 studiata
nell’esempio 3.5.14 (a sini-
stra) e la sua inversa (a de-
stra).

Studiamo la continuità e la monotonia di f15 .
Ogni punto di [0,1] ha un intorno che non interseca ]2,3] , pertanto per stabilire la

continuità di f15 nei punti di [0,1] è sufficiente studiare la continuità di f15
�

�

[0,1]
. Tale

funzione è polinomiale, quindi è continua, perciò f15 è continua in [0,1] . Analogamente
ogni punto di ]2,3] ha un intorno che non interseca [0,1] , f15

�

�

]2,3]
è polinomiale e quindi

continua; perciò f15 è continua anche in ]2,3] . Quindi f15 è continua.
Siano x, y ∈ [0,1]∪ ]2,3] , con x < y . Evidentemente se x, y ∈ [0,1] o x, y ∈ ]2,3]

si ha f15(x) < f15(y) . Se x ∈ [0,1] e y ∈ ]2,3] , allora f15(x) ≤ 1 < f15(y) . Perciò f15 è
strettamente crescente, quindi, per il teorema 3.4.1, è iniettiva.

Si verifica facilmente che Im( f15) = [0,2] e che

f −1
15 : [0,2]→R , f −1

15 (x) =

¨

x , se x ∈ [0,1] ,

x + 1 , se x ∈ ]1,2] .

Pertanto risulta limx→1− f −1
15 (x) = limx→1− x = 1 e limx→1+ f −1

15 (x) = limx→1+ (x + 1) = 2 ,
quindi f −1

15 non è continua in 1 .

Si può provare la continuità di una funzione inversa utilizzando il teorema 3.5.13.
Questo richiede la monotonia di una funzione, a tal fine risultano utili i seguenti teoremi.

3.5.15 Teorema

Siano I ⊆R intervallo, f : I →R continua e iniettiva, a, b , c ∈ I .

I) Se a < b , a < c e f (a)< f (b ) , allora f (a)< f (c) .

II) Se a < b , c < b e f (a)< f (b ) , allora f (c)< f (b ) .
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Questo teorema ha una semplice interpretazione geometrica. Consideriamo una fun-
zione f definita in un intervallo, continua e iniettiva. Se esiste un punto del grafico di f

che si trova a destra e in alto rispetto al punto
�

a, f (a)
�

, allora tutta la parte di grafico a
destra di
�

a, f (a)
�

si trova più in alto. Analogamente, se esiste un punto del grafico di f

che si trova a sinistra e in basso rispetto al punto
�

b , f (b )
�

, allora tutta la parte di grafico
a sinistra di
�

b , f (b )
�

si trova più in basso.
Il teorema rimane valido se si scambia alto con basso.

Dimostrazione. I) Dimostriamo il teorema per assurdo.
Supponiamo quindi che sia f (c) ≤ f (a) . Poiché f è iniettiva, si ha f (c) 6= f (a) ,

quindi f (c)< f (a) . Poiché f (c) < f (a) < f (b ) , per il teorema dei valori intermedi f (a)
appartiene all’immagine della restrizione di f all’intervallo di estremi c e b , cioè esiste d
appartenente a tale intervallo tale che f (d ) = f (a) ; poiché a non appartiene all’intervallo
di estremi c e b , si ha a 6= d . Ciò è assurdo perché f è iniettiva.

Pertanto f (c)> f (a) .

II) La dimostrazione è analoga a quella dell’affermazione I.

Per il teorema 3.4.1, ogni funzione strettamente monotòna è iniettiva. Il viceversa è
vero sotto ipotesi aggiuntive.

3.5.16 Teorema

Siano I ⊆R e f : I →R . Se I è un intervallo e f è continua e iniettiva, allora f
è strettamente monotòna.

Dimostrazione. Dimostriamo che se f non è strettamente decrescente, allora è stretta-
mente crescente.

Se f non è strettamente decrescente, esistono α,β ∈ I tali che α <β e f (α)≤ f (β) ;
poiché f è iniettiva non può valere l’uguaglianza, quindi f (α)< f (β) .

Siano x, y ∈ I , tali che x < y .
Se y > α si può applicare il teorema 3.5.15, affermazione I, con a = α , b =β e c = y ,

pertanto f (α)< f (y) ; successivamente si può applicare il teorema 3.5.15, affermazione II,
con a = α , b = y e c = x quindi f (x)< f (y) .

Se invece y ≤ α , allora si ha x < α , quindi si può applicare il teorema 3.5.15, affer-
mazione II, con a = α , b = β e c = x , pertanto f (x) < f (β) ; successivamente si può
applicare il teorema 3.5.15, affermazione I, con a = x , b =β e c = y , quindi f (x)< f (y) .

Pertanto f è strettamente crescente.

3.5.17 Teorema (sulla continuità della funzione inversa)

Siano I ⊆R intervallo e f : I →R .
I) Se f è strettamente monotòna, allora f −1 è continua.

II) Se f è continua e iniettiva, allora f −1 è continua.
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Dimostrazione. I) Per il teorema 3.4.1, f è iniettiva e f −1 è strettamente monotòna.
L’immagine di f −1 è uguale al dominio di f , cioè a I , che è un intervallo. Quindi il
teorema 3.5.13 assicura che f −1 è continua.

II) Per il teorema 3.5.16 f è strettamente monotòna, quindi, per l’affermazione I, f −1 è
continua.

3.5.18 Esempio. Sia n ∈N \ {0,1} . Consideriamo la funzione

f14 : [0,+∞[→R , f14(x) = xn ,

già studiata nell’esempio 3.5.12. Questa funzione è strettamente monotòna e il suo domi-
nio è un intervallo. Pertanto, per il teorema 3.5.17, affermazione I, f −1

14 è continua. La
funzione f −1

14 è la funzione radice n -sima.

3.5.3 Funzioni uniformemente continue

Introduciamo ora un concetto più restrittivo della continuità, che sarà utile per lo studio
di alcune proprietà delle funzioni reali di variabile reale.

Se una funzione f : A→R è continua, allora, ∀c ∈A , si ha

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x ∈A, |x − c |<δǫ =⇒
�

� f (x)− f (c)
�

�< ǫ ,

quindi se x è “vicino” a c , allora f (x) è “vicino” a f (c) , ma δǫ , la soglia che stabilisce
quando x è “vicino” a c , dipende dalla scelta di c . Si ottiene una condizione più restrittiva
chiedendo che δǫ non dipenda da c , cioè che la scelta di δǫ sia “uniforme”.

Questa richiesta porta alla seguente definizione.

Definizione di funzione uniformemente continua

Siano A⊆R e f : A→R . Diciamo che f è uniformemente continua quando

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x, y ∈A, |x − y|<δǫ =⇒
�

� f (x)− f (y)
�

�< ǫ .

La relazione tra continuità e uniforme continuità è stabilita dal teorema seguente.

3.5.19 Teorema

Siano A⊆R e f : A→R . Se f è uniformemente continua, allora è continua.

Dimostrazione. Per definizione di uniforme continuità si ha

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x, y ∈A, |x − y|<δǫ =⇒
�

� f (x)− f (y)
�

�< ǫ .

Per ogni c ∈A , ponendo y = c , da qui segue

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x ∈A, |x − c |<δǫ =⇒
�

� f (x)− f (c)
�

�< ǫ .

perciò f è continua in c .
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Come la continuità, anche la uniforme continuità può essere caratterizzata tramite i
limiti di successioni.

3.5.20 Teorema

Siano A⊆R e f : A→R . Le seguenti affermazioni sono equivalenti:

I) f è uniformemente continua;

II) qualunque siano (an)n∈N e (bn)n∈N successioni in A tali che an − bn→ 0 risulta
f (an)− f (bn)→ 0 .

Dimostrazione. I =⇒ II) Per definizione di uniforme continuità si ha

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x, y ∈A, |x − y|<δǫ =⇒
�

� f (x)− f (y)
�

�< ǫ ;

siano (an)n∈N e (bn)n∈N successioni in A tali che an − bn→ 0 , cioè tali che

∀η∈R+ , ∃nη ∈N : ∀n ∈N , n > nη =⇒ |an − bn|< η .

Fissato ǫ ∈ R+ , se n > nδǫ , allora |an − bn | < δǫ , quindi
�

� f (an)− f (bn)
�

� < ǫ . Pertanto
f (an)− f (bn)→ 0 .

II =⇒ I) Dimostriamo che se f non è uniformemente continua, allora esistono due suc-
cessioni in A , (an)n∈N e (bn)n∈N , tali che an−bn→ 0 , ma f (an)− f (bn) non converge a 0 .

Se f non è uniformemente continua, allora

∃ǫ ∈R+ : ∀δ ∈R+ , ∃xδ , yδ ∈A: |xδ − yδ |<δ ∧
�

� f (xδ )− f (yδ )
�

�≥ ǫ .

In particolare, scegliendo δ = 1/(n+ 1) , esistono due elementi di A , che indichiamo con
an e bn , tali che |an − bn| < 1/(n+ 1) e

�

� f (an)− f (bn)
�

� ≥ ǫ . Pertanto an − bn → 0 , ma
non si ha f (an)− f (bn)→ 0 .

3.5.21 Esempio. Utilizziamo il teorema 3.5.20 per studiare la uniforme continuità delle
funzioni introdotte nell’esempio 3.1.4.

Tali funzioni sono polinomiali o razionali fratte, quindi, per l’esempio 3.5.7, esse sono
continue.

Consideriamo la funzione

f1 : R→R , f1(x) = x2− 1 .

Posto, ∀n ∈N∗ , an = n+ (1/n) , bn = n , risulta an − bn = 1/n→ 0 e

f1(an)− f1(bn) =

�

n+
1

n

�2

− 1− n2+ 1= 2+
1

n2
→ 2 .

Quindi f1(an)− f1(bn) non tende a 0 , perciò, per il teorema 3.5.20, f1 non è uniforme-
mente continua.
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Consideriamo la funzione

f2 : R→R , f2(x) =
1

x2+ 1
.

Siano (an)n∈N e (bn)n∈N successioni in R tali che an − bn→ 0 . Si ha

�

� f2(an)− f2(bn)
�

�=

�

�

�

�

1

a2
n + 1
− 1

b 2
n + 1

�

�

�

�
=
|a2

n − b 2
n |

(a2
n + 1)(b 2

n + 1)
=
|an − bn||an + bn|
(a2

n + 1)(b 2
n + 1)

≤

≤
|an − bn|
�|an |+ |bn |
�

(a2
n + 1)(b 2

n + 1)
≤ |an − bn|
� |an |

a2
n + 1

+
|bn |

b 2
n + 1

�

.

Poiché
0≤ �|an | − 1
�2
= |an |2− 2|an|+ 1= a2

n − 2|an|+ 1 ,

risulta 2|an | ≤ a2
n + 1 e una disuguaglianza analoga vale per bn . Quindi si ha

�

� f2(an)− f2(bn)
�

�≤ |an − bn|
� |an |

a2
n + 1

+
|bn |

b 2
n + 1

�

≤ |an − bn|
�

1

2
+

1

2

�

= |an − bn | .

Poiché an − bn → 0 , da questa disuguaglianza segue che f2(an)− f2(bn)→ 0 . Pertanto f2
è uniformemente continua.

Consideriamo la funzione

f3 : ]−1,1[→R , f3(x) =
x

1− x2
.

Posto, ∀n ∈N∗ , an = 1− (1/2n) , bn = 1− (1/n) , risulta an − bn = 1/(2n)→ 0 e

f3(an)− f3(bn) =
1− (1/2n)

1− �1− (1/2n)
�2
− 1− (1/n)

1− �1− (1/n)
�2
=

=
1− (1/2n)

(2/2n)− (1/2n)2
− 1− (1/n)

(2/n)− (1/n)2
=

4n2− 2n

4n− 1
− n2− n

2n− 1
=

=
�

n+ o(n)
�−
�

1

2
n+ o(n)
�

=
1

2
n+ o(n)→+∞ .

Pertanto f3 non è uniformemente continua.

3.5.22 Teorema

Siano A ⊆ R , f : A→ R e (an)n∈N successione in A . Se f è uniformemente
continua e (an)n∈N è convergente, allora

�

f (an)
�

n∈N è convergente.

Osserviamo che nell’enunciato del teorema viene richiesto che (an)n∈N sia convergente,
senza precisare che il limite appartenga al dominio. Quindi la semplice continuità della
funzione non assicura che

�

f (an)
�

n∈N sia convergente.
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Dimostrazione. Per il teorema 2.3.12, una successione è convergente se e solo se è di Cau-
chy, pertanto è sufficiente dimostrare che se (an)n∈N è di Cauchy, allora

�

f (an)
�

n∈N è di
Cauchy.

Se f è uniformemente continua si ha

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x, y ∈A, |x − y|<δǫ =⇒
�

� f (x)− f (y)
�

�< ǫ ,

mentre se (an)n∈N è una successione di Cauchy, allora si ha

∀η∈R+ , ∃nη ∈N : ∀n, m ∈N , n, m > nη =⇒ |an − am |< η .

Fissato ǫ ∈ R+ , se n, m ∈ N sono tali che n, m > nδǫ , allora |an − am | < δǫ , pertanto
�

� f (an)− f (am)
�

�< ǫ . Quindi la successione
�

f (an)
�

n∈N è di Cauchy.

Come mostra l’esempio 3.5.21, dalla continuità di una funzione non segue necessaria-
mente la uniforme continuità; ciò risulta vero per domini particolari.

3.5.23 Teorema (di Heine-Cantor10)

Siano K ⊆ R e f : K → R . Se f è continua e K è compatto, allora f è
uniformemente continua.

Dimostrazione. Dimostriamo che se f non è uniformemente continua, allora esiste c ∈
K tale che f non è continua in c .

Supponiamo quindi f non uniformemente continua, cioè

∃ǫ ∈R+ : ∀δ ∈R+ , ∃xδ , yδ ∈K : |xδ − yδ |<δ ∧
�

� f (xδ )− f (yδ )
�

�≥ ǫ .

In particolare, ∀n ∈ N , scegliendo δ = 1/(n + 1) , esistono due elementi di K , che in-
dichiamo con an e bn , tali che |an − bn| < 1/(n + 1) e

�

� f (an)− f (bn)
�

�≥ ǫ . Poiché K è
compatto, esiste una sottosuccessione

�

akn

�

n∈N , convergente a un elemento c di K . Inoltre
si ha

�

�akn
− bkn

�

�≤ 1

kn

→ 0 ,

quindi akn
− bkn
→ 0 , pertanto si ha anche bkn

→ c . Le successioni
�

akn

�

n∈N e
�

bkn

�

n∈N
sono convergenti a c , ma, ∀n ∈ N , si ha �� f �akn

�− f
�

bkn

��

� ≥ ǫ , quindi
�

f
�

akn

�
�

n∈N
e

�

f
�

bkn

�
�

n∈N
non possono avere lo stesso limite; pertanto, per il teorema 3.5.4, f non è

continua in c .
10Il teorema prende il nome da Heinrich Eduard Heine (Berlino, 1821 - Halle, Germania, 1881) e da Georg

Cantor (San Pietroburgo 1845 - Halle, Germania, 1918). Heine enunciò e dimostrò il teorema in un articolo del
1872; nell’articolo Heine riconosce che Cantor aveva ispirato il suo lavoro. Il teorema era già stato enunciato,
senza una dimostrazione valida, da Bolzano (vedi nota 6) negli anni 30 del XIX secolo e dimostrato da Johann
Lejeune Dirichlet (Düren, Germania 1805 - Göttingen, Germania, 1859) nel 1854.

Heine ha studiato varie questioni di analisi (tra cui la compattezza di insiemi) e ha dato la definizione di
continuità uniforme.

Cantor è stato il fondatore della teoria degli insiemi e dello studio della loro cardinalità.
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Le funzioni uniformemente continue possono essere prolungate in modo naturale a una
funzione uniformemente continua definita nella chiusura del dominio.

3.5.24 Teorema (sulla prolungabilità delle funzioni uniformemente continue)

Siano A⊆R e f : A→R . Se f è uniformemente continua, allora esiste g : A→R
uniformemente continua e tale che g

�

�

A
= f .

Dimostrazione. Se c ∈A , per il teorema 3.1.7, affermazione I, esiste (an)n∈N successione
in A convergente a c ; per il teorema 3.5.22,

�

f (an)
�

n∈N è convergente. Se (bn)n∈N è un’al-
tra successione in A convergente a c , allora an − bn → 0 , quindi, per il teorema 3.5.20,
f (an)− f (bn) → 0 , cioè limn→+∞ f (bn) = limn→+∞ f (an) . Quindi limn→+∞ f (an) di-
pende da c e non dalla successione (an)n∈N convergente a c scelta. Indichiamo con g (c)
tale limite.

Abbiamo così definito una funzione g : A→ R . Se c ∈ A , allora possiamo definire
g (c) mediante la successione che vale costantemente c e si ha

g (c) = lim
n→+∞

f (c) = f (c) ;

quindi g
�

�

A
= f .

Dimostriamo che g è uniformemente continua. Si ha

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x, y ∈A, |x − y|<δǫ =⇒
�

� f (x)− f (y)
�

�< ǫ .

Sia ǫ ∈ R+ . Fissati x, y ∈ A tali che |x − y| < δǫ/3 , esistono (an)n∈N e (bn)n∈N suc-
cessioni in A convergenti, rispettivamente, a x e a y . Quindi, per la definizione di g ,
si ha f (an)→ g (x) e f (bn)→ g (y) ; pertanto, definitivamente, risulta |an − x| < δǫ/3 ,
|bn − y|<δǫ/3 ,

�

� f (an)− g (x)
�

�< ǫ e
�

� f (bn)− g (y)
�

�< ǫ . Da ciò segue

|an − bn| ≤ |an − x|+ |x − y|+ |y − bn |<
δǫ
3
+
δǫ
3
+
δǫ
3
= δǫ ;

quindi, per la uniforme continuità di f , si ha
�

� f (an)− f (bn)
�

�< ǫ ; pertanto, scegliendo n
in modo opportuno,
�

�g (x)− g (y)
�

�≤ ��g (x)− f (an)
�

�+
�

� f (an)− f (bn)
�

�+
�

� f (bn)− g (y)
�

�< ǫ+ ǫ+ ǫ= 3ǫ .

Perciò g è uniformemente continua.



4
Calcolo differenziale
per funzioni reali
di variabile reale

4.1 Derivate

4.1.1 Definizioni e proprietà fondamentali

In questo capitolo definiamo e studiamo la derivata di una funzione. Si tratta di un
concetto fondamentale che ha numerosissime applicazioni.

Vogliamo studiare la rapidità di variazione di una funzione vicino a un punto del suo
dominio. Un’informazione su quanto rapidamente varia una funzione f è fornita dal rap-
porto tra la variazione di f quando si incrementa di una certa quantità il punto in cui
essa viene calcolata e l’incremento stesso. Se consideriamo un punto c e un incremento h

positivo, tale rapporto è
�

f (c + h)− f (c)
�

/h . Ponendo d = c + h , il rapporto diventa

f (d )− f (c)

d − c
.

Osserviamo che, scambiando tra loro c e d , il rapporto non cambia; è quindi indifferente
considerare d > c (come si ottiene se d = c + h con h > 0 ) oppure d < c . Chiamiamo
rapporto incrementale questo rapporto.

Il rapporto incrementale ha un semplice significato geometrico. Determiniamo l’equa-
zione di una retta del piano cartesiano che interseca il grafico di f in due punti di ascissa c

e d , rispettivamente. Una retta passante per
�

c , f (c)
�

ha equazione y − f (c) = m(x − c) ,
dove m ∈ R è il suo coefficiente angolare. Tale retta passa anche per

�

d , f (d )
�

se risulta
f (d )− f (c) = m(d− c) , cioè m =

�

f (d )− f (c)
�

/(d− c) . Quindi il rapporto incrementale
è il coefficiente angolare della retta che interseca il grafico di f nei due punti scelti.

Il rapporto incrementale ha anche un significato fisico. Se f è la legge del moto di un
punto materiale che si muove su una retta, il rapporto incrementale è il rapporto tra uno
spostamento del punto e il tempo impiegato per effettuare tale spostamento; si ha quindi
la velocità media del punto nell’intervallo di tempo considerato. Precisiamo che si tratta
della velocità media con segno: è positiva se il punto si sposta nella direzione delle ascisse
crescenti, negativa in caso contrario.
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c

f (c)

d

f (d )

Figura 4.1.1
Il rapporto incrementale di f tra c e d è
il coefficiente angolare della retta passante
per i due punti
�

c , f (c)
�

e
�

d , f (d )
�

.

Formalizziamo questo concetto nella seguente definizione.

Definizione di rapporto incrementale di una funzione

Siano A ⊆ R , f : A → R e c , d ∈ A tali che c 6= d . Chiamiamo rapporto
incrementale di f tra c e d il numero reale

R f (d , c) =
f (d )− f (c)

d − c
.

Evidentemente scambiando c e d il rapporto incrementale non cambia, cioè risulta
R f (d , c) = R f (c , d ) .

Riprendiamo il significato geometrico del rapporto incrementale. Se la funzione f non
ha brusche variazioni, possiamo aspettarci che, quando d è vicino a c , la retta passante per
�

c , f (c)
�

e
�

d , f (d )
�

sia “vicina” alla porzione del grafico di f compresa tra tali punti.
Questo suggerisce di considerare punti d sempre più vicini a c , contando sul fatto che
la retta sia sempre più “vicina” al grafico della funzione. Poiché la retta è individuata dal
suo coefficiente angolare, che è il rapporto incrementale di f tra c e d , risulta naturale
considerare il limite del rapporto incrementale per d che tende a c . Supponendo che
tale limite esista e sia reale, indichiamolo con ℓ . Allora la retta passante per

�

c , f (c)
�

e
�

d , f (d )
�

“tende” alla retta passante per
�

c , f (c)
�

di coefficiente angolare ℓ . Tale retta è
quella che approssima meglio il grafico di f vicino a

�

c , f (c)
�

, cioè è la retta tangente al
grafico in tale punto.

Consideriamo invece il significato fisico del rapporto incrementale. Se f è la legge del
moto di un punto materiale che si muove su una retta, sappiamo che il rapporto incremen-
tale tra c e d è la velocità media del punto nell’intervallo di tempo individuato da c e d .
Se il punto non si muove a scatti, la velocità media in un intervallo di tempo piccolo è una
buona approssimazione della velocità effettiva del punto. Risulta naturale considerare il
limite della velocità media quando la durata dell’intervallo tende a 0 , cioè per d che tende
a c . Questo limite, se esiste, è la velocità all’istante c .

Formalizziamo questo concetto nella seguente definizione.
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c

f (c)

Figura 4.1.2
Il limite del rapporto incrementale di f è
il coefficiente angolare della retta tangente
al grafico di f nel punto

�

c , f (c)
�

.

Definizione di funzione derivabile in un punto e di derivata

Siano A ⊆ R , f : A→ R e c ∈ A∩ D(A) . Diciamo che f è derivabile in c
quando esiste ed è reale

lim
x→c

f (x)− f (c)

x − c
.

In tal caso chiamiamo derivata di f in c tale limite e lo indichiamo con f ′(c) .

Per indicare la derivata di f in c si usano anche le notazioni

D f (c) ,
d f (x)

d x

�

�

�

�

x=c

,
d

d x
f (x)

�

�

�

�

x=c

.

Notiamo che la derivata in c di una funzione da A a R è definita quando c ∈A∩D(A) .
Infatti, per definire il rapporto incrementale, occorre che c sia un punto del dominio;
affinché sia definito il limite del rapporto incrementale, occorre che c sia un punto di
accumulazione per il dominio.

Talvolta è utile definire la derivata esplicitando l’incremento della variabile da cui dipen-
de la funzione, anziché il punto in cui essa viene calcolata; indicando con h l’incremento,
si ha x = c + h , quindi

f ′(c) = lim
h→0

R f (c + h, c) = lim
h→0

f (c + h)− f (c)

h
.

Osserviamo che il limite di una funzione dipende solo dai valori che essa assume in un
intorno del punto a cui tende la variabile (v. teorema 3.3.8). Pertanto anche la derivata
di una funzione in un punto dipende solo dai valori che essa assume in un intorno di tale
punto.

Come la continuità, anche la derivabilità di una funzione riguarda un punto del domi-
nio, ma solitamente una funzione è derivabile in più punti; quindi è naturale definire la
derivabilità in un insieme.
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Definizione di funzione derivabile in un insieme

Siano A⊆R , f : A→R e B ⊆A∩D(A) .
Diciamo che f è derivabile in B quando ∀c ∈ B , f è derivabile in c .
Nel caso che sia A⊆D(A) diciamo che f è derivabile quando è derivabile in A .

La condizione A ⊆ D(A) è verificata, ad esempio, quando A è un intervallo oppure
quando A è aperto.

Se f è derivabile risulta definita una funzione da A a R che a ogni x ∈A fa corrispon-
dere f ′(x) . Naturalmente indichiamo tale funzione con f ′ .

4.1.1 Esempio. Siano ℓ ∈R e k ∈N \ {0,1} . Consideriamo le funzioni:

f1 : R→R , f1(x) = ℓ ,

f2 : R→R , f2(x) = x ,

f3 : R→R , f3(x) = xk ,

f4 : [0,+∞[→R , f4(x) =
p

x ,

f5 : R→R , f5(x) = |x| .

f1

1

1

f2

1

1

f3

1

1

f4

1

1

f5

1

1
Figura 4.1.3
Le funzioni studiate nell’e-
sempio 4.1.1.
Per f1 è ℓ = 1 ; per f3 è
k = 2 (in rosso) e k = 3 (in
blu).

Sia c ∈R ; ∀x ∈R \ {c} , si ha

R f1
(x, c) =

ℓ− ℓ
x − c

= 0−−→
x→c

0 .

Pertanto f1 è derivabile e, ∀c ∈R , si ha f ′1 (c) = 0 .
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Sia c ∈R ; ∀x ∈R \ {c} , si ha

R f2
(x, c) =

x − c

x − c
= 1−−→

x→c
1 .

Pertanto f2 è derivabile e, ∀c ∈R , si ha f ′2 (c) = 1 .

Sia c ∈R ; ∀x ∈R \ {c} , utilizzando il teorema 1.3.19, si ha

R f3
(x, c) =

xk − c k

x − c
=
(x − c)
∑k−1

j=0
x j c k− j−1

x − c
=

k−1
∑

j=0

x j c k− j−1 −−→
x→c

k−1
∑

j=0

c j c k− j−1 = kc k−1 .

Pertanto f3 è derivabile e, ∀c ∈R , si ha f ′3 (c) = kc k−1 .

Sia c ∈R ; ∀x ∈ [0,+∞[ \ {c} , si ha

R f4
(x, c) =

p
x −pc

x − c
=

�p
x −pc
��p

x +
p

c
�

(x − c)
�p

x +
p

c
� =

x − c

(x − c)
�p

x +
p

c
� =

=
1p

x +
p

c
−−→
x→c







+∞ , se c = 0 ,

1

2
p

c
, se c ∈ ]0,+∞[ .

Pertanto f4 è derivabile in ]0,+∞[ e, ∀c ∈ ]0,+∞[ , si ha f ′4 (c) = 1/
�

2
p

c
�

, mentre non
è derivabile in 0 .

Sia c ∈R ; ∀x ∈R \ {c} , si ha

R f5
(x, c) =

|x| − |c |
x − c

.

Se c ∈R+ , allora esiste un intorno di c incluso in R+ ; in tale intorno |x|= x , pertanto

lim
x→c

R f5
(x, c) = lim

x→c

x − c

x − c
= lim

x→c
1= 1 .

Se c ∈ R− , allora esiste un intorno di c incluso in R− ; in tale intorno |x| = −x ,
pertanto

lim
x→c

R f5
(x, c) = lim

x→c

−x + c

x − c
= lim

x→c
(−1) =−1 .

Se c = 0 si ha

R f5
(x, 0) =

|x|
x
=

�−1 , se x < 0 ,
1 , se x > 0 .

Quindi, per x→ 0 , il limite sinistro del rapporto incrementale è −1 , mentre il limite destro
è 1 ; quindi il limite non esiste. Pertanto f5 è derivabile in R∗ , mentre non è derivabile in 0 .

Definiamo la funzione segno:

sgn: R→R , sgn(x) =









−1 , se x ∈R− ,
0 , se x = 0 ,

1 , se x ∈R+ .
Si ha, ∀x ∈R∗ , d |x|/d x = sgn(x) .
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f ′1 f ′2

1

1

f ′3

1

2

f ′4

1

1

2

f ′5

1

−1
Figura 4.1.4
Derivate delle funzioni stu-
diate nell’esempio 4.1.1.
Per f3 è k = 2 (in rosso) e
k = 3 (in blu).

Introduciamo ora una caratterizzazione della derivabilità che risulta estremamente utile
per provare le proprietà della derivata.

4.1.2 Teorema (caratterizzazione della derivabilità)

Siano A⊆ R , f : A→ R e c ∈ A∩D(A) . Le seguenti affermazioni sono equiva-
lenti:

I) f è derivabile in c ;

II) esiste ℓ ∈R tale che

f (x) = f (c)+ ℓ(x − c)+ o(x − c) , per x→ c ;

III) esiste ϕ : A→R continua in c e tale che, ∀x ∈A , si ha

f (x) = f (c)+ϕ(x)(x − c) .

Se tali affermazioni sono vere risulta f ′(c) = ℓ= ϕ(c) .

Ricordiamo che la notazione g (x) = o
�

h(x)
�

, per x → c , indica che g (x)/h(x)→ 0 ,
per x→ c . Quindi l’uguaglianza f (x) = f (c)+ ℓ(x − c)+ o(x− c) , che può essere scritta
nella forma f (x)− f (c)− ℓ(x − c) = o(x − c) , significa che si ha

lim
x→c

f (x)− f (c)− ℓ(x − c)

x − c
= 0 .
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Dimostrazione. I =⇒ III) Supponiamo f derivabile in c . Sia ϕ : A→R tale che

ϕ(x) =







f (x)− f (c)

x − c
, se x ∈A\ {c} ,

f ′(c) , se x = c .

Per la definizione di derivata ϕ è continua in c . Se x ∈A\ {c} si ha

f (c)+ϕ(x)(x − c) = f (c)+
f (x)− f (c)

x − c
(x − c) = f (c)+ f (x)− f (c) = f (x) ,

mentre se x = c si ha

f (c)+ϕ(x)(x − c) = f (c)+ f ′(c)(c − c) = f (c) ;

quindi, ∀x ∈A , si ha
f (x) = f (c)+ϕ(x)(x − c) .

Pertanto è verificata l’affermazione III con ϕ(c) = f ′(c) .

III =⇒ II) Supponiamo che esista ϕ : A→ R continua in c e tale che, ∀x ∈ A , si ha
f (x) = f (c)+ϕ(x)(x − c) . Allora

f (x) = f (c)+ϕ(c)(x−c)+
�

ϕ(x)−ϕ(c)�(x−c) = f (c)+ϕ(c)(x−c)+o(x−c) , per x→ c ,

perché limx→c

�

ϕ(x)−ϕ(c)�= 0 .
Pertanto è verificata l’affermazione II con ℓ= ϕ(c) .

II =⇒ I) Supponiamo che sia f (x) = f (c)+ℓ(x− c)+ o(x− c) , per x→ c . Allora si ha

f (x)− f (c)

x − c
=

f (c)+ ℓ(x − c)+ o(x − c)− f (c)

x − c
= ℓ+

o(x − c)

x − c
−−→
x→c

ℓ .

Pertanto è verificata l’affermazione I con f ′(c) = ℓ .

Per l’affermazione II, se f è derivabile in c , allora esiste un polinomio p , di grado al
più 1 , tale che la differenza f (x)− p(x) è “piccola”, nel senso che è o(x − c) , per x→ c .
Tale polinomio è p(x) = f (c)+ f ′(c)(x− c) . Questo è l’unico polinomio di grado al più 1
che ha questa proprietà. Infatti se la differenza tra un polinomio e f è o(x−c) , per x→ c ,
allora la differenza si annulla in c , quindi il polinomio vale f (c) in c , pertanto è del tipo
f (c)+ ℓ(x − c) . Per l’affermazione II deve essere ℓ= f ′(c) .

Il grafico di tale polinomio è la retta di equazione y = f (c)+ f ′(c)(x−c) . Per i motivi già
esposti, questa retta è quella che approssima meglio il grafico di f vicino al punto

�

c , f (c)
�

.

Se f è derivabile in c , chiamiamo retta tangente al grafico di f nel punto
�

c , f (c)
�

la retta di equazione

y = f (c)+ f ′(c)(x − c) .
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4.1.3 Teorema (sulla continuità delle funzioni derivabili)

Siano A ⊆ R , f : A→ R e c ∈ A∩ D(A) . Se f è derivabile in c , allora f è
continua in c .

Dimostrazione. Per la caratterizzazione della derivabilità 4.1.2, esiste ϕ : A→R continua
in c e tale che, ∀x ∈A , si ha f (x) = f (c)+ϕ(x)(x−c) ; perciò f è somma di una funzione
costante con una funzione continua in c , quindi è continua in c .

4.1.4 Osservazione. Non vale il viceversa di questo teorema: esistono funzioni continue
non derivabili.

Nell’esempio 4.1.1 abbiamo visto che le funzioni valore assoluto e radice quadrata, che
sono continue, non sono derivabili in 0 .

4.1.2 Operazioni sulle derivate

Studiamo le regole per il calcolo della derivata di una funzione ottenuta da funzioni più
semplici mediante operazioni algebriche.

4.1.5 Teorema (sull’algebra delle derivate)

Siano A ⊆ R , f , g : A → R , m ∈ R e c ∈ A∩ D(A) . Supponiamo f e g
derivabili in c . Allora:

I) f + g è derivabile in c e si ha

( f + g )′(c) = f ′(c)+ g ′(c) ;

II) m f è derivabile in c e si ha

(m f )′(c) = m f ′(c) ;

III) f g è derivabile in c e si ha

( f g )′(c) = f ′(c)g (c)+ f (c)g ′(c) .

Se inoltre ∀x ∈A , si ha g (x) 6= 0 , allora:

IV) 1/g è derivabile in c e si ha

�

1

g

�′
(c) =− g ′(c)
�

g (c)
�2

.

V) f /g è derivabile in c e si ha

�

f

g

�′
(c) =

f ′(c)g (c)− f (c)g ′(c)
�

g (c)
�2

.
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Dimostrazione. Utilizziamo la caratterizzazione della derivabilità 4.1.2, che garantisce
che esistono ϕ,ψ : A→R continue in c e tali che, ∀x ∈A , risulta

f (x) = f (c)+ϕ(x)(x − c) ,

g (x) = g (c)+ψ(x)(x − c) ,

e si ha ϕ(c) = f ′(c) e ψ(c) = g ′(c) .

I) Per x ∈A si ha

f (x)+ g (x) = f (c)+ϕ(x)(x − c)+ g (c)+ψ(x)(x − c) =

= f (c)+ g (c)+
�

ϕ(x)+ψ(x)
�

(x − c) ;

la funzione ϕ + ψ è continua in c , perché somma di funzioni continue in c , perciò è
verificata l’affermazione III del teorema 4.1.2, quindi f + g è derivabile in c e la derivata
è il valore della funzione ϕ+ψ in c , cioè ( f + g )′(c) = ϕ(c)+ψ(c) = f ′(c)+ g ′(c) .

II) Per x ∈A si ha

m f (x) = m
�

f (c)+ϕ(x)(x − c)
�

= m f (c)+mϕ(x)(x − c) ;

la funzione mϕ è continua in c , perché prodotto di una funzione continua in c per una
costante, perciò è verificata l’affermazione III del teorema 4.1.2, quindi m f è derivabile
in c e la derivata è il valore della funzione mϕ in c , cioè (m f )′(c) = mϕ(c) = m f ′(c) .

III) Per x ∈A si ha

f (x)g (x) =
�

f (c)+ϕ(x)(x − c)
��

g (c)+ψ(x)(x − c)
�

=

= f (c)g (c)+ϕ(x)(x − c)g (c)+ f (c)ψ(x)(x − c)+ϕ(x)ψ(x)(x − c)2 =

= f (c)g (c)+
�

ϕ(x)g (c)+ f (c)ψ(x)+ϕ(x)ψ(x)(x − c)
�

(x − c) ;

la funzione x 7→ ϕ(x)g (c)+ f (c)ψ(x)+ϕ(x)ψ(x)(x − c) è continua in c , perché somma di
funzioni continue in c , perciò è verificata l’affermazione III del teorema 4.1.2, quindi f g
è derivabile in c e la derivata è il valore in c della funzione

x 7→ ϕ(x)g (c)+ f (c)ψ(x)+ϕ(x)ψ(x)(x − c) ,
cioè

( f g )′(c) = ϕ(c)g (c)+ f (c)ψ(c)+ϕ(c)ψ(c)(c − c) = f ′(c)g (c)+ f (c)g ′(c) .

IV) Per x ∈A si ha

1

g (x)
=

1

g (c)+ψ(x)(x − c)
=

1

g (c)
+

1

g (c)+ψ(x)(x − c)
− 1

g (c)
=

=
1

g (c)
+

g (c)− �g (c)+ψ(x)(x − c)
�

�

g (c)+ψ(x)(x − c)
�

g (c)
=

1

g (c)
− ψ(x)
�

g (c)+ψ(x)(x − c)
�

g (c)
(x − c) ;

la funzione

x 7→ − ψ(x)
�

g (c)+ψ(x)(x − c)
�

g (c)
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è continua in c , perché quoziente di funzioni continue in c , perciò è verificata l’afferma-
zione III del teorema 4.1.2, quindi 1/g è derivabile in c e la derivata è il valore in c della
funzione

x 7→ − ψ(x)
�

g (c)+ψ(x)(x − c)
�

g (c)
,

pertanto
�

1

g

�′
(c) =− ψ(c)
�

g (c)+ψ(c)(c − c)
�

g (c)
=− g ′(c)
�

g (c)
�2

.

V) Poiché f /g = f (1/g ) , la funzione f /g è prodotto di una funzione derivabile in c
per la reciproca di una funzione derivabile in c , quindi, per le affermazioni III e IV, è
derivabile in c e si ha
�

f

g

�′
(c) = f ′(c)

1

g (c)
+ f (c)
�

1

g

�′
(c) = f ′(c)

1

g (c)
− f (c)

g ′(c)
�

g (c)
�2
=

f ′(c)g (c)− f (c)g ′(c)
�

g (c)
�2

.

4.1.6 Esempio. Consideriamo un polinomio p di grado k ∈N∗ . Sia cioè

p(x) =
k
∑

j=0

α j x j ,

con α0,α1, . . . ,αk−1 ∈ R e αk ∈ R∗ . Nell’esempio 4.1.1 abbiamo provato che le funzioni
costanti e le funzioni potenza a esponente intero positivo sono derivabili. Per il teorema sul-
l’algebra delle derivate 4.1.5, affermazione II, ognuno degli addendi x 7→ α j x j è derivabile,
pertanto, per l’affermazione I, p è derivabile e, ∀x ∈R , si ha

p ′(x) =
k
∑

j=0

dα j x j

d x
=

k
∑

j=0

α j

d x j

d x
=

k
∑

j=1

α j j x j−1 .

Osserviamo che l’addendo che si ottiene per j = 0 è una funzione costante, che ha derivata
nulla.

4.1.7 Esempio. Sia k ∈N∗ . Nell’esempio 4.1.1 abbiamo stabilito che la funzione

f3 : R→R , f3(x) = xk ,

è derivabile e, ∀x ∈R , si ha f ′3 (x) = k xk−1 (intendendo che se k = 1 abbiamo la funzione
costante 1 ). Per il teorema sull’algebra delle derivate 4.1.5, affermazione IV, applicato a
f3
�

�

R∗
, la funzione x 7→ x−k è derivabile e, ∀x ∈R∗ , si ha

d x−k

d x
=

f ′3 (x)
�

f3(x)
�2
=

k xk−1

x2k
=−k x−k−1

Possiamo unificare questo risultato con ciò che si è stabilito nell’esempio 4.1.1 relativa-
mente alla funzione f3 , affermando che, per k ∈ Z∗ , la funzione x 7→ xk è derivabile con
derivata k xk−1 , per ogni x appartenente al dominio.



4.1. Derivate 173

4.1.3 Derivata di funzione composta e di funzione inversa

Studiamo ora la derivabilità della composizione di funzioni derivabili e dell’inversa di
una funzione derivabile.

4.1.8 Teorema (sulla derivata della composizione)

Siano A,B ⊆ R , f : A→ R , g : B → R e c ∈ A∩ D(A) . Supponiamo che sia
f (A)⊆ B e f (c) ∈ D(B) . Se f è derivabile in c e g è derivabile in f (c) , allora g ◦ f
è derivabile in c e

(g ◦ f )′(c) = g ′
�

f (c)
�

f ′(c) .

Dimostrazione. Per la caratterizzazione della derivabilità 4.1.2, esistono ϕ : A→R e
ψ : B→R , continue rispettivamente in c e in f (c) , tali che

∀x ∈A, f (x) = f (c)+ϕ(x)(x − c) ,

∀y ∈ B , g (y) = g
�

f (c)
�

+ψ(y)
�

y − f (c)
�

;

inoltre risulta ϕ(c) = f ′(c) e ψ
�

f (c)
�

= g ′
�

f (c)
�

. Si ha, ∀x ∈A ,

g
�

f (x)
�

= g
�

f (c)
�

+ψ
�

f (x)
��

f (x)− f (c)
�

= g
�

f (c)
�

+ψ
�

f (x)
�

ϕ(x)(x − c) ;

la funzione f è derivabile in c , quindi è continua in c (v. teorema 4.1.3), pertanto la
funzione x 7→ψ� f (x)�ϕ(x) è prodotto di funzioni continue in c , perciò è continua in c ,
inoltre, per x = c , tale funzione vale g ′

�

f (c)
�

f ′(c) . Dalla caratterizzazione della deriva-
bilità 4.1.2 segue che g ◦ f è derivabile in c con derivata g ′

�

f (c)
�

f ′(c) .

4.1.9 Teorema (sulla derivata della funzione inversa)

Siano I ⊆R intervallo, f : I →R continua e iniettiva e c ∈ I . Se f è derivabile
in c e f ′(c) 6= 0 , allora f −1 è derivabile in f (c) e

( f −1)′
�

f (c)
�

=
1

f ′(c)
.

Dimostrazione. Per la caratterizzazione della derivabilità 4.1.2, esiste ϕ : I →R , continua
in c , tale che, ∀x ∈ I , si ha

f (x) = f (c)+ϕ(x)(x − c) ,

e risulta ϕ(c) = f ′(c) . Se y ∈ f (I ) =D
�

f −1
�

, allora si ha

y = f
�

f −1(y)
�

= f (c)+ϕ
�

f −1(y)
��

f −1(y)− c
�

,

quindi
y − f (c) = ϕ
�

f −1(y)
��

f −1(y)− c
�

.

Se y 6= f (c) , allora il primo membro è diverso da 0 , quindi ciascuno dei due fattori a
secondo membro è diverso da 0 , in particolare ϕ

�

f −1(y)
�

6= 0 ; se invece y = f (c) , allora

ϕ
�

f −1(y)
�

= ϕ
�

f −1
�

f (c)
�
�

= ϕ(c) = f ′(c) 6= 0 .
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Perciò ∀y ∈ f (I ) si ha ϕ
�

f −1(y)
�

6= 0 . Quindi risulta

f −1(y)− c =
1

ϕ
�

f −1(y)
�

�

y − f (c)
�

,

cioè

f −1(y) = f −1
�

f (c)
�

+
1

ϕ
�

f −1(y)
�

�

y − f (c)
�

.

Poiché f è continua in un intervallo ed è iniettiva, per il teorema 3.5.17, affermazio-
ne II, f −1 è continua, inoltre ϕ è continua in c , quindi la funzione y 7→ 1/ϕ

�

f −1(y)
�

è
continua in f (c) . Per la caratterizzazione della derivabilità 4.1.2, f −1 è derivabile in f (c)
con derivata

1

ϕ
�

f −1
�

f (c)
�
� =

1

ϕ(c)
=

1

f ′(c)
.

La formula di derivazione di funzione inversa enunciata sopra può essere scritta in un’al-
tra forma, più adatta a calcolare la derivata. Se d ∈ f (I ) e f ′

�

f −1(d )
�

6= 0 , ponendo
c = f −1(d ) si ha

( f −1)′(d ) =
1

f ′
�

f −1(d )
� .

4.1.10 Osservazione. Per ogni x ∈A , si ha ( f −1 ◦ f )(x) = x , pertanto, se f è derivabile
in c e f −1 è derivabile in f (c) , per il teorema sulla derivata della composizione 4.1.8, si
ha ( f −1)′
�

f (c)
�

f ′(c) = 1 , quindi deve essere f ′(c) 6= 0 e risulta ( f −1)′
�

f (c)
�

= 1/ f ′(c) .

Segue da qui che, se f ′(c) = 0 , allora f −1 non è derivabile in f (c) .
Perciò la formula di derivazione della funzione inversa è conseguenza della formu-

la di derivazione della composizione, ma per dedurre questo occorre prima provare la
derivabilità della funzione inversa.

La formula di derivazione della funzione inversa può essere ottenuta anche con conside-
razioni geometriche. Se f è derivabile in c , allora la retta t f , tangente al grafico di f nel

punto
�

c , f (c)
�

, ha coefficiente angolare f ′(c) . Il grafico di f −1 si ottiene dal grafico di f

scambiando ascisse con ordinate, il punto
�

c , f (c)
�

diventa
�

f (c), c
�

e, se f −1 è derivabile
in f (c) , la retta tangente al suo grafico in tale punto si ottiene dalla retta t f scambiando

ascisse con ordinate e ha coefficiente angolare ( f −1)′
�

f (c)
�

. Poiché questa retta non è pa-
rallela all’asse delle ordinate, t f non può essere parallela all’asse delle ascisse, quindi deve
essere f ′(c) 6= 0 . Inoltre scambiando ascisse con ordinate il coefficiente angolare di una
retta diventa il reciproco, quindi ( f −1)′

�

f (c)
�

= 1/ f ′(c) .

4.1.11 Esempio. Sia k ∈N \ {0,1} . La funzione radice k -sima è l’inversa della funzione

f6 : [0,+∞[→R , f6(x) = xk .

Nell’esempio 4.1.1 abbiamo stabilito che la funzione potenza di esponente k è deriva-
bile con derivata la funzione x 7→ k xk−1 . La funzione f6 è una restrizione della funzione
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c

f (c)

f (c)

c

f

f −1

Figura 4.1.5
Il grafico di f −1 è il simmetrico rispet-
to alla retta y = x (in nero) del grafico
di f . La retta tangente al grafico di f −1

in
�

f (c), c
�

è la simmetrica della retta tan-
gente al grafico di f in

�

c , f (c)
�

.

potenza, quindi è anch’essa derivabile con la stessa derivata, che è diversa da 0 in tutti i
punti del dominio escluso 0 . Per il teorema sulla derivata della funzione inversa, f −1

6 è
derivabile in tutti i punti d del dominio tali che d 6= f6(0) = 0 e, ∀d ∈ ]0,+∞[ , si ha

f −1
6 (d ) =

1

f ′6
�

f −1
6 (d )
� =

1

f ′6
� k
p

d
� =

1

k
� k
p

d
�k−1

=
1

k

� kp
d
�1−k
=

1

k
d (1/k)−1 .

Per l’osservazione 4.1.10, f −1
6 non è derivabile in 0 .

Sia q ∈ Q+ \Z , q = j/k , con j ∈ N∗ e k ∈ N \ {0,1} . Consideriamo la funzione
potenza di esponente q , cioè

f7 : [0,+∞[→R , f7(x) = xq .

Tale funzione è composizione della funzione x 7→ k
p

x con la funzione y 7→ y j . Come
stabilito sopra, la prima funzione è derivabile in R+ , la seconda in tutto il dominio (vedi
esempio 4.1.1). Pertanto, per il teorema sulla derivata della composizione 4.1.8, la funzione
x 7→ xq è derivabile in R+ e, ∀x ∈R+ , si ha

f ′7 (x) =
d
�

k
p

x
� j

d x
= j
�

k
p

x
� j−1 1

k
x (1/k)−1 =

j

k
x ( j/k)−1 = q xq−1 .

Studiamo la derivabilità in 0 . Il rapporto incrementale è

xq − 0q

x − 0
= xq−1 −−→

x→0

�

+∞ , se 0< q < 1 ,
0 , se q > 1 .

Pertanto f7 è derivabile in 0 se e solo se q > 1 e in tal caso si ha f ′7 (0) = 0 .

Sia q ∈ Q− \Z , q = j/k , con j ∈ Z \N e k ∈ N \ {0,1} . Consideriamo la funzione
potenza di esponente q , cioè

f8 : R+→R , f8(x) = xq .
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Tale funzione è composizione della funzione x 7→ k
p

x ristretta a R+ con la funzione
y 7→ y j ; queste funzioni sono derivabili. Pertanto, per il teorema sulla derivata della compo-
sizione 4.1.8, la funzione x 7→ xq è derivabile e, con gli stessi calcoli fatti per f7 , ∀x ∈R+ ,
si ha f ′8 (x) = q xq−1 .

Considerando anche ciò che si è stabilito negli esempi 4.1.1 e 4.1.7, possiamo concludere
che la funzione x 7→ xq , dove q ∈Q∗ , è derivabile in tutto il dominio se q /∈ ]0,1[ , mentre
è derivabile nel dominio escluso 0 se q ∈ ]0,1[ . In tutti i casi la derivata in x , appartenente
all’insieme di derivabilità, è uguale a q xq−1 .

4.1.4 Derivate di ordine superiore

Se una funzione è derivabile, risulta in maniera naturale definita la funzione derivata,
che a ogni punto x del dominio di f fa corrispondere f ′(x) . La funzione f ′ può a sua
volta essere derivabile. Risulta quindi naturale la seguente definizione.

Definizione di funzione derivabile 2 volte e di derivata seconda

Siano A⊆R tale che A⊆D(A) , f : A→R derivabile e c ∈A .
Diciamo che f è derivabile 2 volte in c quando f ′ è derivabile in c . In tal

caso chiamiamo derivata seconda di f in c la derivata di f ′ in c e la indichiamo
con f ′′(c) .

Diciamo che f è derivabile 2 volte quando è derivabile 2 volte in ogni pun-
to di A .

Per indicare la derivata seconda di f in c si usano anche le notazioni

D2f (c) ,
d 2 f (x)

d x2

�

�

�

�

x=c

,
d 2

d x2
f (x)

�

�

�

�

x=c

.

Poiché il concetto di derivata è locale, per definire la derivata seconda è sufficiente che f
sia derivabile in un intorno di c

Se f è derivabile 2 volte si può ripetere il procedimento definendo la derivata terza
e successivamente la derivata quarta ecc. In generale possiamo definire, per induzione, la
derivata di ordine qualunque come segue.

Definizione di funzione derivabile n volte e di derivata n -sima

Siano A⊆R tale che A⊆D(A) , f : A→R , c ∈A e n ∈N∗ . Supponiamo che f
sia derivabile n volte.

Diciamo che f è derivabile n+1 volte in c quando la funzione che a ogni punto
di A fa corrispondere la derivata n -sima di f è derivabile in c . In tal caso chiamiamo
derivata n+ 1 -sima di f in c tale derivata e la indichiamo con f (n+1)(c) .

Diciamo che f è derivabile n+ 1 volte quando è derivabile n+ 1 volte in ogni
punto di A .
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La derivata n -sima della funzione f nel punto c si indica con f (n)(c) o anche con

Dn f (c) ,
d n f (x)

d xn

�

�

�

�

x=c

,
d n

d xn
f (x)

�

�

�

�

x=c

.

Si utilizza anche la scrittura f (0) per indicare la funzione f .
Notiamo che l’affermazione che una funzione è derivabile n volte non esclude che essa

possa essere derivabile anche più di n volte.

Definizione di funzione indefinitamente derivabile

Siano A⊆R tale che A⊆D(A) e f : A→R . Diciamo che f è indefinitamente
derivabile quando, ∀n ∈N∗ , f è derivabile n volte.

Se una funzione f : I → R , con I intervallo di R , è derivabile n volte, con derivate
continue, diciamo che f è una funzione di classe C n . Se è indefinitamente derivabile,
diciamo che f è una funzione di classe C∞ .

Osserviamo che, per il teorema sulla continuità delle funzioni derivabili 4.1.3, se una
funzione è derivabile n volte, allora tutte le derivate di ordine minore di n sono continue.
Se una funzione è indefinitamente derivabile, le derivate di qualunque ordine sono continue.

Indichiamo con C n(I ,R) l’insieme delle funzioni di classe C n da un intervallo I
a R ; analogamente indichiamo con C∞(I ,R) l’insieme delle funzioni di classe C∞ da
un intervallo I a R .

4.1.12 Esempio. Sia k ∈N∗ . Nell’esempio 4.1.1 abbiamo provato che la funzione

f3 : R→R , f3(x) = xk ,

è derivabile, con derivata f ′3 (x) = k xk−1 , ∀x ∈ R . Tale funzione è a sua volta derivabile,
perché prodotto di una costante per una funzione derivabile. Se k = 1 , allora f ′3 è costante,
quindi ha derivata nulla, pertanto f ′′3 è la funzione identicamente nulla. Se k > 1 , allora,
∀x ∈R , si ha f ′′3 (x) = k(k − 1)xk−2 .

Evidentemente f ′′3 è a sua volta derivabile, quindi f3 è derivabile 3 volte. Se k = 1 ,
allora f ′′3 è la funzione nulla, quindi anche f ′′′3 è la funzione nulla. Se k = 2 , allora f ′′3

vale costantemente 2 , pertanto f ′′′3 è la funzione nulla. Se k > 2 , allora, ∀x ∈ R , si ha
f ′′′3 (x) = k(k − 1)(k − 2)xk−3 .

Ripetendo il ragionamento si prova che f3 è indefinitamente derivabile; se n ≤ k risul-

ta, ∀x ∈ R , si ha f (n)3 (x) = k(k − 1) . . . (k − n + 1)xk−n , mentre, se n > k , allora f (n)3 è
identicamente nulla.

Sia k ∈ Z \N . Nell’esempio 4.1.7 abbiamo provato che la funzione x 7→ xk , di do-
minio R∗ , è derivabile e la funzione derivata è x 7→ k xk−1 . Da questo segue facilmente
che tale funzione è indefinitamente derivabile e la derivata n -sima in x ∈ R∗ è uguale a
k(k − 1) . . . (k − n+ 1)xk−n .

Sia q ∈Q+ \Z . Nell’esempio 4.1.11 abbiamo provato che la funzione

f7 : [0,+∞[→R , f7(x) = xq ,
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è derivabile se q /∈ ]0,1[ , mentre è derivabile nel dominio escluso 0 se q ∈ ]0,1[ . Nei
punti di derivabilità si ha f ′7 (x) = q xq−1 . Tale funzione è derivabile se q − 1 /∈ ]0,1[ , cioè
q /∈ ]1,2[ , mentre è derivabile in R+ , ma non in 0 , se q ∈ ]1,2[ . Quindi, se q /∈ ]0,2[ ,
allora f7 è derivabile 2 volte, mentre, se q ∈ ]0,2[ , allora f7 è derivabile 2 volte in R+ .
In ogni caso, nei punti di derivabilità si ha f ′′7 (x) = q(q − 1)xq−2 .

Ripetendo il ragionamento si prova che f7 è indefinitamente derivabile in R+ ; per x

in tale insieme risulta f (n)7 (x) = k(k − 1) . . . (k − n+ 1)xk−n . Inoltre se n < q , allora f7 è

derivabile n volte in 0 . Se si ha n < q < n+1 , allora f (n)7 (x) = q(q−1) . . . (q−n+1)xq−n

non è derivabile in 0 , perché q − n < 1 . Pertanto f7 non è derivabile n + 1 volte in 0 .
Osserviamo che la condizione n < q < n+ 1 equivale a n = [q] .

Sia q ∈Q− \Z . Nell’esempio 4.1.11 abbiamo provato che la funzione

f8 : R+→R , f8(x) = xq ,

è derivabile e la funzione derivata è x 7→ q xq−1 . Da ciò segue facilmente che tale funzione
è indefinitamente derivabile e, ∀x ∈R+ , si ha f (n)8 (x) = k(k − 1) . . . (k − n+ 1)xk−n .

Il calcolo delle derivate di ordine superiore si effettua applicando ripetutamente le regole
di derivazione. Poiché la derivata di una somma è la somma delle derivate, risulta immediato
provare che la derivata n -sima della somma è la somma delle derivate n -sime. Analogamen-
te per la derivata del prodotto di una costante per una funzione. Per il prodotto la situazione
è più complessa, perché la derivata di un prodotto non è il prodotto delle derivate.

4.1.13 Teorema (sull’algebra delle derivate n -sime)

Siano A ⊆ R tale che A ⊆ D(A) , f , g : A → R , m ∈ R , n ∈ N∗ e c ∈ A .
Supponiamo f e g derivabili in n volte in c . Allora:

I) f + g è derivabile n volte in c e si ha

( f + g )(n)(c) = f (n)(c)+ g (n)(c) ;

II) m f è derivabile n volte in c e si ha

(m f )(n)(c) = m f (n)(c) ;

III) f g è derivabile n volte in c e si ha

( f g )(n)(c) =
n
∑

k=0

�

n

k

�

f (n−k)(c)g (k)(c) .

Dimostrazione. I) Dimostriamo il teorema applicando il principio di induzione 1.3.4 al-
la proposizione P (n) : se f e g sono derivabili in n volte in c , allora f +g è derivabile n
volte in c e si ha

( f + g )(n)(c) = f (n)(c)+ g (n)(c) .

La proposizione P (1) è l’affermazione I del teorema sull’algebra delle derivate 4.1.5,
che è vera.
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Supponiamo vera P (n) . Siano f e g derivabili n+1 volte in c . Per ipotesi induttiva
la funzione ( f + g )(n) è somma delle derivate n -sime di f e g , tali funzioni sono derivabili
in c , quindi ( f + g )(n) è derivabile in c , pertanto f + g è derivabile n+ 1 volte in c .

Si ha

( f + g )(n+1)(c) =D
�

( f + g )(n)
�

(c) =D
�

f (n)+ g (n)
�

(c) = f (n+1)(c)+ g (n+1)(c) .

Quindi P (n+ 1) è vera.

II) Dimostriamo il teorema applicando il principio di induzione 1.3.4 alla proposizione
P (n) : se f è derivabile in n volte in c , allora m f è derivabile n volte in c e si ha

(m f )(n)(c) = m f (n)(c) .

La proposizione P (1) è l’affermazione II del teorema sull’algebra delle derivate 4.1.5,
che è vera.

Supponiamo vera P (n) . Sia f derivabile n + 1 volte in c . Per ipotesi induttiva la
funzione (m f )(n) è prodotto di una costante per la derivata n -sima di f , tale funzione è
derivabile in c , quindi (m f )(n) è derivabile in c , pertanto m f è derivabile n + 1 volte
in c .

Si ha
(m f )(n+1)(c) =D

�

(m f )(n)
�

(c) =D
�

m f (n)
�

(c) = m f (n+1)(c) .

Quindi P (n+ 1) è vera.

III) Dimostriamo il teorema applicando il principio di induzione 1.3.4 alla proposizione
P (n) : se f e g sono derivabili in n volte in c , allora f g è derivabile n volte in c e
si ha

( f g )(n)(c) =
n
∑

k=0

�

n

k

�

f (n−k)(c)g (k)(c) .

La proposizione P (1) è l’affermazione III del teorema sull’algebra delle derivate 4.1.5,
che è vera.

Supponiamo vera P (n) . Siano f e g derivabili n+1 volte in c . Per ipotesi induttiva
la funzione ( f g )(n) è somma di prodotti delle derivate fino all’ordine n di f e g , tali
funzioni sono derivabili in c , quindi ( f g )(n) è derivabile in c , pertanto f g è derivabile
n+ 1 volte in c .

Utilizzando le proprietà dei coefficienti binomiali (v. teorema 1.3.15), si ha

( f g )(n+1)(c) =D
�

( f g )(n)
�

(c) =D

� n
∑

k=0

�

n

k

�

f (n−k) g (k)
�

(c) =
n
∑

k=0

�

n

k

�

D
�

f (n−k) g (k)
�

(c) =

=
n
∑

k=0

�

n

k

�

�

f (n−k+1)(c)g (k)(c)+ f (n−k)(c)g (k+1)(c)
�

=

=
n
∑

k=0

�

n

k

�

f (n−k+1)(c)g (k)(c)+
n+1
∑

j=1

�

n

j − 1

�

f (n− j+1)(c)g ( j )(c) =

=

�

n

0

�

f (n+1)(c)g (c)+
n
∑

k=1

��

n

k

�

+

�

n

k − 1

��

f (n−k+1)(c)g (k)(c)+

�

n

n

�

f (c)g (n+1)(c) =
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=

�

n+ 1

0

�

f (n+1)(c)g (c)+
n
∑

k=1

�

n+ 1

k

�

f (n+1−k)(c)g (k)(c)+

�

n+ 1

n+ 1

�

f (c)g (n+1)(c) =

=
n+1
∑

k=0

�

n+ 1

k

�

f (n+1−k)(c)g (k)(c) .

Quindi P (n+ 1) è vera.

4.2 Funzioni derivabili in un intervallo

Studiamo alcune proprietà delle funzioni che sono derivabili in tutti i punti di un
intervallo, esclusi eventualmente gli estremi.

4.2.1 Teorema (di Rolle11)

Sia f : [a, b ]→R . Se f è continua in [a, b ] , derivabile in ]a, b [ e f (a) = f (b ) ,
allora esiste c ∈ ]a, b [ tale che f ′(c) = 0 .

a b

Figura 4.2.1
Per il teorema di Rolle, se f assume gli
stessi valori in a e in b , allora vi è alme-
no un punto del grafico che ha tangente pa-
rallela all’asse delle ascisse.

Dimostrazione. La funzione f è continua in un intervallo chiuso e limitato, che, per il
teorema 3.1.16 è compatto, quindi, per il teorema di Weierstrass 3.5.8, esistono massimo e
minimo di f ; li indichiamo, rispettivamente, con M e m . Poiché m ≤ f (a) = f (b )≤M ,
è verificata almeno una tra le seguenti condizioni:

a) M > f (a) = f (b ) ,

b) m < f (a) = f (b ) ,

c) M = m = f (a) = f (b ) .

Nel caso che sia verificata la a), esiste c ∈ [a, b ] tale che f (c) = M ; poiché M 6= f (a)
e M 6= f (b ) , si ha c 6= a e c 6= b , quindi c ∈ ]a, b [ . Qualunque sia x ∈ [a, b ] si ha

11Il teorema prende il nome daMichel Rolle (Ambert, Francia, 1652 - Parigi, 1719). Oltre al libro in cui compare
questo teorema, pubblicato ne 1691, pubblicò un trattato di algebra.



4.2. Funzioni derivabili in un intervallo 181

f (x)≤ f (c) . Allora per x ∈ [a, c[ si ha f (x)− f (c)≤ 0 e x− c < 0 , quindi R f (x, c)≥ 0 ;
pertanto, per il teorema del confronto 3.3.9, si ha limx→c− R f (x, c)≥ 0 , quindi

f ′(c) = lim
x→c

R f (x, c) = lim
x→c−

R f (x, c)≥ 0 .

D’altra parte, ∀x ∈ ]c , b ] , risulta f (x)− f (c)≤ 0 e x−c > 0 , quindi R f (x, c)≤ 0 , da cui,
analogamente, segue f ′(c)≤ 0 . Poiché si ha sia f ′(c)≥ 0 che f ′(c)≤ 0 risulta f ′(c) = 0 .

Nel caso che sia verificata la b), esiste c ∈ [a, b ] tale che f (c) = m , procedendo come
nel caso a) si ottiene che c ∈ ]a, b [ e f ′(c) = 0 .

Nel caso che sia verificata la c), massimo eminimo di f sono uguali tra di loro, quindi f
è costante, pertanto ha derivata nulla in ogni punto del dominio.

4.2.2 Osservazione. Le tre ipotesi del teorema di Rolle:

a) f è continua in [a, b ] ,

b) f è derivabile in ]a, b [ ,

c) f (a) = f (b ) ,

sono essenziali. Se una delle tre non è verificata può non esistere un punto in cui f ′ si
annulla.

Consideriamo le funzioni

f9 : [−1,1]→R , f9(x) =

�

x , se x ∈ [−1,1[ ,
−1 , se x = 1 ,

f10 : [−1,1]→R , f10(x) = |x| ,
f11 : [−1,1]→R , f11(x) = x .

f9

−1

1

−1

1

f10

−1 1

1 f11

−1

−1

1

1

Figura 4.2.2
Le funzioni per cui non è verificata la tesi del teorema di Rolle studiate nell’osservazio-
ne 4.2.2.

Si verifica facilmente quanto segue.
La funzione f9 è continua in [−1,1[ , ma non è continua in 1 , è derivabile in ]−1,1[

e si ha f9(−1) =−1= f9(1) .
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La funzione f10 è continua in [−1,1] , è derivabile in ]−1,1[\{0} , ma non è derivabile
in 0 , e si ha f10(−1) = 1= f10(1)

La funzione f11 è continua in [−1,1] , è derivabile in ]−1,1[ e risulta f11(−1) = −1 ,
f11(1) = 1 , quindi f11(−1) 6= f11(1) .

È evidente che la derivata di ciascuna delle funzioni, dove è definita, è diversa da 0 .

4.2.3 Teorema (di Cauchy12)

Siano f , g : [a, b ]→R . Se f e g sono continue in [a, b ] e derivabili in ]a, b [ ,
allora esiste c ∈ ]a, b [ tale che

�

f (b )− f (a)
�

g ′(c) =
�

g (b )− g (a)
�

f ′(c) .

Dimostrazione. Poniamo

h : [a, b ]→R , h(x) =
�

f (b )− f (a)
�

g (x)−
�

g (b )− g (a)
�

f (x) .

La funzione h è continua in [a, b ] e derivabile in ]a, b [ , perché f e g godono delle stesse
proprietà. Inoltre si ha

h(a) =
�

f (b )− f (a)
�

g (a)−
�

g (b )− g (a)
�

f (a) = f (b )g (a)− g (b ) f (a) ,

h(b ) =
�

f (b )− f (a)
�

g (b )−
�

g (b )− g (a)
�

f (b ) =− f (a)g (b )+ g (a) f (b ) ,

quindi h(a) = h(b ) . Pertanto h soddisfa le ipotesi del teorema di Rolle 4.2.1, perciò esiste
c ∈ ]a, b [ tale che h ′(c) = 0 . Poiché

h ′(c) =
�

f (b )− f (a)
�

g ′(c)− �g (b )− g (a)
�

f ′(c) ,
si ha

�

f (b )− f (a)
�

g ′(c) =
�

g (b )− g (a)
�

f ′(c) .

Se g ′ non si annulla, allora risulta g (a) 6= g (b ) . Infatti, se fosse g (a) = g (b ) , per il
teorema di Rolle 4.2.1 dovrebbe esistere un punto in cui la derivata si annulla. In questo
caso la tesi del teorema di Cauchy può essere scritta nella forma

f (b )− f (a)

g (b )− g (a)
=

f ′(c)

g ′(c)
.

4.2.4 Osservazione. Il teorema di Cauchy ha una interpretazione fisica. Consideriamo un
punto materiale che si sposta nel piano, sia

�

g (t ), f (t )
�

la sua posizione all’istante t .
Al tempo t la componente della velocità lungo l’asse delle ascisse è g ′(t ) e la compo-

nente lungo l’asse delle ordinate è f ′(t ) . Pertanto la velocità vettoriale è
�

g ′(t ), f ′(t )
�

.
Se la posizione del punto nell’istante iniziale a coincide con quella nell’istante finale b ,

cioè f (b )− f (a) = 0 e g (b )− g (a) = 0 , allora per qualunque c ∈ ]a, b [ è verificata la tesi
del teorema di Cauchy.

Se esiste c ∈ ]a, b [ tale che f ′(c) = g ′(c) = 0 , cioè c’è un istante in cui il punto ha
velocità nulla, allora la tesi del teorema di Cauchy è verificata per tale c .

12Il teorema prende il nome dal già citato Augustin-Louis Cauchy (v. nota 7), che lo pubblicò in un trattato del
1823.
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Supponiamo ora che la posizione finale sia diversa da quella iniziale e che la velocità
non sia mai nulla. Se g (a) 6= g (b ) , allora

�

f (b )− f (a)
�

/
�

g (b )− g (a)
�

è il coefficiente
angolare della retta passante per la posizione iniziale e la posizione finale del punto, mentre
f ′(c)/g ′(c) è il coefficiente angolare della retta che contiene il vettore velocità; pertanto
le due rette sono parallele. Quindi esiste un istante in cui la velocità è parallela allo spo-
stamento del punto tra l’istante a e l’istante b . Un risultato analogo si ottiene anche se
g (a) = g (b ) , mentre f (a) 6= f (b ) .

La velocità del punto materiale è tangente alla traiettoria. Quindi, se il punto cambia
posizione tra il tempo a e il tempo b e non ha mai velocità nulla, per il teorema di Cauchy
c’è un punto della traiettoria in cui la retta tangente è parallela alla retta passante per la
posizione iniziale e la posizione finale del punto.

4.2.5 Esempio. Siano

f12 : [−1,1]→R , f12(x) = x2+ x ,

g12 : [−1,1]→R , g12(x) = x2− x .

Le funzioni f12 e g12 sono polinomiali, quindi derivabili. Cerchiamo c ∈ ]−1,1[ che
verifichi la tesi del teorema di Cauchy.

Si ha f12(1)− f12(−1) = 2 , g12(1)− g12(−1) = −2 e, ∀x ∈ [−1,1] , f ′12(x) = 2x + 1 ,
g ′12(x) = 2x − 1 . Quindi c deve verificare l’equazione 2(2c − 1) = −2(2c + 1) , cioè 4c =
−4c , pertanto c = 0 .

�

f12(1), g12(1)
�

�

f12(−1), g12(−1)
�

�

f13(1), g13(1)
�

�

f13(−1), g13(−1)
�

Figura 4.2.3
Le curve costruite come nell’osservazione 4.2.4 relative alle funzioni studiate nell’esem-
pio 4.2.5.
A sinistra: c’è un punto in cui la tangente alla curva è parallela alla retta passante per la
posizione iniziale e quella finale del punto.
A destra: c’è un punto in cui si annullano sia f ′13 che g ′13 . Tale punto è “angoloso” per la
curva, cioè non esiste retta tangente.
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Siano

f13 : [−1,1]→R , f13(x) = x2+ x3 ,

g13 : [−1,1]→R , g13(x) = x2− x3 .

Le funzioni f13 e g13 sono polinomiali, quindi derivabili. Cerchiamo c ∈ ]−1,1[ che
verifichi la tesi del teorema di Cauchy.

Si ha f13(1)− f13(−1) = 2 , g13(1)− g13(−1) =−2 e, ∀x ∈ [−1,1] , f ′13(x) = 2x + 3x2 ,
g ′13(x) = 2x − 3x2 . Quindi c deve verificare l’equazione 2(2c − 3c2) =−2(2c + 3c2) , cioè
4c =−4c , pertanto c = 0 . In tale punto f ′13 e g ′13 si annullano.

Risulta estremamente utile il seguente caso particolare del teorema di Cauchy.

4.2.6 Teorema (di Lagrange13 o del valor medio)

Sia f : [a, b ]→ R . Se f è continua in [a, b ] e derivabile in ]a, b [ , allora esiste
c ∈ ]a, b [ tale che

f (b )− f (a) = (b − a) f ′(c) .

Dimostrazione. Sia g : [a, b ] → R tale che g (x) = x . Tale funzione è derivabile, con
derivata che vale costantemente 1 . Il teorema di Cauchy 4.2.3 applicato alle funzioni f
e g assicura che esiste c ∈ ]a, b [ tale che f (b )− f (a) = (b − a) f ′(c) .

a

f (a)

b

f (b )

Figura 4.2.4
Per il teorema di Lagrange, vi è almeno
un punto del grafico di f che ha tangen-
te parallela alla retta passante per i punti
�

a, f (a)
�

e
�

b , f (b )
�

.

4.2.7 Osservazione. La tesi del teorema di Lagrange può anche essere scritta come

f ′(c) =
f (b )− f (a)

b − a
.

Abbiamo così una relazione tra derivata e rapporto incrementale che, diversamente dalla
definizione, non coinvolge passaggi al limite. Ciò sarò utile per provare numerosi teoremi.

13Il teorema prende il nome da Giuseppe Luigi Lagrange (Torino, 1736 - Parigi, 1813), che lo pubblicò in un
trattato del 1797. Lagrange è stato tra i fondatori della meccanica analitica e ha dato grandi contributi allo sviluppo
di vari settori dell’analisi. Ottenne anche importanti risultati in astronomia, teoria dei numeri, algebra e geometria
analitica.



4.2. Funzioni derivabili in un intervallo 185

Geometricamente abbiamo una uguaglianza tra il coefficiente angolare di una tangente
al grafico di f e il coefficiente angolare della retta passante per

�

a, f (a)
�

e
�

b , f (b )
�

. Per-
tanto esiste un punto del grafico che ha retta tangente parallela alla retta passante per gli
estremi di tale grafico.

Vediamo alcune conseguenze del teorema di Lagrange.

4.2.8 Teorema (sulle funzioni a derivata nulla)

Siano I ⊆ R intervallo e f : I → R derivabile. Se, ∀x ∈ I , si ha f ′(x) = 0 ,
allora f è costante.

Dimostrazione. Siano x, y ∈ I con x 6= y ; possiamo per esempio supporre x < y . Poi-
ché I è un intervallo si ha [x, y]⊆ I , quindi possiamo applicare il teorema di Lagrange 4.2.6
a f
�

�

[x,y]
. Perciò esiste ξ ∈ ]x, y[ tale che f (y)− f (x) = f ′(ξ )(y − x) ; poiché f ′(ξ ) = 0 ,

si ha f (y)− f (x) = 0 , cioè f (y) = f (x) .
Quindi in tutti i punti del dominio f assume lo stesso valore, cioè è costante.

Il teorema seguente permette, in alcuni casi, di semplificare lo studio della derivabilità
di una funzione.

4.2.9 Teorema (sul limite della derivata)

Siano I ⊆ R intervallo, c ∈ I e f : I →R continua in I e derivabile in I \ {c} .
Se esiste limx→c f ′(x) , allora esiste limx→c R f (x, c) = limx→c f ′(x) .

Dimostrazione. Poniamo ℓ= limx→c f ′(x) . Abbiamo

∀U ∈ Iℓ , ∃VU ∈Ic : ∀x ∈ I \ {c} , x ∈VU =⇒ f ′(x) ∈ U .

Scelto U ∈ Iℓ , sia x ∈ I ∩VU \ {c} . La funzione f è continua nell’intervallo chiuso di
estremi c e x ed è derivabile in tale intervallo escluso il punto c . Quindi sono verificate
le ipotesi del teorema di Lagrange 4.2.6, perciò esiste ξ appartenente all’intervallo aperto
di estremi c e x tale che R f (x, c) = f ′(ξ ) . Poiché c , x ∈VU e VU è un intervallo, si ha
anche ξ ∈ VU , quindi f ′(ξ ) ∈ U , cioè R f (x, c) ∈ U . Pertanto ∀x ∈ I ∩VU \ {c} si ha
R f (x, c) ∈U , quindi f ′(c) = limx→c R f (x, c) = ℓ .

Questo teorema assicura che, se esiste reale il limite di f ′ in c , allora la funzione è
derivabile, con derivata uguale a tale limite. Se invece f ′(x) è divergente per x → c ,
allora f non è derivabile in c . È evidente che il teorema vale anche per i limiti unilateri;
pertanto se f ′ ha limite sinistro e destro in c diversi tra di loro, allora f non è derivabile.

4.2.10 Esempio. Consideriamo la funzione

f14 : R→R , f14(x) = x|x| ,

che è prodotto delle funzioni f2 e f5 (vedi esempio 4.1.1) di dominio R , tali che f2(x) = x
e f5(x) = |x| ; la prima è derivabile in R , la seconda è derivabile in R∗ e non è derivabile
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in 0 . Quindi, per il teorema sull’algebra delle derivate 4.1.5, f14 è derivabile in R∗ e,
∀x ∈R∗ , si ha

f ′14(x) = f ′2 (x) f5(x)+ f2(x) f
′

5 (x) = |x|+ x sgn(x) = |x|+ |x| = 2|x| .

Risulta limx→0 f ′14(x) = limx→0 2|x| = 0 . Pertanto, per il teorema sul limite della deriva-
ta 4.2.9, f14 è derivabile in 0 , con f ′14(0) = 0 .

f14

1

1

−1

−1

f15

1

Figura 4.2.5
Le funzioni studiate negli
esempi 4.2.10 e 4.2.11.

4.2.11 Esempio. Consideriamo la funzione

f15 : R→R , f15(x) = (x − 1)|x| ,

che è prodotto di una funzione polinomiale per la funzione valore assoluto. La prima è
derivabile in R , la seconda è derivabile in R∗ e non derivabile in 0 . Quindi, per il teorema
sull’algebra delle derivate 4.1.5, f15 è derivabile in R∗ e, ∀x ∈R∗ , si ha

f ′15(x) = |x|+ (x − 1) sgn(x) = x sgn(x)+ (x − 1) sgn(x) = (2x − 1) sgn(x) .

Risulta limx→0− f ′15(x) = limx→0− (−2x + 1) = 1 e limx→0+ f ′15(x) = limx→0+ (2x − 1) =−1 ;
quindi, per il teorema sul limite della derivata 4.2.9, limx→0− R f15

(x, c) 6= limx→0+ R f15
(x, c) ,

quindi f15 non è derivabile in 0 .

4.3 Applicazioni del calcolo differenziale

4.3.1 I teoremi di de l’Hôpital

Studiamo ora alcuni teoremi che, utilizzando il calcolo differenziale, forniscono stru-
menti utili per il calcolo dei limiti.

Siano f e g funzioni reali di variabile reale, definite in un intervallo I contenente il
punto c e tali che f (c) = g (c) = 0 , mentre g (x) 6= 0 , per x ∈ I \{c} . Allora, ∀x ∈ I \{c} ,
si ha

f (x)

g (x)
=

f (x)− f (c)

g (x)− g (c)
=

�

f (x)− f (c)
�

/(x − c)
�

g (x)− g (c)
�

/(x − c)
=

R f (x, c)

Rg (x, c)
.

Se f e g sono derivabili in c , con g ′(c) 6= 0 , allora esiste reale il limite, per x → c ,
dell’ultimo membro ed è uguale a f ′(c)/g ′(c) , quindi limx→c

�

f (x)/g (x)
�

= f ′(c)/g ′(c) .
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Osserviamo che, avendo supposto f e g derivabili in c , per il teorema di continuità
delle funzioni derivabili 4.1.3, risulta limx→c f (x) = f (c) = 0 e limx→c g (x) = g (c) = 0 ,
pertanto il limite si presenta in forma indeterminata 0/0 . Se inoltre le funzioni f e g
sono derivabili in I e f ′ e g ′ hanno limite per x → c , allora, per il teorema sul limite
della derivata 4.2.9, risulta limx→c f ′(x) = f ′(c) e limx→c g ′(x) = g ′(c) , quindi

lim
x→c

f (x)

g (x)
= lim

x→c

f ′(x)

g ′(x)
.

Questa osservazione può essere generalizzata nel seguente teorema.

4.3.1 Teorema (de l’Hôpital14, forma 0/0 , x → a )

Siano f , g : ]a, b [→R . Se si ha:
a) f e g sono derivabili,

b) limx→a+ f (x) = limx→a+ g (x) = 0 ,

c) ∀x ∈ ]a, b [ , si ha g ′(x) 6= 0 ,

d) esiste limx→a+ limx→a+
�

f ′(x)/g ′(x)
�

,

allora esiste

lim
x→a+

f (x)

g (x)
= lim

x→a+

f ′(x)

g ′(x)
.

Il teorema è enunciato per il limite destro, perché questo rende più semplice la dimo-
strazione. Ovviamente un teorema del del tutto analogo vale nel caso del limite sinistro,
quindi anche nel caso di limite per x che tende a un punto interno di un intervallo in cui
siano definite le due funzioni f e g .

Dimostrazione. Prolunghiamo f e g all’intervallo [a, b [ ponendo f (a) = g (a) = 0 .
Poiché limx→a+ f (x) = limx→a+ g (x) = 0 le funzioni f e g sono continue anche in a .

Poiché ∀x ∈ ]a, b [ , si ha g ′(x) 6= 0 , risulta g (x) 6= 0 , se x 6= a . Infatti se, per assurdo,
fosse g (x) = 0 , allora si potrebbe applicare il teorema di Rolle 4.2.1 alla restrizione di g
all’intervallo [a, x] , pertanto esisterebbe un punto in cui g ′ si annulla.

Poniamo ℓ= limx→a+
�

f ′(x)/g ′(x)
�

. Allora, per la definizione di limite, si ha

∀U ∈Iℓ , ∃δU ∈R+ : ∀x ∈ ]a, b [ , x ∈ ]a,a+δU [ =⇒
f ′(x)

g ′(x)
∈U .

Fissato U ∈Iℓ , se x ∈ ]a, b [∩]a,a+δU [ , allora, per il teorema di Cauchy 4.2.3 applicato
alle restrizioni di f e g all’intervallo [a, x] , esiste ξx ∈ ]a, x[ tale che

�

f (x)− f (a)
�

g ′(ξx ) =
�

g (x)− g (a)
�

f ′(ξx ) .

14Questo teorema e i seguenti prendono il nome da Guillaume de l’Hôpital (Parigi, 1661 - Parigi, 1704), che li
pubblicò in un trattato di analisi del 1696.

Tali teoremi erano già stati trovati da Johann Bernoulli (Basilea, 1667 - Basilea, 1748, fratello del già citato Jakob,
v. nota 1), che diede importanti contributi allo studio dell’analisi e dell’ottica.
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poiché f (a) = g (a) = 0 e ξx ∈ ]a, x[⊆ ]a,a+δU [ , da qui segue

f (x)

g (x)
=

f ′(ξx)

g ′(ξx )
∈ U .

Abbiamo così dimostrato che, se x ∈ ]a,a+δU [ , allora f (x)/g (x) ∈U ; pertanto esiste

lim
x→a+

f (x)

g (x)
= ℓ .

4.3.2 Esempio. Calcoliamo

lim
x→1

x −px

x − 1
,

già studiato nell’esempio 3.3.1. Il limite è nella forma indeterminata 0/0 . Numerato-
re e denominatore sono derivabili in un intorno di 1 , la derivata del denominatore vale
costantemente 1 , quindi non si annulla. Il quoziente delle derivate è

1− 1/
�

2
p

x
�

1
= 1− 1

2
p

x
−−→
x→1

1

2
.

Pertanto, per il teorema di de l’Hôpital 4.3.1,

lim
x→1

x −px

x − 1
=

1

2
.

4.3.3 Teorema (de l’Hôpital, forma 0/0 , x → +∞ )

Siano f , g : ]a,+∞[→R . Se si ha:
a) f e g sono derivabili,

b) limx→+∞ f (x) = limx→+∞ g (x) = 0 ,

c) ∀x ∈ ]a,+∞[ , si ha g ′(x) 6= 0 ,

d) esiste limx→+∞ limx→a+
�

f ′(x)/g ′(x)
�

,

allora esiste

lim
x→+∞

f (x)

g (x)
= lim

x→+∞
f ′(x)

g ′(x)
.

Dimostrazione. Poniamo b = 1/a se a > 0 e b = 1 se a ≤ 0 . In ogni caso, se y ∈ ]0, b [ ,
allora 1/y ∈ ]a,+∞[ , quindi possiamo definire le funzioni

f : ]0, b [→R , f (y) = f
�

1

y

�

,

g : ]0, b [→R , g (y) = g
�

1

y

�

.

Verifichiamo che f e g soddisfano le condizioni del teorema di de l’Hôpital 4.3.1 per
y→ 0+ . Esse sono derivabili, perché composizione di funzioni derivabili e, ∀y ∈ ]0, b [ ,
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si ha

f ′(y) =− 1

y2
f ′
�

1

y

�

, g ′(y) =− 1

y2
g ′
�

1

y

�

.

Poiché g ′ non si annulla, anche g ′ non si annulla. Inoltre

lim
y→0+

f (y) = lim
y→0+

f
�

1

y

�

= lim
x→+∞

f (x) = 0 ;

analogamente, limy→0+ g (y) = 0 . Infine esiste

lim
y→0+

f ′(y)

g ′(y)
= lim

y→0+

(−1/y2) f ′(1/y)

(−1/y2)g ′(1/y)
= lim

y→0+

f ′(1/y)

g ′(1/y)
= lim

x→+∞
f ′(x)

g ′(x)
.

Allora, per il teorema di de l’Hôpital 4.3.1, esiste

lim
y→0+

f (y)

g (y)
= lim

y→0+

f ′(y)

g ′(y)
,

quindi esiste

lim
x→+∞

f (x)

g (x)
= lim

y→0+

f (y)

g (y)
= lim

y→0+

f ′(y)

g ′(y)
= lim

x→+∞
f ′(x)

g ′(x)
,

Ovviamente un teorema analogo vale per il limite per x→−∞ .

4.3.4 Teorema (de l’Hôpital, forma ℓ/∞ , x → a )

Siano f , g : ]a, b [→R . Se si ha:
a) f e g sono derivabili,

b) g (x) è divergente per x→ a+ ,

c) ∀x ∈ ]a, b [ , si ha g ′(x) 6= 0 ,

d) esiste limx→a+ limx→a+
�

f ′(x)/g ′(x)
�

,

allora esiste

lim
x→a+

f (x)

g (x)
= lim

x→a+

f ′(x)

g ′(x)
.

Dimostrazione. Poiché g è divergente esiste un intorno di 0 in cui essa non si annulla;
si può supporre, eventualmente restringendo il dominio delle funzioni, che non si annulli
in tutto l’intervallo ]a, b [ .

Siano x, y ∈ ]a, b [ con x < y ; per il teorema di Cauchy 4.2.3, applicato alle restrizioni
di f e g all’intervallo [x, y] , esiste ξx,y ∈ ]x, y[ tale che

�

f (y)− f (x)
�

g ′(ξx,y ) =
�

g (y)− g (x)
�

f ′(ξx,y ) .

Pertanto si ha, successivamente,

f (x)− f (y) =
�

g (x)− g (y)
� f ′(ξx,y )

g ′(ξx,y )
,
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f (x) = f (y)+
�

g (x)− g (y)
� f ′(ξx,y )

g ′(ξx,y )
,

f (x)

g (x)
=

f (y)

g (x)
+

f ′(ξx,y )

g ′(ξx,y )
− g (y)

g (x)

f ′(ξx,y )

g ′(ξx,y )
.

Consideriamo il caso limx→a+
�

f ′(x)/g ′(x)
�

= ℓ ∈R .
Per semplificare le notazioni nel seguito, nella definizione di limite scegliamo δǫ pic-

colo, in modo che risulti ]a, b [∩ ]a,a+δǫ[ = ]a,a+δǫ[ ; si ha quindi

∀ǫ ∈R+ , ∃δǫ ∈ ]0, b − a[ : ∀x ∈ ]a,a+δǫ[ ,
�

�

�

�

f ′(x)

g ′(x)
− ℓ
�

�

�

�
< ǫ .

Scelto ǫ ∈ ]0,1[ , fissiamo y ∈ ]a,a + δǫ[ . Poiché g (x) è divergente per x → a+ , si ha
limx→a+ f (y)/g (x) = 0 e limx→a+ g (y)/g (x) = 0 , quindi esiste ηǫ ∈ R+ (che possiamo
supporre minore di δǫ ) tale che, se x ∈ ]a,a+ ηǫ[ , allora

�

�

�

�

f (y)

g (x)

�

�

�

�
< ǫ ,

�

�

�

�

g (y)

g (x)

�

�

�

�
< ǫ .

Se x ∈ ]a,a+ ηǫ[ , allora risulta ξx,y ∈ ]x, y[⊆ ]a,a+δǫ[ , quindi
�

�

�

�

�

f ′(ξx,y )

g ′(ξx,y )
− ℓ
�

�

�

�

�

< ǫ ,

pertanto
�

�

�

�

�

f ′(ξx,y )

g ′(ξx,y )

�

�

�

�

�

=

�

�

�

�

�

f ′(ξx,y )

g ′(ξx,y )
− ℓ+ ℓ
�

�

�

�

�

≤
�

�

�

�

�

f ′(ξx,y )

g ′(ξx,y )
− ℓ
�

�

�

�

�

+ |ℓ|< ǫ+ |ℓ|< 1+ |ℓ| ,

perciò
�

�

�

�

f (x)

g (x)
− ℓ
�

�

�

�
=

�

�

�

�

f (y)

g (x)
+

f ′(ξx,y )

g ′(ξx,y )
− g (y)

g (x)

f ′(ξx,y )

g ′(ξx,y )
− ℓ
�

�

�

�
≤

≤
�

�

�

�

f (y)

g (x)

�

�

�

�
+

�

�

�

�

�

f ′(ξx,y )

g ′(ξx,y )
− ℓ
�

�

�

�

�

+

�

�

�

�

g (y)

g (x)

�

�

�

�

�

�

�

�

�

f ′(ξx,y )

g ′(ξx,y )

�

�

�

�

�

< ǫ+ ǫ+ ǫ
�

1+ |ℓ|�= ǫ�3+ |ℓ|� .

Possiamo quindi concludere che limx→a+
�

f ′(x)/g ′(x)
�

= ℓ .

Consideriamo ora il caso limx→a+
�

f ′(x)/g ′(x)
�

=+∞ . Si ha

∀M ∈R , ∃δM ∈ ]0, b − a[ : ∀x ∈ ]a,a+δM [ ,
f ′(x)

g ′(x)
>M .

Scelto M ∈ ]1,+∞[ fissiamo y ∈ ]a,a +δM [ . Poiché g (x) è divergente per x → a+ , si
ha limx→a+ f (y)/g (x) = 0 e limx→a+ g (y)/g (x) = 0 , quindi esiste ηM ∈R+ (che possiamo
supporre minore di δM ) tale che se, x ∈ ]a,a+ ηM [ , allora

�

�

�

�

f (y)

g (x)

�

�

�

�
<

1

M
,

�

�

�

�

g (y)

g (x)

�

�

�

�
<

1

M
.
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Se x ∈ ]a,a+ ηM [ , allora si ha

f (x)

g (x)
=

f (y)

g (x)
+

f ′(ξx,y )

g ′(ξx,y )
− g (y)

g (x)

f ′(ξx,y )

g ′(ξx,y )
≥

≥−
�

�

�

�

f (y)

g (x)

�

�

�

�
+

f ′(ξx,y )

g ′(ξx,y )

�

1−
�

�

�

�

g (y)

g (x)

�

�

�

�

�

>− 1

M
+M
�

1− 1

M

�

≥M − 2 .

Possiamo quindi concludere che limx→a+
�

f ′(x)/g ′(x)
�

=+∞ .

Nel caso che sia limx→a+
�

f ′(x)/g ′(x)
�

=−∞ la dimostrazione è analoga.

4.3.5 Teorema (de l’Hôpital, forma ℓ/∞ , x → +∞ )

Siano f , g : ]a,+∞[→R . Se si ha:
a) f e g sono derivabili,

b) g (x) è divergente per x→+∞ ,

c) ∀x ∈ ]a,+∞[ , si ha g ′(x) 6= 0 ,

d) esiste limx→+∞ limx→a+
�

f ′(x)/g ′(x)
�

,

allora esiste

lim
x→+∞

f (x)

g (x)
= lim

x→+∞
f ′(x)

g ′(x)
.

La dimostrazione si ottiene dal corrispondente teorema di de l’Hôpital per x che tende
a un valore reale in modo analogo a quanto fatto nel caso della forma 0/0 .

Ovviamente un teorema analogo vale per il limite per x→−∞ .

4.3.6 Esempio. Calcoliamo

lim
x→+∞

p
x2+ 2p
x2+ 1

.

Il limite è in forma indeterminata ∞/∞ , ma può essere facilmente calcolato come
segue:

p
x2+ 2p
x2+ 1

=

Æ

x2
�

1+ (2/x2)
�

Æ

x2
�

1+ (1/x2)
�
=

p

1+ (2/x2)
p

1+ (1/x2)
−−−→
x→+∞

1 .

Si può anche cercare di calcolare il limite utilizzando il teorema di de l’Hôpital 4.3.5.
Infatti la funzione di cui cerchiamo il limite è quoziente delle funzioni

f16 : R→R , f16(x) =
p

x2+ 2 ,

g16 : R→R , g16(x) =
p

x2+ 1 .

Per x → +∞ si ha f16(x)→ +∞ e g16(x)→ +∞ . Inoltre f16 e g16 sono derivabili e,
∀x ∈R , si ha

f ′16(x) =
xp

x2+ 2
, g ′16(x) =

xp
x2+ 1

.
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Risulta g ′16(x) 6= 0 , per x ∈R+ . Si ha

f ′16(x)

g ′16(x)
=

x/
p

x2+ 2

x/
p

x2+ 1
=

p
x2+ 1p
x2+ 2

,

pertanto per applicare il teorema di de l’Hôpital occorre determinare

lim
x→+∞

p
x2+ 1p
x2+ 2

.

Questo limite è del tutto analogo a quello che stiamo studiando, pertanto il teorema di de
l’Hôpital non agevola il calcolo del limite.

4.3.2 La formula di Taylor

Sappiamo che il grafico di una funzione ha una retta tangente in ogni punto di derivabi-
lità; da un altro punto di vista, una funzione derivabile può essere approssimata da un po-
linomio di primo grado. Cerchiamo di migliorare l’approssimazione utilizzando polinomi
di grado maggiore.

4.3.7 Esempio. Sia

f17 : ]−∞, 1[→R , f17(x) =
1

1− x
.

Per il teorema 1.3.19, ∀n ∈N∗ , se x ∈ ]−∞, 1[ si ha

1− xn+1 = (1− x)
n
∑

k=0

xk1n−k = (1− x)
n
∑

k=0

xk .

Pertanto

1= (1− x)
n
∑

k=0

xk + xn+1 ,

da cui segue
1

1− x
=

n
∑

k=0

xk +
xn+1

1− x
.

Poiché 1/(1− x)→ 1 , per x → 0 , esiste un intorno di 0 in cui tale funzione è limitata;
pertanto l’ultimo addendo è O(xn+1) . Quindi

1

1− x
=

n
∑

k=0

xk +O(xn+1) , per x→ 0 .

Abbiamo così determinato un polinomio che approssima f17 vicino a 0 . Poiché, se n < m ,
allora xm è trascurabile rispetto a xn , per x → 0 , al crescere del grado del polinomio
l’approssimazione migliora.

Studiamo il problema dell’approssimazione di una funzione con polinomi di grado su-
periore al primo nel caso generale. Iniziamo con i polinomi di secondo grado, facendo
considerazioni geometriche simili a quelle fatte per individuare la retta tangente.
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Sia f una funzione derivabile in un intervallo contenente il punto c . Consideriamo
una parabola di equazione y = g (x) con

g (x) = α(x − c)2+β(x − c)+ γ ,

con α,β,γ ∈R . Consideriamo un qualunque polinomio di grado al più 2 , perciò non chie-
diamo che sia α 6= 0 , quindi la parabola può degenerare in una retta. Il polinomio è espresso
mediante potenze di x−c , perché questo semplifica lo studio del suo comportamento per x
vicino a c .

Imponiamo che la parabola passi per
�

c , f (c)
�

e che in questo punto abbia retta tangente
coincidente con la retta tangente al grafico di f . La parabola passa per

�

c , f (c)
�

se e solo se
g (c) = f (c) e in tal caso le rette tangenti sono comuni se e solo se g ′(c) = f ′(c) ; pertanto
deve essere γ = f (c) e β= f ′(c) . Quindi la parabola ha equazione

y = α(x − c)2+ f ′(c) (x − c)+ f (c) .

Imponiamo che la parabola abbia in comune con il grafico di f anche un altro punto
�

d , f (d )
�

; ciò è verificato se risulta

f (d ) = α(d − c)2+ f ′(c) (d − c)+ f (c) ,

cioè

α=
f (d )− f (c)− f ′(c) (d − c)

(d − c)2
.

c

f (c)

d

f (d )

p

f

Figura 4.3.1
La parabola p interseca il grafico di f in
due punti di ascissa c e d ; nel primo di
tali punti il grafico e la parabola hanno la
stessa retta tangente.

Al variare di d varia il coefficiente α del termine di secondo grado dell’equazione della
parabola; studiamo come cambia la parabola per d → c , cioè studiamo il limite di α per
d → c . Il limite è quoziente di funzioni infinitesime, quindi è in forma indeterminata.

Consideriamo la funzione h = f − g , dove è g la funzione il cui grafico è la parabola
individuata sopra. Poiché f è derivabile, anche h lo è; inoltre, h si annulla in c e in d . Per
il teorema di Rolle 4.2.1 esiste un punto d1 , appartenente all’intervallo aperto di estremi c
e d , tale che h ′(d1) = 0 . Supponiamo f derivabile 2 volte; allora anche h lo è, quindi h ′
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è derivabile; inoltre h ′(c) = 0 perché f ′ e g ′ coincidono in c . Perciò possiamo applicare
il teorema di Rolle 4.2.1 alla funzione h ′ nell’intervallo di estremi c e d1 ; quindi esiste d2

in tale intervallo tale che h ′′(d2) = 0 . Poiché d2 è compreso tra c e d1 e d1 è compreso
tra c e d , anche d2 è compreso tra c e d . Si ha

0= h ′′(d2) = f ′′(d2)− g ′′(d2) = f ′′(d2)− 2α ,

perciò α= f ′′(d2)/2 . Quando d tende a c , anche d2 tende a c ; quindi, se f ′′ è continua
in c , allora α tende a f ′′(c)/2 . Perciò la parabola si “avvicina” alla parabola di equazione

y =
f ′′(c)

2
(x − c)2+ f ′(c) (x − c)+ f (c) ,

quando d si avvicina a c . Questa è detta parabola osculatrice al grafico di f nel pun-
to
�

c , f (c)
�

.

c

f (c)

p

f
Figura 4.3.2
La parabola p è la parabola osculatrice al
grafico di f nel punto di ascissa c .

Precisiamo la relazione tra grafico di funzione e parabola osculatrice in termini di pro-
prietà di funzioni. Abbiamo visto che se f è derivabile 2 volte nell’intervallo I , allora
∀c , d ∈ I esiste d2 , compreso tra c e d , tale che il coefficiente α del termine di secondo
grado della parabola osculatrice è uguale a f ′′(d2)/2 ; si ha quindi

f (d ) = f (c)+ f ′(c) (d − c)+
f ′′(d2)

2
(d − c)2 ,

cioè

f (d ) = f (c)+ f ′(c) (d − c)+
f ′′(c)

2
(d − c)2+

f ′′(d2)− f ′′(c)

2
(d − c)2 ;

se f ′′ è continua in c , l’ultimo termine è o
�

(d − c)2
�

per d → c . Perciò

f (d ) = f (c)+ f ′(c) (d − c)+
f ′′(c)

2
(d − c)2+ o
�

(d − c)2
�

, per d → c .

Sotto opportune ipotesi di derivabilità, abbiamo così stabilito che f si può approssi-
mare, in un intorno di c , con un polinomio di secondo grado il cui grafico è la parabola
osculatrice. L’errore che si commette sostituendo il polinomio alla funzione è trascurabile
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rispetto (x−c)2 ; questa approssimazione è migliore di quella col polinomio di primo grado
avente come grafico la retta tangente, in tal caso l’errore è trascurabile rispetto a x − c .

Estendiamo questi ragionamenti ai polinomi di grado qualunque.

Definizione polinomio di Taylor15

Siano I ⊆R intervallo, f : I →R , c ∈ I e n ∈N∗ . Supponiamo f derivabile n
volte in c . Chiamiamo polinomio di Taylor di f di punto iniziale c e ordine n il
polinomio

Tc ,n(x) =
n
∑

k=0

f (k)(c)

k!
(x − c)k .

Utilizziamo questa notazione anche nel caso n = 0 : Tc ,0 denota la funzione che vale
costantemente f (c) .

4.3.8 Esempio. Consideriamo la funzione

f17 : ]−∞, 1[→R , f17(x) =
1

1− x
= (1− x)−1 ,

già studiata nell’esempio 4.3.7.
Determiniamo i polinomi di Taylor di punto iniziale 0 di f17 . La funzione è razionale

fratta, quindi indefinitamente derivabile; ∀x ∈ ]−∞, 1[ , si ha

f ′17(x) = (−1)(1− x)−1−1(−1) = (1− x)−2 ,

f ′′17(x) = (−2)(1− x)−2−1(−1) = 2(1− x)−3 ,

f ′′′17 (x) = 2(−3)(1− x)−3−1(−1) = 3 · 2(1− x)−4 .

È quindi evidente che, come si può dimostrare per induzione, ∀x ∈ ]−∞, 1[ , ∀n ∈ N , si
ha f (n)17 (x) = n!(1− x)−n−1 ; pertanto f (n)17 (0) = n! . Quindi

T0,n(x) =
n
∑

k=0

f (k)17 (0)

k!
xk =

n
∑

k=0

xk

Questo polinomio coincide con il polinomio che approssima f17 vicino a 0 trovato nell’e-
sempio 4.3.7.

Chiamiamo formula di Taylor di punto iniziale c e ordine n per la funzione f
l’uguaglianza

f (x) = Tc ,n(x)+Rc ,n(x) ;

il termine Rc ,n = f − Tc ,n è detto resto della formula di Taylor di punto iniziale c e
ordine n per la funzione f .

15Il polinomio prende il nome da Brook Taylor (Edmonton, Inghilterra, 1685 - Londra, 1731), che lo introdusse
in un libro pubblicato nel 1715. Questo polinomio era già stato trovato in precedenza, il primo a scriverlo è stato
James Gregory (Drumoak, Scozia, 1638 - Edimburgo, 1675), che lo citò in una lettera a un collega nel 1671.

Taylor ha dato contributi, oltre che al calcolo differenziale, alla geometria e alla meccanica.
Gregory è stato uno dei precursori del calcolo differenziale, sviluppò la teoria delle serie per studiare questioni

geometriche; ha dato anche contributi allo studio dell’ottica.
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Questa formula ha interesse se abbiamo informazioni sul resto, che ci consentono di
sapere in che senso il polinomio Tc ,n approssima f . Per ottenere queste informazioni è
necessario il seguente teorema.

4.3.9 Teorema

Siano I ⊆R intervallo, f : I →R , c ∈ I e n ∈N∗ . Supponiamo f derivabile n
volte in c . Allora, per j = 0,1, . . . , n , risulta

T ( j )c ,n (c) = f ( j )(c) .

Dimostrazione. Evidentemente Tc ,n(c) = f (c) .
Siano k ∈N e j ∈N∗ . Se j < k , si ha (v. esempio 4.1.12)

d j (x − c)k

d x j
= k(k − 1) . . . (k − j + 1)(x − c)k− j ,

quindi
d j (x − c)k

d x j

�

�

�

�

x=c

= 0 ,

Se j > k

d j (x − c)k

d x j
= 0 .

Infine
d k (x − c)k

d xk
= k! ,

Pertanto, per j = 1,2, . . . , n si ha

d j Tc ,n(x)

d x j

�

�

�

�

x=c

=
n
∑

k=0

f (k)(c)

k!

d j (x − c)k

d x j

�

�

�

�

x=c

=
f ( j )(c)

j !
j != f ( j )(c) .

Enunciamo alcuni teoremi che serviranno per ottenere informazioni sul resto.

4.3.10 Teorema

Siano I ⊆ R intervallo, f : I →R derivabile, c ∈ I e α ∈ [0,+∞[ . Se f (c) = 0

e f ′(x) = o
�

|x − c |α
�

, per x→ c , allora f (x) = o
�

|x − c |α+1
�

, per x→ c .

Dimostrazione. Sia x ∈ I \{c} . Per il teorema di Lagrange 4.2.6, applicato alla restrizione
di f all’intervallo di estremi x e c , esiste ξx , interno a tale intervallo, tale che si ha
f (x)− f (c) = f ′(ξx)(x − c) ; per ipotesi f (c) = 0 , pertanto risulta f (x) = f ′(ξx)(x − c) .
Poiché |ξx − c | ≤ |x − c | , da qui segue
�

�

�

�

f (x)

|x − c |α+1

�

�

�

�
=

�

� f ′(ξx )(x − c)
�

�

|x − c |α+1
=

�

� f ′(ξx )
�

�

|x − c |α =
�

� f ′(ξx )
�

�

|ξx − c |α
|ξx − c |α
|x − c |α ≤
�

� f ′(ξx )
�

�

|ξx − c |α .
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Poiché limx→c f ′(x)/|x − c |α = 0 , si ha

∀ǫ ∈R+ , ∃δǫ ∈R+ : ∀x ∈ I \ {c} , x ∈ ]c −δǫ, c +δǫ[ =⇒
�

�

�

�

f ′(x)

|x − c |α
�

�

�

�
< ǫ .

Fissato ǫ ∈R+ , se x ∈ I ∪ ]c−δǫ, c+δǫ[\{c} , si ha ξx ∈ I ∪ ]c−δǫ, c+δǫ[\{c} quindi
risulta

�

�

�

�

f (x)

|x − c |α+1

�

�

�

�
≤
�

� f ′(ξx )
�

�

|ξx − c |α < ǫ .

Perciò limx→c f (x)/|x − c |α+1 = 0 .

4.3.11 Teorema

Siano I ⊆R intervallo, f : I →R , c ∈ I e n ∈N∗ . Supponiamo f derivabile n

volte in c . Se f ( j )(c) = 0 per j = 0,1, . . . , n , allora f (x) = o
�

(x − c)n
�

, per x→ c .

Dimostrazione. Dimostriamo il teorema applicando il principio di induzione 1.3.4 alla
proposizione P (n) : qualunque sia f : I →R derivabile n volte in c , tale che f ( j )(c) = 0 ,
per j = 0,1, . . . , n , si ha f (x) = o

�

(x − c)n
�

, per x→ c .
Consideriamo il caso n = 1 . Se f (c) = f ′(c) = 0 , allora

lim
x→c

f (x)

x − c
= lim

x→c

f (x)− f (c)

x − c
= f ′(c) = 0 ,

perciò P (1) è vera.
Supponiamo ora che P (n) si verificata. Sia f : I →R derivabile n+ 1 volte in c tale

che
f (c) = f ′(c) = · · ·= f (n)(c) = f (n+1)(c) = 0 .

Allora f ′ è derivabile in c e si ha

f ′(c) = ( f ′)′(c) = · · ·= ( f ′)(n)(c) = 0 ,

da cui, per ipotesi induttiva, f ′(x) = o
�

(x − c)n
�

, per x → c . Poiché f (c) = 0 , per il
teorema 4.3.10 si ha f (x) = o

�

(x − c)n+1
�

, per x→ c , quindi P (n+ 1) è verificata.

4.3.12 Teorema (formula di Taylor con resto nella forma di Peano16)

Siano I ⊆R intervallo, f : I →R , c ∈ I e n ∈N∗ . Supponiamo f derivabile n
volte in c . Allora

f (x) = Tc ,n(x)+ o
�

(x − c)n
�

, per x→ c ;

inoltre Tc ,n è l’unico polinomio di gradominore o uguale a n che ha questa proprietà.

16Questa forma del resto prende il nome da Giuseppe Peano (Cuneo, 1858 - Torino, 1932), che la pubblicò in un
trattato sul calcolo differenziale del 1884. Peano ottenne importanti risultati in logica matematica, algebra lineare
e in vari settori dell’analisi tra cui le equazioni differenziali. Fu anche studioso di filosofia.
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Dimostrazione. Per il teorema 4.3.9 la funzione f −Tc ,n si annulla insieme a tutte le deri-
vate fino all’ordine n in c ; per il teorema 4.3.11 si ha quindi f (x)−Tc ,n(x) = o

�

(x − c)n
�

,
per x→ c , pertanto f (x) = Tc ,n(x)+ o

�

(x − c)n
�

.
Sia Q un polinomio di grado minore o uguale a n tale che

f (x) =Q(x)+ o
�

(x − c)n
�

, per x→ c .

Dobbiamo dimostrare che Q = Tc ,n , cioè che Q −Tc ,n è il polinomio nullo.
Per quanto già dimostrato si ha

lim
x→c

Q(x)−Tc ,n(x)

(x − c)n
= lim

x→c

�

Q(x)− f (x)

(x − c)n
+

f (x)−Tc ,n(x)

(x − c)n

�

= 0 ,

quindi, ponendo x − c = y ,

lim
y→0

Q(y + c)−Tc ,n(y + c)

yn
= 0 .

La funzione y 7→ Q(y + c) − Tc ,n(y + c) è polinomiale di grado minore o uguale a n .
Per concludere la dimostrazione è sufficiente provare che se R è un polinomio di grado
minore o uguale a n e limy→0 R(y)/yn = 0 , allora R è identicamente nullo. Proviamo
l’implicazione contrapposta: se R è un polinomio di grado minore o uguale a n non
identicamente nullo, allora non è vero che limy→0 R(y)/yn = 0 .

Sia quindi R un polinomio di grado minore o uguale a n non identicamente nullo;
indicato con m il più piccolo esponente tale che il coefficiente di ym è non nullo, risulta
R(y) =
∑n

k=m
ak yk con am 6= 0 . Si ha

R(y)

yn
=

ym

yn

n
∑

k=m

ak yk−m = ym−n
n
∑

k=m

ak yk−m .

Per y→ 0 il secondo fattore ha limite am , mentre il primo ha limite 1 , se m = n , e limite
destro +∞ , se m < n . In ciascuno dei due casi il limite del prodotto non può essere 0 .

4.3.13 Osservazione. Per la formula di Taylor con resto nella forma di Peano, sappiamo
che ogni funzione derivabile n volte in c può essere scritta come somma di un polinomio
di grado al più n con una funzione trascurabile rispetto a (x−c)n . Se n = 1 è conseguenza
immediata della caratterizzazione della derivabilità 4.1.2 che vale il viceversa, cioè se una
funzione f è somma di un polinomio di grado al più 1 con una funzione trascurabile
rispetto a x − c , per x→ c , allora f è derivabile in c . Ciò non è vero se n > 1 .

Per n ∈N \ {0,1} sia

f18 : R→R , f18(x) =

¨

xn+1 sin(x−n) , se x ∈R∗ ,
0 , se x = 0 .

Si ha
�

�

�

�

f18(x)

xn

�

�

�

�
=

�

�

�

�

xn+1 sin(x−n)

xn

�

�

�

�
=
�

�x sin(x−n)
�

�≤ |x| −−→
x→0

0 ,

pertanto f18(x) = o(xn) , cioè f18 è somma del polinomio identicamente nullo con una
funzione trascurabile rispetto a xn , per x→ 0 .
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La funzione f18 è evidentemente derivabile in R∗ , con derivata

f ′18(x) = (n+ 1)xn sin(x−n)+ xn+1 cos(x−n)(−n)x−n−1 = (n+ 1)xn sin(x−n)− n cos(x−n) .

Inoltre

lim
x→0

f18(x)− f18(0)

x − 0
= lim

x→0

xn+1 sin(x−n)

x
= lim

x→0
xn sin(x−n) = 0 ,

Quindi f18 è derivabile in 0 e f ′18(0) = 0 . Poiché non esiste limx→0 cos(x−n) , non esi-
ste neppure limx→0 f ′18(x) , pertanto f ′18 non è continua in 0 , quindi non è derivabile;
perciò f18 non è derivabile 2 volte in 0 .

Vediamo ora una differente forma del resto, che non coinvolge limiti per x che tende
al punto iniziale del polinomio.

Il teorema di Lagrange 4.2.6 può essere interpretato come una formula di Taylor per
n = 0 . Infatti per tale teorema, sotto opportune ipotesi, se c e x sono due punti distinti
del dominio di f , allora esiste ξ compreso tra c e x tale che f (x) = f (c)+ f ′(ξ )(x− c) .
Poiché il polinomio di Taylor di ordine 0 è la costante f (c) , possiamo scrivere

f (x) = Tc ,0(x)+ f ′(ξ )(x − c) .

Per provare questa generalizzazione è utile il seguente teorema, che generalizza il teore-
ma di Cauchy 4.2.3.

4.3.14 Teorema

Siano f , g : [a, b ]→R e n ∈N . Supponiamo f derivabile n volte in [a, b ] , con
derivata n -sima continua, e n+1 volte in ]a, b [ e g continua in [a, b ] e derivabile
in ]a, b [ . Indichiamo con Ta,n il polinomio di Taylor di punto iniziale a e ordine n

di f . Allora esiste c ∈ ]a, b [ tale che

�

f (b )−Ta,n(b )
�

g ′(c) =
�

g (b )− g (a)
�

f (n+1)(c)
(b − c)n

n!
.

Il teorema di Cauchy è il caso particolare n = 0 . Infatti, per tale n , Ta,n vale costante-
mente f (a) .

Dimostrazione. Poniamo

h : [a, b ]→R , h(x) =
n
∑

k=0

f (k)(x)

k!
(b − x)k ,

Poiché tutte le derivate fino all’ordine n di f sono continue in [a, b ] e derivabili in
]a, b [ , h è continua in [a, b ] ed è derivabile in ]a, b [ . Allora, per il teorema di Cau-
chy 4.2.3, esiste ξ ∈ ]a, b [ tale che

�

h(b )− h(a)
�

g ′(c) =
�

g (b )− g (a)
�

h ′(c) . (4.3.1)
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Si ha

h(a) =
n
∑

k=0

f (k)(a)

k!
(b − a)k = Ta,n(b ) ,

h(b ) =
n
∑

k=0

f (k)(b )

k!
(b − b )k = f (b ) ,

h ′(c) =
n
∑

k=0

f (k+1)(c)

k!
(b − c)k −

n
∑

k=1

f (k)(c)

k!
k(b − c)k−1 =

=
n
∑

k=0

f (k+1)(c)

k!
(b − c)k −

n−1
∑

j=0

f ( j+1)(c)

j !
(b − c) j =

f (n+1)(c)

n!
(b − c)n .

Pertanto l’uguaglianza (4.3.1) diventa

�

f (b )−Ta,n(b )
�

g ′(c)− �g (b )− g (a)
� f (n+1)(c)

n!
(b − c)n = 0 ,

da cui segue immediatamente la tesi.

4.3.15 Teorema (formula di Taylor con resto nella forma di Lagrange17)

Siano I ⊆R intervallo, f : I →R , c ∈ I e n ∈N . Supponiamo f derivabile n
volte in I , con derivata n -sima continua, e n+1 volte in I \{c} . Allora, ∀x ∈ I \{c} ,
esiste ξ compreso tra c e x tale che

f (x) = Tc ,n(x)+
f (n+1)(ξ )

(n+ 1)!
(x − c)n+1 .

Dimostrazione. Applichiamo il teorema 4.3.14 nell’intervallo di estremi c e x , con g
tale che g (y) = (x− y)n+1 . Poiché g ′(y) =−(n+1)(x− y)n , esiste ξ , compreso tra c e x
tale che

−
�

f (x)−Tc ,n(x)
�

(n+ 1)(x − ξ )n =
�

0− (x − c)n+1
�

f (n+1)(ξ )
(x − ξ )n

n!
,

cioè
�

f (x)−Tc ,n(x)
�

(n+ 1) = (x − c)n+1 f (n+1)(ξ )
1

n!
,

da cui segue la tesi.

Utilizzando altre funzioni g , dal teorema 4.3.14 si ottengono altre forme del resto.

17Questa forma del resto prende il nome dal già citato Giuseppe Luigi Lagrange (v. nota 13) che la pubblicò in
un trattato del 1797.
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4.3.16 Teorema (formula di Taylor con resto nella forma di Cauchy18)

Siano I ⊆R intervallo, f : I →R , c ∈ I e n ∈N . Supponiamo f derivabile n
volte in I , con derivata n -sima continua, e n+1 volte in I \{c} . Allora, ∀x ∈ I \{c} ,
esiste ξ compreso tra c e x tale che

f (x) = Tc ,n(x)+
f (n+1)(ξ )

n!
(x − c)(x − ξ )n .

Dimostrazione. Applichiamo il teorema 4.3.14 nell’intervallo di estremi c e x , con g
tale che g (y) = x − y . Poiché g ′(y) =−1 , esiste ξ , compreso tra c e x tale che

−
�

f (x)−Tc ,n(x)
�

=
�

0− (x − c)
�

f (n+1)(ξ )
(x − ξ )n

n!
,

cioè

f (x)−Tc ,n(x) = (x − c) f (n+1)(ξ )
(x − ξ )n

n!
,

da cui segue la tesi.

Vediamo una forma più generale del resto, che comprende come casi particolari sia il
resto nella forma di Lagrange che quello nella forma di Cauchy.

4.3.17 Teorema (formula di Taylor con resto nella forma di Schlömilch19 )

Siano I ⊆ R intervallo, f : I → R , c ∈ I , n ∈ N e k ∈ N∗ . Supponiamo f
derivabile n volte in I , con derivata n -sima continua, e n + 1 volte in I \ {c} .
Allora, ∀x ∈ I \ {c} , esiste ξ compreso tra c e x tale che

f (x) = Tc ,n(x)+
f (n+1)(ξ )

n! k
(x − c)k (x − ξ )n+1−k .

Osserviamo che nel caso particolare k = 1 si ottiene il resto secondo Cauchy, mentre
nel caso k = n+ 1 si ottiene il resto secondo Lagrange.

Dimostrazione. Applichiamo il teorema 4.3.14 nell’intervallo di estremi c e x , con g ta-
le che g (y) = (x−y)k . Poiché g ′(y) =−k(x−y)k−1 , esiste ξ , compreso tra c e x tale che

−� f (x)−Tc ,n(x)
�

k(x − ξ )k−1 =
�

0− (x − c)k
�

f (n+1)(ξ )
(x − ξ )n

n!
,

cioè
�

f (x)−Tc ,n(x)
�

k = (x − c)n+1 f (k)(ξ )
(x − ξ )n+1−k

n!
,

da cui segue la tesi.
18Questa forma del resto prende il nome dal già citato Augustin Louis Cauchy (v. nota 7) che la pubblicò nelle

lezioni tenute all’École royale polytecnique di Parigi nel 1823.
19Questa forma del resto prende il nome da Oscar Schlömilch (Weimar, Germania, 1823 - Dresden, Germania,

1901) che la pubblicò in un manuale di calcolo differenziale nel 1847. Schlömilch diede importanti contributi allo
sviluppo dell’analisi matematica.
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Utilizziamo la formula di Taylor con resto nella forma di Peano per stabilire una for-
mula per le derivate successive della composizione di due funzioni.

4.3.18 Teorema (sulla derivata n -sima della composizione, formula di Faà di
Bruno20)

Siano I , J ⊆R intervalli, f : I →R , g : J →R , c ∈ I e n ∈N\{0,1} . Supponia-
mo che sia f (I )⊆ J . Se f è derivabile n volte in c e g è derivabile n volte in f (c) ,
allora g ◦ f è derivabile n volte in c e

(g ◦ f )(n)(c) =

=
n
∑

k=1

g (k)
�

f (c)
� ∑

( j1, j2,..., jn)∈In,k

n!

j1! j2! · · · jn !

�

f ′(c)

1!

� j1� f ′′(c)

2!

� j2

· · ·
�

f (n)(c)

n!

� jn

,

dove, per k = 1,2, . . . , n , si pone

In,k =

§

( j1, j2, . . . , jn) ∈Nn

�

�

�

�

n
∑

i=1

ji = k ,
n
∑

i=1

i ji = n
ª

.

Dimostrazione. Proviamo anzitutto, per induzione, che g ◦ f è derivabile n volte in c .
Per il teorema sulla derivata della composizione 4.1.8, se f è derivabile in c e g è

derivabile in f (c) , allora g ◦ f è derivabile in c . Quindi per n = 1 l’affermazione è vera.
Supponiamo che l’affermazione sia vera per n . Se f è derivabile n+1 volte in c e g è

derivabile n+1 volte in f (c) , allora f ′ è derivabile n volte in c , e g ′ è derivabile n volte
in f (c) . Si ha (g ◦ f )′ = (g ′ ◦ f ) f ′ , per ipotesi induttiva g ′ ◦ f è derivabile n volte in c ,
quindi anche (g ◦ f )′ è derivabile n volte in c , quindi g ◦ f è derivabile n+1 volte in c .

Per la formula di Taylor con resto nella forma di Peano 4.3.12 si ha

f (x) =
n
∑

j=0

f ( j )(c)

j !
(x − c) j + o
�

(x − c)n
�

, per x→ c ,

g (y) =
n
∑

k=0

g (k)
�

f (c)
�

k!

�

y − f (c)
�k
+ o
��

y − f (c)
�n
�

, per y→ f (c) ,

pertanto, per x→ c , si ha

g
�

f (x)
�

= (4.3.2)

=
n
∑

k=0

g (k)
�

f (c)
�

k!

� n
∑

j=0

f ( j )(c)

j !
(x − c) j + o
�

(x − c)n
�− f (c)

�k

+ o
�
�

f (x)− f (c)
�n
�

=

20La formula prende il nome da Francesco Faà di Bruno (Alessandria, 1825 - Torino, 1888), che la pubblicò in un
articolo del 1855. La formula, sotto varie forme, era già stata enunciata in precedenza da altri matematici, il primo
è stato Louis François Antoine Arbogast (Mutzig, Francia, 1759 - Strasbourg, Francia, 1803), che la pubblicò in
un trattato sul calcolo differenziale nel 1800.

Faà di Bruno è stato studioso di analisi, meccanica, astronomia.
Arbogast diede vari contributi allo sviluppo del calcolo differenziale e del calcolo integrale.



4.3. Applicazioni del calcolo differenziale 203

=
n
∑

k=0

g (k)
�

f (c)
�

k!

� n
∑

j=1

f ( j )(c)

j !
(x − c) j + o
�

(x − c)n
�

�k

+ o
��

f (x)− f (c)
�n
�

.

Poiché f è derivabile in c , per x → c , risulta f (x)− f (c) = O(x − c) , pertanto si ha
�

f (x)− f (c)
�n
=O
�

(x − c)n
�

, quindi o
�
�

f (x)− f (c)
�n
�

= o
�

(x − c)n
�

. Se h è una qua-

lunque funzione da I a R , continua in c , e k ≥ 1 , allora, per il teorema sulla potenza di
un binomio 1.3.16 risulta, per x→ c ,

�

h(x)+ o
�

(x − c)n
�
�k
=

k
∑

ℓ=0

�

k

ℓ

�

�

h(x)
�k−ℓ

o
�

(x − c)n
�ℓ
=

=
�

h(x)
�k
+

k
∑

ℓ=1

�

k

ℓ

�

�

h(x)
�k−ℓ

o
�

(x − c)n
�ℓ
=

=
�

h(x)
�k
+ o
�

(x − c)n
�

k
∑

ℓ=1

�

k

ℓ

�

�

h(x)
�k−ℓ

o
�

(x − c)n
�ℓ−1

.

Poiché
k
∑

ℓ=1

�

k

ℓ

�

�

h(x)
�k−ℓ

o
�

(x − c)n
�ℓ−1 −−→

x→c

�

h(x)
�k−1

,

si ha, per x→ c ,

o
�

(x − c)n
�

k
∑

ℓ=1

�

k

ℓ

�

�

h(x)
�k−ℓ

o
�

(x − c)n
�ℓ−1
= o
�

(x − c)n
�

;

pertanto
k
∑

ℓ=0

�

k

ℓ

�

�

h(x)
�k−ℓ

o
�

(x − c)n
�ℓ
=
�

h(x)
�k
+ o
�

(x − c)n
�

.

Quindi dall’equazione (4.3.2) segue

g
�

f (x)
�

=
n
∑

k=0

g (k)
�

f (c)
�

k!

� n
∑

j=1

f ( j )(c)

j !
(x − c) j
�k

+ o
�

(x − c)n
�

.

Pertanto (g ◦ f )(x) è somma di un polinomio P , di grado al più n2 , con una funzione
trascurabile rispetto a (x− c)n . Siano α0,α1, . . . ,αn2 ∈R tali che P (x) =

∑n2

k=0
αk (x− c)k .

Gli addendi con esponente maggiore di n sono trascurabili rispetto a (x − c)n , quindi

g
�

f (x)
�

=
n
∑

k=0

αk (x − c)k +
n2
∑

k=n+1

αk (x − c)k + o
�

(x − c)n
�

=
n
∑

k=0

αk (x − c)k + o
�

(x − c)n
�

.

Poiché g ◦ f è derivabile n volte in c , per la formula di Taylor con resto nella forma
di Peano 4.3.12,

∑n
k=0

αk (x − c)k è il polinomio di Taylor di g ◦ f di punto iniziale c e
ordine n . Pertanto (g ◦ f )(n)(c) è n! per il coefficiente di (x − c)n in tale polinomio, che
coincide con l’analogo coefficiente del polinomio P .
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Per il teorema sulla potenza di un polinomio 1.3.18, posto

Jn,k =
�

(ℓ1,ℓ2, . . . ,ℓn) ∈Nn
�

�ℓ1+ ℓ2+ · · ·+ ℓm = k
	

,

si ha

n
∑

k=0

g (k)
�

f (c)
�

k!

� n
∑

j=1

f ( j )(c)

j !
(x − c) j
�k

=

=
n
∑

k=0

g (k)
�

f (c)
�

k!

∑

(ℓ1,ℓ2,...,ℓn )∈Jn,k

�

k

ℓ1,ℓ2, . . . ,ℓn

� n
∏

j=1

�

f ( j )(c)

j !
(x − c) j
�ℓ j

=

=
n
∑

k=0

g (k)
�

f (c)
� ∑

(ℓ1 ,ℓ2,...,ℓn )∈Jn,k

1

ℓ1!ℓ2! · · ·ℓn !

n
∏

j=1

�

f ( j )(c)

j !

�ℓ j

(x − c)ℓ1+2ℓ2+···+nℓn .

Gli addendi contenenti (x− c)n sono quelli che si ottengono con (ℓ1,ℓ2, . . . ,ℓn) ∈ Jn,k tale
che ℓ1+ 2ℓ2+ · · ·+ nℓn = n . Evidentemente se k = 0 si ha (ℓ1,ℓ2, . . . ,ℓn) = (0,0, . . . , 0) ,
quindi non si ha ℓ1+ 2ℓ2+ · · ·+ nℓn = n . Pertanto, posto, per k = 1,2, . . . , n ,

In,k =

§

(ℓ1,ℓ2, . . . ,ℓn) ∈Nn

�

�

�

�

n
∑

i=1

ℓi = k ,
n
∑

i=1

iℓi = n
ª

,

il coefficiente di (x − c)n è

n
∑

k=1

g (k)
�

f (c)
� ∑

(ℓ1,ℓ2,...,ℓn )∈In,k

1

ℓ1!ℓ2! · · ·ℓn!

n
∏

j=1

�

f ( j )(c)

j !

�ℓ j

,

da cui segue il teorema.
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