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NUMERI REALI

1.1 AsSSIOMI DEI NUMERI REALI

Introduciamo anzitutto il sistema dei numeri reali, che ¢ il fondamento dell’analisi
matematica.

Parliamo di “sistema dei numeri reali” e non semplicemente di “insieme dei numeri rea-
11, perché, oltre a un insieme (i cui elementi sono i numeri reali), abbiamo due operazioni
perché, ! p
e una relazione su di esso.

L'insieme dei numeri reali puo essere costruito a partire dall’insieme dei numeri natura-
li mediante ampliamenti successivi, costruendo I'insieme dei numeri interi, poi quello dei
numeri razionali e infine 'insieme dei numeri reali. Tuttavia, per evitare di allungare ec-
cessivamente |’esposizione, non procediamo per allargamenti successivi, ma introduciamo
direttamente il sistema dei numeri reali elencandone le proprieta fondamentali, dette, in
termini rigorosi, assiomi.

Definizione di sistema dei numeri reali

Il sistema dei numeri reali ¢ una quadrupla ordinata (R,+,-,<), dove R ¢ un
insieme avente piu di un elemento, + e - sono due operazioni binarie su R, cioe due
funzioni da R xR a R, chiamate rispettivamente addizione e moltiplicazione, < e
una relazione in R, e sono soddisfatti gli assiomi elencati in seguito.

\ J

Gli assiomi possono essere divisi in tre gruppi: gli assiomi riguardanti le due operazioni,
gli assiomi sulla relazione e un ulteriore assioma, detto “assioma di completezza”.

Gli assiomi relativi alle operazioni stabiliscono le regole per fare i calcoli tra numeri
reali; un insieme in cui sono definite due operazioni che verificano questi assiomi ¢ detto
campo.

Gli assiomi relativi alla relazione garantiscono che essa ¢ di ordine lineare e descrivono
il collegamento tra la relazione e le operazioni di addizione e di moltiplicazione; in gene-
rale un campo su cui ¢ definita una relazione che soddisfa questi assiomi e detto campo
ordinato.

Infine ’assioma di completezza assicura la validita delle proprieta dei numeri reali che
consentono lo sviluppo dell’analisi, ad esempio I’esistenza della radice quadrata di ogni
numero positivo. Tale assioma ¢ quello che distingue il sistema dei numeri reali dal sistema
dei numeri razionali. Un campo ordinato che soddisfa I’assioma di completezza e detto
campo ordinato completo.
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1.1.1 ASSIOMI DELLE OPERAZIONI

Enunciamo anzitutto gli assiomi relativi alle operazioni, elencando dapprima quelli re-
lativi all’addizione (assiomi C1-C4), successivamente quelli relativi alla moltiplicazione
(assiomi C5-C8) e infine un assioma che coinvolge sia I’addizione che la moltiplicazione
(assioma C9).

Assioma C1: proprieta associativa dell’addizione

Vx,9,z€R, x+(y+z)=(x+y)+z.

Questo assioma assicura che non ¢ necessario distinguere tra x +(y +z) e (x +y)+ z,
quindi si puo usare la notazione x 4y + z per indicare la somma di tre numeri reali.

Assioma C2: proprieta commutativa dell’addizione

Vx,yeR, x+y=y+x.

Assioma C3: esistenza dell’elemento neutro additivo

zcR: VxeR, x+ta=at+x=x.

L’elemento la cui esistenza ¢ assicurata da questo assioma ¢ unico, ciog:
1.1.1 Teorema (unicita dell’elemento neutro additivo)
Siano a,b €R. Se, Yx €R, si ha

X+a=a+x=x,

x+b=b+x=x,

allora a=25.

\ J

DivmosTtrAZIONE. Dalla prima ipotesi, ponendo x = b, segue a + b = b, mentre dalla
seconda, ponendo x =a, segue a+ b =a; percio a=1b. |

Poiché questo elemento ¢ unico, introduciamo un simbolo per indicarlo.

Definizione di elemento neutro additivo

Chiamiamo elemento neutro additivo il numero reale 4 la cui esistenza ¢ assicu-
rata dall’assioma C3; lo indichiamo con 0.

Assioma C4: esistenza dell’opposto

VxeR,dyeR: x+y=y+x=0.
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Poiché I’addizione ¢ commutativa (assioma C2), se ¢ verificata una delle due uguaglianze
x+y=0ey+x=0,allora ¢ verificata anche Ialtra.

Qualunque sia x € R, il numero reale y la cui esistenza ¢ assicurata dall’assioma C4 ¢
unico. Si ha cioe:

1.1.2 Teorema (unicita dell’opposto)

Sia x €R. Se y,z €R sono tali che

x+y=y4+x=0,
x+z=z+x=0,

allora y=z.

. v

DimosTrRAZIONE. Si ha

y=y+0 proprieta di 0 (C3),
=y+(x+2) ipotest,
=(y+x)+z proprieta associativa dell’addizione (C1),
=04z ipotesi,

=z proprieta di 0 (C3).

Pertanto y =z. |

Definizione di opposto di un numero reale

Sia x € R. Chiamiamo opposto (o inverso additivo) di x I'unico numero reale y
che verifica x +y =y + x = 0; indichiamo tale opposto con —x .

Anziché scrivere x 4 (—y) si usa la notazione x —y.

Assioma C5: proprieta associativa della moltiplicazione

Vx,y,z€R, x-(y-z)=(x-y)-z.

Questo assioma assicura che non ¢ necessario distinguere tra x-(y-z) e (x-y)-z,
quindi si puo usare la notazione x -y -z per indicare il prodotto di tre numeri reali.

Assioma Cé: proprieta commutativa della moltiplicazione

Vx,yeR, x-y=y-x.

Assioma C7: esistenza dell’elemento neutro moltiplicativo

2eR: VxeR, x-a=a-x=x.
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L’elemento neutro moltiplicativo ¢ unico, cioe:

1.1.3 Teorema (unicita dell’elemento neutro moltiplicativo)

Siano a,b €R. Se, Yx € R, si ha

X-a=a-x=x,
x-b=b-x=x,
alloraa=5.

. v

DimosTrAZIONE. Dalla prima ipotesi, ponendo x = b, segue a-b = b, mentre dalla
seconda, ponendo x =a, segue a-b =a;percido a=2b. [ |

Poiché questo elemento ¢ unico, introduciamo un simbolo per indicarlo.

Definizione di elemento neutro moltiplicativo

Chiamiamo elemento neutro moltiplicativo il numero reale a la cui esistenza ¢
assicurata dall’assioma C7; lo indichiamo con 1.

Assioma C8: esistenza del reciproco

VxeR\{0},dyeR: x-y=y-x=1.

Poiché la moltiplicazione € commutativa (assioma C6), se ¢ verificata una delle due
uguaglianze x-y =1 o y-x =1, allora ¢ verificata anche Ialtra.

Qualunque sia x € R\{0}, il numero reale y la cui esistenza ¢ assicurata dall’assioma C8
¢ unico. Si ha cioe:

1.1.4 Teorema (unicita del reciproco)

Sia x € R\ {0}. Se y,z €R sono tali che

x-y=y-x=1,
x-z=z-x=1,
allora y =z

. J

DimosTrRAZIONE. Si ha

y=y-1 proprieta di 1 (C7),
=y-(x-2) ipotesi,
=(y-x)-z proprieta associativa della moltiplicazione (C5),
=1-z 1potesi,
=z proprieta di 1 (C7).

Pertanto y =z. |



1.1. Assiomi dei numeri reali 5

Definizione di reciproco di un numero reale non nullo

Sia x € R\ {0}. Chiamiamo reciproco (o inverso moltiplicativo) di x I’unico

numero reale y che verifica x -y =y - x = 1; indichiamo tale reciproco con x~! o

con 1/x.

Anziché scrivere x - (1/y) si usa la notazione x/y .

Enunciamo ora un assioma che collega addizione e moltiplicazione.

Assioma C9: proprieta distributiva della moltiplicazione rispetto all’addizione

Vx,y,z€R, x-(y+z)=x-y+x-z.

Nell’enunciato di questo assioma, come sempre in seguito, si adotta la convenzione che,
in assenza di parentesi, la moltiplicazione viene eseguito prima dell’addizione, percio la
scrittura x -y + x - z ¢ un’abbreviazione di (x-y)+(x - z).

Per la proprieta commutativa della moltiplicazione, la proprieta distributiva vale anche
nella forma

(x+y) z=x-z+y-z.

Un insieme in cui sono definite due operazioni che verificano gli assiomi C1-C9 ¢ detto
campo.

1.1.2 ASSIOMI DELLA RELAZIONE

Riportiamo ora gli assiomi relativi alla relazione; anzitutto quelli che stabiliscono che
la relazione ¢ di ordine lineare (assiomi O1-O4), poi gli assiomi che stabiliscono un colle-

gamento tra la relazione e I’addizione (assioma O5) e tra la relazione e la moltiplicazione
(assioma O6).

Assioma O1: proprieta riflessiva della relazione

VxeR, x<x.

Assioma O2: proprieta antisimmetrica della relazione

Vx,yeR, (x<yAy<x)=—= x=y.

Assioma O3: proprieta transitiva della relazione

Vx,y,z€R, (x<yAy<z)— x<z.

Una relazione da un insieme in sé che verifica gli assiomi O1-O3 ¢ detta relazione
d’ordine.
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Assioma O4: linearita della relazione d’ordine

Vx,y€R, x<yVy<x.

Una relazione d’ordine che verifica questo assioma ¢ detta relazione d’ordine lineare o
relazione d’ordine totale.

Osserviamo che la proprieta riflessiva della relazione di < € una conseguenza dell’as-
sioma di linearita. Infatti se x,y € R, allora si ha x <y oppure y < x; in particolare se
x €R, posto y = x, si ottiene comunque x < x.

Enunciamo infine gli assiomi che stabiliscono un collegamento tra la relazione e le
operazioni.

Assioma O5: compatibilita tra relazione e addizione

Vx,y,z€R, x<y = x+z<y+z.

Assioma O6: compatibilita tra relazione e moltiplicazione

Vx,y,z€R, (x<yA0<z)=—= x-z<y-z.

Un campo in cui ¢ definita una relazione che verifica gli assiomi O1-O6 ¢ detto campo
ordinato.

1.1.3 ASSIOMA DI COMPLETEZZA

Esistono numerosi campi ordinati. Ad esempio, I'insieme @ dei numeri razionali ¢ un
campo ordinato. Per caratterizzare univocamente il sistema dei numeri reali tra i campi
ordinati € necessario un ulteriore assioma, che, a differenza degli altri, non riguarda le pro-
prieta fondamentali delle operazioni e della relazione, ma proprieta piu raffinate del sistema
numerico. Puo essere espresso in diverse forme equivalenti tra loro, scegliamo una forma
semplice di enunciarlo.

Assioma di completezza

Siano A,B CR non vuoti. Se
YacA,VbeB, a<b,
allora esiste ¢ €R tale che

VacA,YbeB, a<c<b.

\ J

Due insiemi che godono della proprieta che ogni elemento del primo € minore o uguale
a ogni elemento del secondo sono detti insiemi separati. Lelemento ¢ la cui esistenza ¢
assicurata dall’assioma di completezza ¢ detto elemento di separazione tra A e B.

Un campo ordinato che verifica ’assioma di completezza e detto campo ordinato com-
pleto.
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Essenzialmente esiste un unico campo ordinato completo. In linguaggio tecnico questo
fatto viene enunciato dicendo che: “due campi ordinati completi sono isomorfi”. Questo
significa che dati due campi ordinati completi esiste una funzione biunivoca dall’uno all’al-
tro che rispetta le operazioni e la relazione. Tale funzione ¢ detta isomorfismo di campi
ordinati.

Per essere piu precisi, si puo dimostrare che se (H, 4y, 1, <g) € (K, +x, x> <g) sono
campi ordinati completi, allora esiste F: H — K biunivoca e tale che, Vx,y € H, si ha
Flx4yy) =F(x) 4+ F(), F(xyy)=F(x)x F(y) e x <y seesolose F(x) <y F(y).

1.2 PRIME CONSEGUENZE DEGLI ASSIOMI

Studiamo ora alcune conseguenze quasi immediate degli assiomi del sistema dei numeri
reali. Elenchiamo per prime le conseguenze dei soli assiomi delle operazioni, cio¢ le proprie-
ta di addizione e moltiplicazione, passiamo poi alle proprieta della relazione di <, ricavate
dagli assiomi delle operazioni e da quelli della relazione, infine vediamo le conseguenze della
completezza.

Quando non vi possono essere equivoct il prodotto x-y viene indicato con xy . Inoltre
scriviamo x <y per indicare che siha x <y e x #y, mentre x >y equivalea y <x e
x>y equivalea y < x.

Definizione di numero non negativo, non positivo, positivo, negativo

Sia x eR.

Diciamo che x ¢ non negativo quando x >0.
Diciamo che x ¢ non positivo quando x <0.
Diciamo che x ¢ positivo quando x > 0.
Diciamo che x ¢ negativo quando x <O0.

\ J

Ogni numero positivo € anche non negativo, mentre ogni numero negativo ¢ anche non
positivo; O ¢ sia non positivo che non negativo.

Utilizziamo le seguenti notazioni per indicare alcuni sottoinsiemi notevoli di R:

R*={xeR|x >0}, R™={xeR|x <0}, R* =R\ {0}.

1.2.1 CONSEGUENZE DEGLI ASSIOMI DELLE OPERAZIONI

Dagli assiomi di campo deduciamo le proprieta fondamentali delle operazioni di addi-
zione e di moltiplicazione.

1.2.1 Teorema (legge di cancellazione per ’addizione)

Siano x,y,z € R. Allora

X+tz=y+z — x=y.
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DimosTRAZIONE. Si ha
x+z=y4+z = (x+z)—z=(y+2z)—z esistenza dell’'opposto (C4),
—> x+(z—z)=y+(z—2z) proprieta associativa dell’addizione (C1),
— x+0=y+0 esistenza dell’opposto (C4),
== x=y proprieta di 0 (C3). [

In modo del tutto analogo si dimostra il teorema seguente.

1.2.2 Teorema (legge di cancellazione per la moltiplicazione)

Siano x,y €R e z€eR*. Allora

X-Z=y-Z —> XxX=19.

Notiamo che per poter cancellare un fattore moltiplicativo in una uguaglianza bisogna
che esso sia diverso da 0. Questo perché la cancellazione richiede di moltiplicare entrambi
1 membri dell’uguaglianza per il reciproco del numero da cancellare, quindi non si puo
cancellare 0 che non ha reciproco.

1.2.3 Teorema

Sia x €R. Allora

x-0=0-x=0.

DivosTRAZIONE. Si ha
O+x-0=x-0 proprieta di 0 (C3),
=x-(0+0) proprieta di 0 (C3),
=x-0+x-0  proprieta distributiva (C9).
Dall’uguaglianza 0+ x-0=x-0+x -0, per la legge di cancellazione per I'addizione 1.2.1,
segue 0=x-0.

Per la proprieta commutativa della moltiplicazione (assioma C6) si ha anche 0-x =0.
|

1.2.4 Teorema

DimosTRAZIONE. Dimostriamo il teorema per assurdo. Se fosse 0 = 1 allora, Vx € R,
sarebbe x-0=1x-1. Per il teorema 1.2.3 si ha x-0=0, per le proprietadi 1 (assioma C7) si
ha x-1=x; quindi x =0. Percio ogni elemento di R ¢ uguale a 0; cio ¢ assurdo perché R
ha piu di un elemento. u

Dagli ultimi due teoremi segue che, moltiplicando O per un qualunque numero reale,
non si puo ottenere 1; questo ¢ il motivo per cui nell’assioma C8 si richiede Pesistenza del
reciproco solo per 1 numeri reali non nulli.
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1.2.5 Teorema (legge di annullamento del prodotto)

Siano x,y € R.
x-y=0<= (x=0V y=0).

DIMOSTRAZIONE. Supponiamo x -y = 0. Dimostriamo che se x 75 0, allora y =0, quindi
almeno uno dei due fattori ¢ nullo. Infatti, se x #0, allora

y=1-y esistenza di 1 (C7),
=(x""x)y esistenza del reciproco (C8),
=x"'-(x-y)  proprieta associativa della moltiplicazione (C5),
=x"1.0 ipotest,
=0 teorema 1.2.3.

Viceversa, se almeno uno tra x e y ¢ nullo, allora, per il teorema 1.2.3,si ha x -y =0.
[ |

Conseguenza immediata di questo teorema ¢ il seguente:

1.2.6 Teorema

Siano x,y €R.
x-y#0 <= (x#0 Ay #£0).

Studiamo le proprieta dell’opposto e del reciproco di numeri reali.

1.2.7 Teorema (opposto di zero)

DiMosTRAZIONE. La proprieta di O (assioma C3) assicura che 0+ 0 = 0, quindi 0 ¢
’'opposto di 0. u

1.2.8 Teorema (reciproco di uno)

DimosTRAZIONE. La proprieta di 1 (assioma C7) assicura che 1-1 =1, quindi 1 ¢ il
reciproco di 1. u

1.2.9 Teorema (opposto dell’opposto)

Sia x €R. Allora
—(—x)=x.

DimosTRAZIONE. Per la definizione di opposto x +(—x) =0, quindi 'opposto di —x ¢ x.
|
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1.2.10 Teorema (reciproco del reciproco)

Sia x e R*. Allora x! 76 Oe

(x_1>_1 =x.

DiMOSTRAZIONE. Poiché x-x™' =10, per il teorema 1.2.6 x~' #£0.
Per la definizione di reciproco x -x~' =1, quindi il reciproco di x™! ¢ x. [ |

Da ora in avanti, per evitare di appesantire troppo le dimostrazioni, applichiamo le
proprieta associativa e commutativa di addizione e moltiplicazione senza menzionarle.

1.2.11 Teorema (opposto della somma)

Siano x,y € R. Allora
—(x+y)=—x—y.

DimosTrRAZIONE. Si ha
(—x =)+ (x+y)=(—x+x)+(-y+y)=0+0=0;

pertanto 'opposto di x +y ¢ —x—7y. u

1.2.12 Teorema (reciproco del prodotto)

Siano x,y €R*. Allora x-y#0 e

(x-y)t=x""y 7

DIMOSTRAZIONE. Siano x,y € R*. Per il teorema 1.2.6,siha x-y #0 e

() =(x""x)- () =1 1=1;

L.yt &il reciproco di x -7y . |

pertanto x

Studiamo ora il prodotto di un numero reale per I'opposto di 1.

1.2.13 Teorema
Sia x €R. Allora

(=) -x=x-(—1)=—x.

DimosTrRAZIONE. Si ha

x+(—1)-x=1-x+(—1)-x proprieta di 1 (C7),

=(1—1)-x proprieta distributiva (C9),
=0-x proprieta dell’opposto (C4),
=0 teorema 1.2.3.

Pertanto (—1)-x ¢ 'opposto di x. u
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Da qUCStO teorema segue:

1.2.14 Teorema

Siano x,y € R. Allora

(—x)-y=x-(=y)=—(x-9),
(—x)-(=y)=x-y.

\ J

DiMosTRAZIONE. Si ha
(—x)-y = ((—1) . x) -y teorema 1.2.13,
=(—1)-(x-y) proprieta associativa della moltiplicazione (C5),

=—(x-y) teorema 1.2.13.

In modo analogo si ottiene x - (—y) =—(x -y).

Si ha

(—x)-(—y) x)- ((— )y) teorema 1.2.13,

teorema 1.2.13,

x))

(— 1

((=x)-(=1))-» proprieta associativa della moltiplicazione (C5),
(—(—x))-»

x-y teorema 1.2.9. |

Questo teorema consente di utilizzare la notazione —x -y senza ambiguita: essa indica
indifferentemente I'opposto di x -y oppure —x moltiplicato per y.
1.2.2 CONSEGUENZE DEGLI ASSIOMI DELLA RELAZIONE

Dagli assiomi della relazione d’ordine deduciamo le regole fondamentali per manipolare
le disuguaglianze.

1.2.15 Teorema

Siano x,y € R. Allora

x<y <= 0<y—x.

DimosTrRAZIONE. Si ha
x<y = x—x<y—x compatibilita tra relazione e addizione (O5),
— 0<y—x proprieta dell’opposto (C4).
Viceversa

0<y—x = 0+x<y—x+x compatibilita tra relazione e addizione (O5),
— x<y—x+x proprieta di 0 (C3),
— x<y proprieta dell’opposto (C4). [
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Da qUCStO teorema segue:

1.2.16 Teorema

Siano x,y € R. Allora

x<y <= —y<—x.

DimosTrAZIONE. Per il teorema 1.2.15si ha x <y <= 0<y—x. Per il teorema 1.2.9
st ha

y—x=—(=p)+(=x) =(=%)= (=),

pertanto, applicando nuovamente il teorema 1.2.15, risulta
x<y <= 0<(—x)—(—y) &= —y < —x. u

In particolare, ponendo y =0, da questo teorema segue:

1.2.17 Teorema

Siano x,y € R. Allora
x<0 <= —x>0.

L’assioma di compatibilita tra relazione e addizione (assioma O5) assicura che somman-
do lo stesso numero reale a entrambi i membri di una disuguaglianza questa si conserva.
Vediamo una generalizzazione di questo fatto.

1.2.18 Teorema

Siano x,y,z,w € R. Allora

x<yAz<w) = x+z<y+w.

DimosTrRAZIONE. Si ha

x<yANz<w) =
— (x+z<y+zAy+z<y+w) compatibilita tra relazione e addizione (O5),
= x+z<y+w proprieta transitiva della relazione (O3). m

Da questo teorema segue immediatamente:

1.2.19 Teorema

Siano x,y € R. Allora

(x>0Ay>0) = x+y>0.
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Vediamo ora le proprieta delle disuguaglianze che coinvolgono il prodotto di due numeri
reali.

1.2.20 Teorema
Sia x €R. Allora

x-x>0.

DimosTrAZIONE. Distinguiamo secondo che sia x >0 o x <0. Si ha

x>0 = x-x>0-x compatibilita tra relazione e moltiplicazione (O6),
— x-x>0 teorema 1.2.3;
x<0 = —x>0 teorema 1.2.17,

= (—x):(—x)>0-(—x) compatibilita tra relazione e moltiplicazione (O6),
— x-x>0 teoremi1 1.2.14 e 1.2.3.

Quindi, in ogni caso, x-x >0. [ |

Da questo teorema segue:

1.2.21 Teorema

1>0.

DimosTrAZIONE. Poiché 1 =1-1, il teorema precedente assicura che 1> 0; per il teore-
ma 1.2.4 1#£0, quindi 1>0. ]

Dagli ultimi due teoremi segue che non esiste un numero reale x tale che x-x =—1,
perché il primo membro ¢ non negativo e il secondo ¢ negativo.

1.2.22 Teorema
Sia x €R. Allora

x>0 <= x"'>0.

DiMosTRAZIONE. Sia x > 0. Si ha

xt=x"1 proprieta di 1 (C7),
=x"1. (x_l . x) esistenza del reciproco (C8),
=(x""-x"")-x  proprieta associativa della moltiplicazione (C5).

Per il teorema 1.2.20 x~!-x~1 >0, mentre x > 0 per ipotesi, pertanto, per la compatibilita
tra relazione e moltiplicazione (assioma O6), risulta (x_l . x‘l) x>0, quindi x> 0;
per il teorema 1.2.10 x~! #0, quindi si ha x1>0.

Viceversa sia x~! > 0. Poiché, per il teorema 1.2.10, x = (x_1>_1 , X € reciproco di un
numero positivo, quindi, per cio che si ¢ appena dimostrato, ¢ positivo. [ ]
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1.2.23 Teorema

Siano x,y,z €R. Allora

(x<yANz<0)=x-z>y-z.

DimosTrRAZIONE. Si ha

(x<y Az<L0) =
— (x<y A—z2>0) teorema 1.2.17,
— x-(—2)<y-(—2) compatibilita tra relazione e moltiplicazione (O6),
— x-z<—y-z teorema 1.2.14,
= Xx-z>2y-Zz teorema 1.2.16. [ |

1.2.24 Teorema

Siano x,y € R. Allora

O0<x<y =>y_1§x_1.

DiMOSTRAZIONE. Sia 0< x <7y . Per il teorema 1.2.22 risulta x™' >0 e y~' > 0. Si ha

xox ' <yxt compatibilita tra relazione e moltiplicazione (06),
yhx-xt <yThyxTh compatibilita tra relazione e moltiplicazione (06),
yhaa<t Tt proprieta del reciproco (C8),
yh<xt, proprieta di 1 (C7). [ |

1.2.25 Teorema

Siano x,y,z,w € R. Allora

0<x<yA0<z<w) = x-z<y-w.

DimosTrRAZIONE. Si ha

0<x<yAN0<Lz<w) =
—> (x-z<y-zAy-z<y-w)  compatibilita tra relazione e moltiplicazione (O6),

— x-z<y-w proprieta transitiva della relazione (O3). |

Studiamo il segno (cioe la positivitd o negativita) del prodotto di due numeri reali. Per
la compatibilita tra relazione e moltiplicazione (assioma O6) il prodotto di due numeri non
negativi ¢ non negativo. Vediamo gli altri casi.



1.2. Prime conseguenze degli assiomi 15

1.2.26 Teorema

Siano x,y € R. Allora

(x<0Ay<0) = x-y>0.

DimosTrRAZIONE. Si ha

(x<0Ay<0) =
—> (—x>0A —y>0) teorema 1.2.17,

= (—x)-(—y)>0 compatibilita tra relazione e moltiplicazione (O6),
—> x-y >0 teorema 1.2.14. |

1.2.27 Teorema

Siano x,y € R. Allora

(x<0Ay>0) = x-y<0.

DimosTrRAZIONE. Si ha

x<0Ay>0) =
— (—x>0Ay>0) teorema 1.2.17,

= (—x)-y >0 compatibilita tra relazione e moltiplicazione (O6),
= —x-y>0 teorema 1.2.14,
— x-y <0 teorema 1.2.17. |

1.2.3 LA FUNZIONE VALORE ASSOLUTO

Prima di studiare le conseguenze dell’assioma di completezza definiamo e studiamo la
funzione valore assoluto, che risultera utile in seguito.

Definizione di valore assoluto di un numero reale

Sia x € R. Chiamiamo valore assoluto di x e indichiamo con |x| il numero

reale
X, se x>0,
x| =

—x, se x<O0.

J

Abbiamo cosi definito una funzione da R a R, che ¢ detta funzione valore assoluto.

1.2.28 Osservazione. Abitualmente 1 numeri reali sono rappresentati come punti di una
retta. Cio significa che si costruisce una funzione biunivoca da R ad una retta, pensata
come insieme di punti. Non entriamo nel dettaglio della costruzione di questa funzione,
ricordiamo solo che per determinarla occorre fissare sulla retta un’origine, un segmento di
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Figura 1.2.1
Grafico della funzione valore assoluto.

lunghezza unitaria e un verso positivo. Parleremo quindi indifferentemente di numeri reali
e di punti.

Questa rappresentazione consente di dare alla funzione valore assoluto il seguente si-
gnificato geometrico. Sia che x sia positivo, sia che esso sia negativo, |x| ¢ la lunghezza
del segmento di estremi 0 e x, cio¢ ¢ la distanza di x dall’origine. Piu in generale, se
x,y € R, allora la lunghezza del segmento di estremi x e y ¢ x —y se x >y, mentre ¢
y —x in caso contrario. In ogni caso la lunghezza di tale segmento, cio¢ la distanza di x
day,e|x—y]. <

Da questa definizione si ottiene facilmente il teorema seguente:

1.2.29 Teorema

Sia x €R. Allora:
D [x|=0;
II) |x|=0<«= x=0;
D) |x]* = x?;
IV) —|x|<x<|x|.

Per studiare le proprieta del valore assoluto risulta utile il seguente teorema.

1.2.30 Teorema

Siano x,y € R, tali che x,y >0. Allora:
) x*=y’ <= x=y;
M) x*<y?<= x<y;
) x*<y? <= x<y.

\ J

DimOSTRAZIONE. I)  Se x =7y, ovviamente x? =y?.

Viceversa, se x?> =y?, allorasi ha 0=x?—y%=(x+y)(x —y). Per la legge di annulla-
mento del prodotto 1.2.5, st ha x—y =0 oppure x+y =0. Nel primo caso risulta x =y .
Nel secondo caso si ha x =—y <0, quindi risulta sia x >0 che x <0, pertanto, per la
proprieta antisimmetrica della relazione (assioma O2), x = 0; percio ¢ anche y =—x =0.
Pertanto, anche in questo caso, x =y .
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II) Siha x?<y? seesolose y>?—x2>0,cio¢ (y—x)(y+x)>0.
Supponiamo (y—x)(y+x)>0. Siha x4y >0, quindise y+x > O per il teorema 1.2.22
siha (y +x)~! >0, pertanto

y—x=((y—x)y+x))y+x)"' >0

quindi x <y. Se invece y+x =0, abbiamo visto, nella dimostrazione dell’affermazione I,
chesiha x=y=0 equindi x <y.
Viceversa, se x <y, allora y —x >0; poiché x +y >0, risulta (y —x)(y +x)>0.

III) Sia x? <y?;sefosse x >y, allora, per I'affermazione II, sarebbe x? > y?, contraria-
mente all’ipotesi. Pertanto, x <7y .

Viceversa, sia x < y; se fosse x? > y2, allora, per I'affermazione II, sarebbe x >y,
contrariamente all’ipotesi. Pertanto, x* < y?. u

1.2.31 Teorema (proprieta del valore assoluto)

Siano x,y € R. Allora:
D |x[<y <= —y<x<y;
o) [x|zy <= (x=y Vx<—y);
) |x-y[=1x|-|y[;
V) x4y < x|+ 1yl
V) |l =yl < lx—yl.

\. J

DimosTrAZIONE. I)  Se |x| <y, per il teorema 1.2.29, affermazione IV, risulta x <|x| <y
e x>—|x|>—y.

Viceversa se —y < x <y, allora si ha —x < y; poiché |x| = x, oppure |x| = —x in
ogni caso risulta |x| <y.

II) Sia |x| >1y. Poiché |x| = x oppure |x| =—x,siha x >y oppure —x > y; quindi
x >y oppure x <—Yy.

Viceversa, sia x >y oppure x < —y . Per il teorema 1.2.29, affermazione IV, nel primo
caso risulta |x| > x >y, nel secondo —|x| < x <—y; in ognuno dei casi si ha |x|>y.

II) I due membri dell’uguaglianza sono non negativi, pertanto, per il teorema 1.2.30,
affermazione I, essa ¢ verificata se e solo se si ha uguaglianza tra 1 quadrati. Per il teore-
ma 1.2.29, affermazione III si ha

2
ey > = (xy)* = x*y* =[x [y = (|x[ly])".

IV) Idue membri della disuguaglianza sono non negativi, pertanto, per il teorema 1.2.30,
affermazione II, ¢ verificata se e solo se vale la disuguaglianza tra 1 quadrati. Per il teore-
ma 1.2.29, affermazioni Il e IV, e per ’affermazione III di questo teorema si ha

2
x +91P = (x+9) =%+ 2xy +9° < |x[P + 2%y + 97 =[x +2[x|ly| + [y = (x| + Iy])”
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Figura 1.2.2

Prova geometrica delle affermazioni I (a sinistra) e II (a destra) del teorema 1.2.31.

Per determinare i numeri reali x tali che |x| <y consideriamo 1 punti del grafico della
funzione valore assoluto al di sotto della retta orizzontale individuata dall’ordinata y e li
proiettiamo sull’asse delle ascisse, ottenendo il segmento di estremi —y e y.

Per determinare 1 numeri reali x tali che |x| >y consideriamo 1 punti del grafico della
funzione valore assoluto al di sopra della retta orizzontale individuata dall’ordinata y e li
proiettiamo sull’asse delle ascisse, ottenendo la semiretta orientata negativamente di origi-
ne —y e la semiretta orientata positivamente di origine y .

V) Idue membri della disuguaglianza sono non negativi, pertanto, per il teorema 1.2.30,
affermazione II, ¢ verificata se e solo se vale la disuguaglianza tra 1 quadrati. Per il teore-
ma 1.2.29, affermazioni Il e IV, e per 'affermazione III di questo teorema si ha

2 2
|lxl=W1|” = (Ix] = Iy1)” = xI? =2lx[ly [+ [y[* = [x[* =2]xy [+ [y]* <
<x?—2xy+yt=(x—y) =lx—yl. O

La disuguaglianza IV ¢ detta disuguaglianza triangolare. Il nome deriva dall’interpre-
tazione geometrica del valore assoluto (v. osservazione 1.2.28). Infatti, se x,y € R, allora
|x 4+ y| ¢ la distanza del punto x dal punto —y, |x| ¢ la distanza del punto x dall’origine
e |y| ¢ la distanza del punto —y dall’origine. Pertanto la disuguaglianza |x +y| < |x|+|y|
esprime il fatto che la distanza tra i due punti x e —y di una retta non puo essere maggiore
della somma delle distanze dei due punti da un terzo punto (l'origine). Nel piano a que-
sta disuguaglianza corrisponde il fatto che la lunghezza di un lato di un triangolo non puo
essere maggiore della somma delle lunghezze degli altri due.

1.2.4 ESTREMI DI INSIEMI DI NUMERI REALI

Nel seguito ¢ sottinteso che tutti i sottoinsiemi di R considerati sono non vuoti.

Definizione di massimo e minimo di un sottoinsieme di R

Siano ACR e b,c €R.
Diciamo che 4 ¢ massimo di A quando beA e, Va€A,sihaa<b.
Diciamo che ¢ ¢ minimo di A quando c€A e, Va€A,sithaa>c.
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1.2.32 Teorema (unicita del massimo e del minimo)

Siano ACR e by, b,,c;,c, €R.
I) Se b, e b, sono massimo di A, allora b, =b,.

IT) Se ¢, e ¢, sono minimo di A, allora ¢, =¢,.

DivosTrAZIONE. I) Se b e b, sono massimo di A, allora, per la definizione di mas-
simo, b,b, € A. Inoltre Ya € A si ha a < b, in particolare, ponendo a =b, si ha
b, < b, . Ripetendo il ragionamento con b, e b, scambiati traloro si ottiene anche b, < b, .
Percio by =b,.

II) La dimostrazione ¢ analoga. [

Il massimo di un sottoinsieme A di R, se esiste, ¢ indicato con maxA, il minimo ¢
indicato con minA.

1.2.33 Teorema

Sia ACIRR. Se esistono minA e maxA, allora

minA < maxA.

DimosTRAZIONE. Per definizione di massimo maxA € A e minA ¢ minore o uguale a ogni
elemento di A, in particolare minA < maxA. [ |

1.2.34 Esempio. Siano

Ay =11}, 4,=1{0,2,3,4}, Ay={xeR|1<x <3},
Ay={xeR|1<x <3}, A;={xeR|x<2}, A={xeR|x<0}U{xeR|x>3}.

E facile verificare che minA, = maxA; =—1, minA, =0, maxA, =4, minA; =1,
maxA; =3.

L'insieme A, non ha minimo. Infatti sia 2 € A, e indichiamo con 4 il punto medio
traa e 1,cioe b =(a+1)/2. Evidentemente da 1 < a segue 2 < a+ 1 < 2a, quindi
1< b <a;poiché a <3 ¢anche b <3, quindi b € A,. Percio b ¢ un elemento di A,
minore di @, quindi 2 non ¢ minimo di A,. Abbiamo cosi provato che nessun elemento
di A, ¢ il minimo dell’insieme. In modo analogo, considerando ¢ = (a+3)/2, si prova che
ciascun elemento a di A, non ¢ massimo. Pertanto A, non ha né massimo né minimo.

Si ha maxA; =2, mentre A; non ha minimo. Infatti, qualunque sia a € A5, a—1 ¢
un elemento di Ay minore di 4, quindi @ non ¢ il minimo di A;.

L'insieme A, non ha né massimo né minimo. Infatti, se 2 € A, allora 0 2 <0, quindi
4>acec4ecA,,oppure a>3,quindi a+1€ A, e a+1>a. Inogni caso, esiste un
elemento di A, maggiore di @ . In modo analogo si dimostra che A, non ha minimo. <«

E evidente da questi esempi che un sottoinsieme di R puo6 non avere massimo, o non
avere minimo, o non avere né massimo né minimo.
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pio 1.2.34

1.2.35 Osservazione. Se A CR ha un numero finito di elementi, allora esistono massimo
e minimo di A.

Questo fatto ¢ evidente; una dimostrazione rigorosa richiede I'utilizzo del principio di
induzione che vedremo nella sottosezione 1.3.1. <

Gli insiemi A, e A dell’esempio 1.2.34 non hanno né massimo né minimo, ma c’¢
una differenza tra le due situazioni. Non esistono numeri reali maggiori o uguali a ogni
elemento di A, mentre esistono numeri reali, ad esempio 4, maggiori o uguali a ogni
elemento di A, .

Per distinguere queste due situazioni diamo le seguenti definizioni.

Definizione di maggiorante e minorante di un sottoinsieme di R

Stano ACR e x € R.
Diciamo che x ¢ un maggiorante di A quando Ya €A siha a <x.
Diciamo che x ¢ un minorante di A quando Ya€A siha a>x.

1.2.36 Esempio. Consideriamo gli insiemi studiati nell’esempio 1.2.34.

Qualunque numero maggiore o uguale a —1 € maggiorante per A, ; qualunque numero
minore o uguale a —1 ¢ minorante per A, .

I maggioranti di A, sono tutti e soli i numeri maggiori o uguale a 4, mentre i minoranti
sono tutti e soli i numeri minori o uguali a 0.

I maggioranti di A5 sono tutti e soli i numeri maggiori o uguale a 3, mentre i minoranti
sono tutti e soli i numeri minori o uguali a 1. Lo stesso vale per A, .

L'insieme A5 non ha minoranti. Infatti se x € R € tale che x > 2, allora evidentemente
non ¢ un minorante, mentre se x < 2, allora x —1 ¢ un elemento di A; minore di x. I
maggioranti di A5 sono tutti e soli i numeri maggiori o uguali a 2.

Con ragionamenti analoghi a quelli fatti per dimostrare che A; non ha minoranti, si
dimostra che A, non ha né maggioranti né minoranti. <
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Definizione di insieme limitato superiormente, limitato inferiormente, limitato

Sia ACR.

Diciamo che A ¢ superiormente limitato quando I'insieme dei maggioranti di A
¢ non vuoto, in caso contrario diciamo che A ¢ superiormente illimitato.

Diciamo che A ¢ inferiormente limitato quando I'insieme dei minoranti di A &
non vuoto, in caso contrario diciamo che A ¢ inferiormente illimitato.

Diciamo che A ¢ limitato quando A ¢ sia superiormente limitato che inferior-
mente limitato, in caso contrario diciamo che A ¢ illimitato.

\ J

1.2.37 Osservazione. Talvolta risulta utile 'osservazione che un insieme A ¢ limitato se e
solo se {|a||a €A} ¢ superiormente limitato. Ovviamente O ¢ in ogni caso un minorante

di { |a| |a GA} , quindi tale insieme ¢ superiormente limitato se e solo se ¢ limitato.
Infatti, se esiste x maggiorante di {|ﬂ| |a S A} , allora, Ya € A, st ha |a| < x, quindi,
per le proprieta del valore assoluto 1.2.31, affermazione I, risulta —x <a < x; percio —x
¢ un minorante e x ¢ un maggiorante di A.
Viceversa, se esistono x minorante e y maggiorante di A, allora, Ya€A,sihaa<y
e —a < —x; poiché o |a| = a, oppure |a| = —a, risulta |a| < max{—x,y}. Quindi
max{—x,y} € un maggiorante di {|ﬂ| |a GA} . |

1.2.38 Esempio. Consideriamo gli insiemi studiati nell’esempio 1.2.34.

Nell’esempio 1.2.36 abbiamo determinato i maggioranti e i minoranti di tali insiemi. Da
cio segue che gliinsiemi A, A,, A; e A, sono superiormente limitati e inferiormente limi-
tati, quindi sono limitati. Linsieme A5 € superiormente limitato e inferiormente illimitato,
mentre A, € superiormente e inferiormente illimitato; quindi A5 e A sono illimitati. <

Dalle definizioni si ottiene immediatamente il seguente teorema.

1.2.39 Teorema

Siano ACR e x eR.
Siha x =maxA seesolose x €A e x ¢ maggiorante di A.
Siha x =minA seesolose x €A e x ¢ minorante di A.

Definizione di estremo superiore e estremo inferiore di un sottoinsieme di R

Sia ACR.

Se A ¢ superiormente limitato chiamiamo estremo superiore di A il minimo
dell’insieme dei maggioranti.

Se A ¢ inferiormente limitato chiamiamo estremo inferiore di A il massimo
dell’insieme dei minoranti.

\, J

L’esempio 1.2.34 mostra che visono sottoinsiemi di R privi di minimo, quindi non ¢ ga-
rantito che un insieme superiormente limitato abbia estremo superiore; tuttavia, per la com-
pletezza di R, I'insieme dei maggioranti di ogni insieme superiormente limitato ha minimo.
Analogamente I'insieme dei minoranti di ogni insieme inferiormente limitato ha massimo.

Vale cioe il seguente teorema.
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1.2.40 Teorema (esistenza dell’estremo superiore)

Sia ACRR. Se A ¢ superiormente limitato, allora I'insieme dei maggioranti di A
ha minimo.

DimostrAzZIONE. Indichiamo con B I'insieme dei maggioranti di A.

Per la definizione di maggiorante, qualunque siano x € A e y € B risulta x <y . Percio,
per I’assioma di completezza, esiste ¢ € R tale che Yx €A, x <ce VyeB,y>c. La
prima disuguaglianza significa che ¢ ¢ un maggiorante di A, la seconda che ¢ ¢ minore o
uguale a ogni maggiorante di A, pertanto ¢ ¢ il minimo dell’insieme dei maggioranti. W

Un teorema analogo vale per I’estremo inferiore.

Per il teorema appena dimostrato, ’estremo superiore di un insieme superiormente
limitato esiste sempre; esso € unico perché ¢ unico il minimo di qualunque insieme. Tale
estremo superiore ¢ indicato con supA.

Nel caso che A sia superiormente illimitato si pone inoltre supA =-+o0.

In modo del tutto analogo Iestremo inferiore di un insieme A inferiormente limitato
s indica con infA, mentre se A ¢ inferiormente illimitato si pone infA =—o0.

1.2.41 Esempio. Consideriamo gli insiemi studiati negll’esempio 1.2.34.
Nell’esempio 1.2.36 abbiamo determinato i maggioranti e i minoranti di tali insiemi.

Da quanto visto segue facilmente che infA, = supA; = —1, infA, = 0, supA, = 4,
infA; =infA, =1, supA; = supA, = 3, supA; = 2. Poiché A, ¢ inferiormente illi-
mitato si ha infA; =—o0; poiché A, ¢ inferiormente e superiormente illimitato risulta
infA, =—o00 e supA,=-+00. <

1.2.42 Teorema (caratterizzazione dell’estremo superiore)

Siano A C R superiormente limitato e 2 € R. Il numero a ¢ estremo superiore
di A se e solo se sono verificate le condizioni:

a) VxeA,x<a,
b) Vy €R tale che y <a,esiste z€ A tale che z>1y.

\ J

DiMosTRAZIONE. Si ha @ = supA se e solo se 2 € un maggiorante di A e a ¢ minore o
uguale a ogni maggiorante.

La condizione che a4 sia un maggiorante ¢ la a).

Il numero a € minore o uguale a ogni maggiorante se e solo se ogni y € R tale che
y <a non ¢ maggiorante, cio¢ esiste z € A tale che z >y . Quindi la condizione che a ¢
minore o uguale a ogni maggiorante ¢ equivalente alla (b). u

Il teorema seguente ¢ I’analogo per I’estremo inferiore.

1.2.43 Teorema (caratterizzazione dell’estremo inferiore)

Siano A C R inferiormente limitato e 2 € R. Il numero & ¢ estremo inferiore
di A se e solo se sono verificate le condizioni:
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a) VYxeA, x>a,
b) Vy €R tale che y >a, esiste z€ A taleche z<y.

Il seguente teorema stabilisce la relazione tra massimo ed estremo superiore di un insie-
me.

1.2.44 Teorema
Sia ACR.

I) Se A ha massimo, allora € superiormente limitato e maxA =supA.

IT) Se A ¢ superiormente limitato e supA € A, allora ha massimo e maxA =supA.

DimosTRAZIONE. I)  Se esiste maxA, allora esso ¢ maggiorante di A, che quindi ¢ supe-
riormente limitato; inoltre maxA ¢ un elemento di A, per cui € minore o uguale a ogni
maggiorante, percio ¢ ¢ I’estremo superiore.

II) Se A ¢ superiormente limitato e supA € A, allora supA ¢ un maggiorante di A che
appartiene ad A, per il teorema 1.2.39 esso ¢ il massimo di A. [

Un teorema analogo lega minimo ed estremo inferiore.

1.2.45 Teorema

Sia A CR limitato. Allora:

infA <supA.

DiMOSTRAZIONE. Sia x € A. Poiché infA ¢ un minorante di A e supA ¢ un maggiorante
di A, siha infA<x<supA. [ |

1.3 NUMERI NATURALI, INTERI, RAZIONALI

Studiamo ora 1 sistemi dei numeri naturali, dei numeri interi e dei numeri razionali;
tali sistemi numerici sono introdotti come sottoinsiemi dell’insieme dei numeri reali, le
operazioni e la relazione d’ordine su di essi sono ereditate da quelle sui numeri reali.

1.3.1 NUMERI NATURALI

Introduciamo 'insieme N dei numeri naturali come sottoinsieme di R. Lidea di ba-
se per introdurre il sottoinsieme di R costituito dai numeri naturali ¢ che tale insieme &
individuato dalle seguenti proprieta:

1. 0eN;
2. se n€N,allora n+1€N;

3. un numero reale appartiene a N solo se si ottiene a partire da 0 applicando la regola 2.
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La proprieta 3. ci dice che I'insieme che vogliamo definire ¢ il piu piccolo sottoinsieme
di R per cui valgono le proprieta 1. e 2., tale insieme puo essere ottenuto intersecando tutti
gli insiemi che godono di tali proprieta. Quindi traduciamo in termini rigorosi questa idea
con le seguenti definizioni.

Definizione di insieme induttivo

Sia A CR. Diciamo che A ¢ un insieme induttivo quando A verifica:
a) 0€A,
b) VxeR,xeA = x+1€A.

1.3.1 Esempio. Si verifica facilmente che sono insiemi induttivi R, {x € R|x > —1} e
{x eR|x>0}.

Non ¢ invece induttivo 'insieme A = {x € R|x > 0} U {2}, perché —2 € A, ma
—2+1=—1¢A; quindi non ¢ verificata la condizione b) della definizione. <

Definizione di insieme dei numeri naturali

Chiamiamo insieme dei numeri naturali e indichiamo con N [’intersezione di
tutti gli insiemi induttivi di numeri reali.

Analogamente a quanto definito nel caso dei numeri reali, indichiamo con N* Iinsie-
me N\ {0}.

1.3.2 Teorema

Sia ACR. Se A ¢ induttivo, allora NCA.

DimosTrAZIONE. Lintersezione di una famiglia di insiemi ¢ inclusa in ciascuno degli insiemi
che si intersecano, quindi N, intersezione di tutti gli insiemi induttivi, ¢ incluso in ogni
insieme induttivo. [

1.3.3 Teorema

Linsieme N ¢ induttivo.

DimosTrAZIONE. Il numero O appartiene a ogni insieme induttivo, quindi appartiene al-
I'intersezione di tutti gli insiemi induttivi, cioe a N.

Se x € N, allora, qualunque sia A C R induttivo, si ha x € A, quindi x +1 € A;
pertanto x + 1 appartiene a ogni insieme induttivo, cioé¢ x +1€N.

Pertanto N soddisfa entrambe le condizioni della definizione di insieme induttivo. M

La proprieta di N di essere il piu piccolo insieme induttivo si traduce facilmente nel
teorema seguente, che viene utilizzato frequentemente per dimostrare affermazioni relative
ai numeri naturali.
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1.3.4 Teorema (principio di induzione)

Per ogni n €N sia & (n) una proposizione. Se sono verificate le condizioni:
a) 2(0) e vera,
b) VneN, Z2(n) = P(n+1),
allora 2(n) e vera YneN.

\ J

DimosTrAZIONE. Posto A = {n e N|P(n)¢ Vera} , dobbiamo dimostrare che A = N.

Per la definizione di A, si ha A C N, quindi resta da dimostrare che N C A; poiche
ogni insieme induttivo contiene N (v. teorema 1.3.2), ¢ sufficiente dimostrare che A ¢
induttivo.

Dalla condizione a) segue 0 € A. Inoltre, se n € A, allora & (n) ¢ vera, per la con-
dizione b) anche Z(n + 1) ¢ vera, percio n+1 € A. Questo prova che A ¢ indutti-
vo.

Il teorema ¢ cosi provato. |

Studiamo la struttura dell’insieme N. Anzitutto determiniamone gli estremi.

1.3.5 Teorema

minN=0.

DivosTrAZIONE. Poiché 0 € N, per dimostrare che 0 = minA ¢ sufficiente provare che
ogni elemento di N e maggiore o uguale a 0; ci0 significa che, posto A ={x € R|x >0},
occorre provare che N C A. Per il teorema 1.3.2 cio € vero se A ¢ induttivo.

Siha 0>0, quindi 0€A;se x €A, allora x +1>x >0, pertanto anche x + 1 € A.
Pertanto A ¢ induttivo. u

1.3.6 Teorema

supN=+o0.

DIMOSTRAZIONE. Supponiamo, per assurdo che N sia superiormente limitato.

Poniamo M =supN. Se n € N, allora n+1 €N, percio n+1 < M ; pertanto, Yn €N,
stha n <M —1, quindi M —1 ¢ maggiorante di N. Percio M non ¢ il piu piccolo dei
maggioranti di N e ci0 ¢ assurdo. |

Dall’idea intuitiva di insieme dei numeri naturali, sappiamo che tra un numero natu-
rale 7 e n+ 1 non vi sono altri numeri naturali. Dimostriamo rigorosamente questo
fatto.

1.3.7 Teorema

Sia n € N\ {0}. Allora n—1€N.
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DimosTrAZIONE. Dobbiamo dimostrare che si ha N* C {n € N*|n —1 & N}, che equivale
a NC{0}U{n eN*|n—1&N}. Peril teorema 1.3.2, posto

A={0}U{rneN"|n—1eN},

¢ sufficiente dimostrare che A ¢ induttivo.

Evidentemente 0 € A.

Sia n € A. Allora n € N, quindi, per il teorema 1.3.5, n > 0, pertanto n+ 1> 1,
quindi 7+ 1€ N*;inoltre (n+1)—1=n&N. Pertanto n+1€A. u

Una conseguenza di questo teorema ¢ il seguente.

1.3.8 Teorema

min(N \ {O}) =1.

DimosTRAZIONE. Per il teorema 1.3.7 se n € N*, allora n —1 € N, pertanto, per il teore-
ma 1.3.5, n—1>0, cioe n>1. Pertanto 1 ¢ il piu piccolo elemento di N*. [ |

Generalizziamo 1l teorema 1.3.7, considerando la differenza di due numeri naturali.

1.3.9 Teorema

Siano m,n €N.Se m <n, allora n—m eN.

DimosTRAZIONE. Dimostriamo il teorema per induzione su 7, cioe consideriamo ['affer-
mazione
P(n): VmeN, m<n—n—meN.

Sen=0e meN, m<n,allora m=0, quindi z—m =0€&N. Pertanto Z2(0) ¢
vera.

Supponiamo vera Z?(n) esia m € N tale che m < n+1. Se m = 0, allora si ha
(n+1)—m=n+1€N.Se m 75 0, allora, per il teorema 1.3.7, risulta m —1 €N e

m—1<(n+1)—1=n,

quindi, per ipotesi induttiva, n—(m —1) €N, cioe (n+1)—m € N. Pertanto X (n+1)
¢ vera.
Per il principio di induzione 1.3.4 & (n) ¢ vera ¥Yn € N. u

1.3.10 Teorema

Siano m,n €N.Se m<n,allora m+1<n.

DIMOSTRAZIONE. Se m < n, allora, per il teorema 1.3.9, risulta » —m € N, inoltre si
ha n—m # 0, quindi » —m € N*. Allora, per il teorema 1.3.8, » —m > 1, quindi
n>m-+1. [ |

Questi teoremi consentono di ottenere informazioni sull’esistenza di minimo e massimo
per sottoinsiemi di N.
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1.3.11 Teorema
Sia ACN. Allora:

I) A ha minimo;

II) se A e superiormente limitato, allora ha massimo.

DivosTrAZIONE. I) Per il teorema 1.3.5 N ¢ limitato inferiormente, quindi anche A
¢ limitato inferiormente. Per ’analogo del teorema 1.2.44 per il minimo, ¢ sufliciente
dimostrare che infA€A.

Posto m = infA, dimostriamo per assurdo che m € A. Supponiamo quindi che
sia. m¢A. Per la caratterizzazione dell’estremo inferiore 1.2.42 esiste z € A tale che
z < m +1; poiché abbiamo supposto m ¢ A, si ha z # m , percid m < z. Ancora per il
teorema 1.2.42, esiste w € A tale che m <w < z. Pertanto 0<z—w <(m+1)—m =1.
Per il teorema 1.3.9 @w —z € N, ma cio ¢ assurdo, perché per il teorema 1.3.8 non esistono
numeri naturali compresitra 0 e 1.

II) Ladimostrazione ¢ analoga a quella dell’affermazione precedente. u

Le operazioni di addizione e moltiplicazione tra numeri naturali danno come risultato
un numero naturale. Si ha cioe:

1.3.12 Teorema

Siano m,n € N. Allora:
I) m+neN,
II) m-neN.

DimostrAzIONE. I) Fissato m € N, dimostriamo I’affermazione applicando il principio
di induzione 1.3.4 alla proposizione 2 (n): m+neN.

Poiché m +0=m, 2(0) ¢ vera.

Supponiamo vera 2 (n). Allora m+(n+1)=(m+n)+1,ma m+n €N per ipotesi
induttiva, quindi anche (m +n)+1€N. Pertanto & (n +1) ¢ vera.

II) Fissato m € N, dimostriamo ’affermazione applicando il principio di induzione 1.3.4
alla proposizione & (n): m-neN.

Siha m-0=0€&N, quindi #(0) ¢ vera.

Supponiamo vera & (n). Allora m-(n+1) = m-n+ m ¢ somma di due numeri
naturali, quindi, per I’affermazione I, ¢ naturale. Percio & (n+1) ¢ vera. [ |

Per questo teorema addizione e moltiplicazione possono essere considerate come opera-
zioni tra numeri naturali. Continuando a usare i simboli + e - per indicare la restrizione
ai naturali di addizione e moltiplicazione, abbiamo le seguenti proprieta.

1.3.13 Teorema

Linsieme N con le operazioni + e - verifica gli assiomi C1-C3, C5-C7 e C9,
non verifica gli assiomi C4 e C8.
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DimosTrRAZIONE. E evidente che, poiché le proprieta associativa, commutativa e distribu-
tiva valgono in R, esse valgono anche in sottoinsiemi di R, in particolare in N. Pertanto
gli assiomi C1, C2, C5, C6 e C9 sono verificati in N.

Per la definizione di insieme induttivo 0€N e 1=0+1€& N, quindi sono verificati gli
assiomi C3 e C7.

Se n € N*, allora, per il teorema 1.3.5, » > 0, quindi —» < O (v. teorema 1.2.17),
pertanto —n ¢ N. Percio non ¢ verificato ’assioma C4.

Se n € N e n > 1, allora, per il teorema 1.2.22, 0 < 1/n e, per il teorema 1.2.24,
1/n < 1; per il teorema 1.3.8 non esistono naturali compresi tra 0 e 1, quindi 1/7 ¢ N.
Percio non ¢ verificato I’assioma C8. u

1.3.2 APPLICAZIONI DEL PRINCIPIO DI INDUZIONE

In questa sottosezione utilizziamo il principio di induzione 1.3.4 per giustificare alcune
definizioni e per dimostrare alcune formule che risulteranno utili in seguito.

Studiamo anzitutto le cosiddette definizioni per induzione. Per definire un concetto
che dipende da 7 € N, possiamo anzitutto definirlo per 7 =0 e inoltre dare la definizione
per n+1 sulla base della definizione data per 7. Il principio di induzione assicura che con
questo procedimento il concetto ¢ definito V7 € N.

Utilizziamo questa modalita di dare una definizione per definire rigorosamente la poten-
za di un numero reale. L'idea intuitiva ¢ che se 7 € N* e x € R*, allora la potenza 7 -sima
di x, indicata con x”, ¢ il prodotto di 7 fattori uguali a x. Pensando che il prodotto
di 0 fattori sia ’elemento neutro moltiplicativo, cioe 1, risulta naturale dare la seguente
definizione per induzione.

Definizione di potenza di un numero reale

Siano x € R* e n € N. Definiamo x” ponendo:
a) x°=1,
b) x"tl=x-x".

Poniamo inoltre, Y7z € N*, 07 =0.
Chiamiamo potenza n-esima di x il numero reale x”.

\ J

Un’altra definizione che ¢ naturale dare per induzione ¢ quella di prodotto dei primi »
numeri naturali non nulli., che ¢ chiamato fattoriale di 7. Come vedremo, risulta utile
definire anche il fattoriale di 0.

Definizione di fattoriale

Sia » € N. Chiamiamo fattoriale di 7 il numero naturale 7! definito ponendo:

a) 0l=1,
b) (n+1)=(n+1)n!.

Risulta quindi 0!'=0, 1!=1-01=1,2!=2-1=2,31=3.2=6, 4/=4-6=24.
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1.3.14 Esempio (disuguaglianza di Bernoulli'). Proviamo per induzione che Vx € R
tale che x>—1 e Vn €N si ha

(14+x)">14+nx.
Fissato x > —1, la proposizione che vogliamo provare, Y7 €N, ¢

P(n): (I+x)">1+nx.

Per n =0 la disuguaglianza ¢ (14+x)°>1+0-x,cio¢ 1>1 che ¢ vera.
Supponiamo ora vera Z?(n) e dimostriamo Z(n+1). St ha

(14 x)" M =14 x)(1+x)",
poiché 1+ x>0, da & (n) otteniamo
A4+x)14+x)">A+x)14+nx)=14+@n+Dx+x*>14+(n+1)x,

nell’ultimo passaggio si & utilizzato il fatto che x? > 0. Pertanto (1+x)"*' > 1+(n+1)x,
cioe vale Z(n+1).
Per il principio di induzione 1.3.4 la disuguaglianza vale Yn € N. <

Siano a,b €R e n € N*. Studiamo la potenza (2 + )" . Si ha

(a+bY=aa+ab+ba+bb=a*+2ab+b?,

(a+bY =(a+b)aa+ab+ba+bb)=
—aaa+aab+aba+abb+baa+bab+bba+bbb=
=a’+3a*b +3ab*+ b’

Risulta evidente che in generale (@ + )" puo essere scritto come somma di tutti i termini
che si ottengono moltiplicando 7 fattori, ciascuno dei quali ¢ uguale ad 2 o a 4. Quindi

ciascun addendo ¢ del tipo a"*bk con k=0,1,...,n, dove si intende che 4a° = 4% =1
anche quando 4 =0 o b = 0. Generalmente per ciascun £ vi sono piu addendi del tipo
a"*b* . Risulta quindi ,
(&l + b)n :ch,kﬂn_kbk ,
con opportuni coefficienti C, , € N*. e

Per determinare questi coefhicienti, osserviamo anzitutto che C, , ¢ il numero di strin-

ghe diverse formate da 7 caratteri, 7 —k dei quali sono 4 e k£ sono & . Esiste una sola
stringa di » caratteri a, quindi C,, =1. Visono 7 stringhe con un &, perché b puo

comparire in una qualunque delle 7 posizioni, quindi C, ; = 7. Da ciascuna stringa con

!La disuguaglianza prende il nome da Jakob Bernoulli (Basilea, 1655 - Basilea, 1705) che la dimostro e la utilizzo
pit volte in un trattato del 1689, ma era gia stata trovata nel 1668 da René Frangois Walter de Sluze (Visé, Belgio,
1622 - Licge, Belgio, 1685).

Bernoulli ha dato fondamentali contributi al calcolo differenziale e alla teoria della probabilita.
De Sluze ¢ stato tra i primi studiosi del calcolo differenziale.
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Figura 1.3.1

Grafici delle funzioni x — 14nx (inblu) e x — (14x)” (in rosso) per n =2 (asinistra) e
n =3 (adestra). Per la disuguaglianza di Bernoulli, se x > —1, la prima delle due funzioni
in x ha valore minore o uguale a quello dalla seconda nello stesso punto.

n—1 a eun b ,sostituendo b aunodegli 4, si ottiene una stringacon n—2 a e 2 b;ogni
stringa di questo tipo si ottiene in tale modo, quindi per ogni stringacon 7 —1 a eun b
otteniamo 7—1 stringhe con n—2 a e 2 b ; pero ciascuna di queste viene ottenuta 2 vol-
te. Infatti, ad esempio, la stringa bba...a siottiene siada aba...a, sostituendo b alla a
in prima posizione, sia da baa...a, sostituendo b alla a in seconda posizione. Pertanto

_n—1 n(n—1)
2 2

Cn,Z -

In modo analogo, data una stringa con n—#% a e k b, sostituendo b a uno degli a si
ottiene una stringa con 7 —(k+1) a e k+1 b; quindi da ognuna di tali stringhe si
ottengono n—Fk stringhe con n—(k+1) a e k+1 b, maciascunasi ottiene k+1 volte;

pertanto C, ., =((n—k)/(k+1))C,, .

Abbiamo quindi
_n—k+1 _(n—k+1)(n—Fk+2) L
Cn,/e - A Cn,/e—l - /e(/e—l) Cn,/e—Z - -
_(n—/e+1)(n—/€—|—2)---nc _(n—kl(n—k+1)n—k+2)---n _ al
B k(k—1)---1 mo (n—k)k(k—1)---1 Ckl(n—k)

Formalizziamo il ragionamento fatto.
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aaab aaba abaa baaa
< < & &
aaab aaba abaa baaa 42°b

aabb aabb abab abab abba abba baab baab baba baba bbaa bbaa
N AN AN J AN VRN J

Y Y Y Y Y Y
aabb abab abba baab baba bbaa 6a’b?

abbb abbb abbb babb babb babb bbab bbab bbab bbba bbba bbba
N AN AN AN J

Y Y Y Y
be th bTb b?m 4ab?
bbbb bbbb bbbb bbbl

bbb b

Figura 1.3.2

La procedura illustrata sopra per contare il numero di stringhe formate da un numero fissato
di @ e un numero fissato di &, nel caso di stringhe di 4 lettere. A ogni passo si sostituisce
una a4 con una b, questo puo essere fatto in tanti modi diversi quante sono le a; ogni
nuova stringa si ottiene tante volte quante sono le 5.

Definizione di coefficiente binomiale

Siano €N e k €{0,1,...,n}. Chiamiamo coefficiente binomiale di 7 e & il

numero naturale
<n> B n!
k) kl(n—Fk)

(silegge “n su k7).

\

Ogni coefhiciente binomiale ¢ quoziente di due numeri naturali ed € un numero naturale.
Questo ¢ evidente dal ragionamento fatto per definirlo, puo essere dimostrato rigorosamen-
te utilizzando le seguenti proprieta dei coeflicienti binomiali.

1.3.15 Teorema (proprieta dei coefficienti binomiali)

Siano €N e k€{0,1,...,n}. Allora:
1y
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)

II) seinoltre #0 e k#0,si ha

0)=G2)+(7)

& v

DimvosTtrAZIONE. 1)  Siha

) Siha

n—1 n—1\ (n—1) (=1
<k—1>+< k >_(/e—1)!(n—/e)!+k!(n—/e—1)!_

(n—1)k N (n—=1)(n—Fk)
(k—1k(n—k+1)  kl(n—k—1)(n—Fk)

_n!(k—l—(n—/e))_ n! _(n
= T Rk ‘/ez(n_k>z_<k>' -

Risulta naturale disporre 1 coeflicienti binomiali in forma di triangolo infinito (v. fi-
gura 1.3.3), mettendo nella 7-sima riga gli n coefficienti » — 1 su k al variare di &
tra 0 e n—1. Le proprieta dei coeflicienti binomiali consentono di calcolare facilmen-
te gli elementi di una riga a partire dagli elementi della riga precedente. Tale triangolo &
detto triangolo di Tartaglia o triangolo di Pascal’.

Enunciamo infine la formula per il calcolo della potenza di un binomio.

In questa e in altre formule dello stesso tipo si utilizza la convenzione che la notazione 4°

indica sempre il numero 1, anche se @ assume il valore 0.

21 triangolo prende il nome da Nicolo Tartaglia (Brescia 1500 - Venezia 1577) e da Blaise Pascal (Clermont-
Ferrand, Francia, 1623 - Parigi, 1662). Tartaglia descrisse il triangolo in un trattato del 1566, Pascal lo studio
approfonditamente nel “Traité du triangle arithmétique” del 1653, ma il triangolo era gid noto da alcuni secoli ai
matematici persiani e cines.

Tartaglia € noto per avere trovato la formula risolutiva delle equazioni di terzo grado.
Pascal ha dato fondamentali contributi in vari settori della matematica, tra cui la geometria e il calcolo delle
probabilitd; ha dato anche contributi allo studio della filosofia.
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Figura 1.3.3

Le prime 8 righe del triangolo di Tartaglia. Il % -simo elemento della 7 -sima riga ¢ il
coefficiente binomiale » —1 su k& — 1. Per Paffermazione III del teorema 1.3.15, ogni
elemento del triangolo che non sia su un lato ¢ somma dei due elementi che stanno sopra.

1.3.16 Teorema (potenza di un binomio)

Siano 4,6 €R e n € N*. Allora

(a+b)" = g <Z>an—’eb’e .

. J

DimosTRAZIONE. Dimostriamo per induzione che, Y7n € N*, ¢ vera
. /n
P(n): a+ b)Y = < >a”_kbk.
ety =3(7

Se n =1, per I'affermazione I del teorema 1.3.15, si ha

1
Z<1>al_kbk = <1>41b0+<1>aob1 —a+b;
—\k 0 1

pertanto 22 (1) ¢ vera.
Supponiamo vera & (n). Per I'ipotesi induttiva si ha

(ﬂ + b)n—i—l (d + b)z<z>dn—kbk :Z<Z>ﬂn+l_kbk +Z<Z>dn—kbk+l —
k=0

:i<n> n+1— kbk+nZH< >ﬂn—(j—1)bj:
-0 k

n\ s+170 N\ ik ipk - n ntl—k gk 7\ 070+l
= a”m bt + <>a+ b* + < >a+ b+<>ab+:
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_(n+1\ L0 - n n n+l—k 1k n+1\ o 41
_< 0 >a b +;<</€>+<Ie—l>>ﬂ b +<n+1>ﬂ Aa—
:nZH<”+1>dn+l—kbk’

k=0 /€

dove si sono utilizzate le affermazioni I e Il del teorema 1.3.15. Pertanto &2 (n+1) € vera.

Per il principio di induzione 1.3.4 'uguaglianza vale Vn € N*. u

La formula della potenza di un binomio puo essere generalizzata per la potenza della
somma di piu di due addendi. Questo richiede di generalizzare il concetto di coefliciente
binomiale.

Definizione di coefficiente multinomiale

Siano n €N, m e N\{0,1} e, per j =1,2,...,m, /ejE{O,l,...,n},talichesiha

;.”zllej = n. Chiamiamo coefliciente multinomiale 7 su k,k,,...,k,, il numero

naturale
< n > !
~—YT1m L
kisky,... kR, j:lkj!

Se m =2, allora dalla condizione k, 4k, =n segue k, =n—k, , quindi

< n >_ n! n! _<n>
kik,) kR RN (n—k) \k)’

percio 1 coeflicienti binomiali sono un caso particolare dei coeflicienti multinomiali.

Ogni coefliciente multinomiale ¢ quoziente di due numeri naturali ed € un numero natu-
rale, cio ¢ una semplice conseguanza delle seguenti proprieta dei coefficienti multinomiali.

1.3.17 Teorema (proprieta dei coefficienti multinomiali)

Siano n € N, m € N\ {0,1} e, per j = 1,2,...,m, /ej € {0,1,...,n}, tali che si

ha > k. =n. Allora:
n _ 1,
<O,...,O,n,0,...,0>

j=1"]
D
(eontitet) e b )
kiyoooski_1,0,k0 1505k, Bioooski i Rpitseeskyy )’
III) seinoltre 7 #0 e, per j=1,2,...,m, /ej;éO,siha

n 7 n—1
</e1,/e2,...,/em> _§<Ie1,...,k]~_1,k]~—1,/e]-+1,_,_,/€m>'

0




1.3. Numeri naturali, interi, razionali 35

DimostrAZIONE. 1)  Siha

n _ n! _n!_1
0,...,0,7,0,...,0/ 0l---01n!0Ql---00 !

IM) Siha

< n >_ n! B
Riyeooski 0k ik, ) Ryl kg 1Ok, 1ok,

m*

_ n! _< n >
Rk etk Rk kR

III) Siha
i( n—1 >_i (n—1)! B
=1 kl""’kj—l’kj_19/€j+1"“’/€m =1 kllk]—ll(k]_l)!k]-i-l!km!
_i (n—1)!k; _(”—1)! ?:1/‘3;‘_ (n—1)n
_].:1kl!---kj_l!kj!kj+1!---km!_ ke, ook, VR Rk L

(e ) .
“\kpkyonk, )

Possiamo ora generalizzare il teorema sulla potenza di un binomio 1.3.16.
1.3.18 Teorema (potenza di un polinomio)
Siano n € N*, m e N\ {0,1} e a,4,,...,4,, €R. Allora, posto

]m’n:{(kl,kz,...,km)ENm|k1+k2+"'+km:n},

si ha

n a kj
(a,+a,+--+a,) = Z </e L " L >1_[a]. .
1R 3Ry ) i

(kyskyyennsk,, )EL,

.

J

DimosTrRAZIONE. Dimostriamo il teorema per induzione rispetto al numero m degli ad-

dendi.

Per m =2 I’affermazione si riduce al teorema sulla potenza di un binomio.
Supponiamo che la formula valga per 7. Allora si ha

(a,+a,+-~+a,+a,. ) :((a1 +42+---+am)+am+1>” =
—(n 0 n—l
:€Z<€>(41+az+--'+am) arl =
=0

= a. a =
/=0 <£>(k1,k Z <k1’k2"“’km 1_‘[ ] +1

5B €LY 1
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n! S n
2 '(n z>/ev/ev /evl_[“ i =

(=0 (ky ey )ELL

< ¢
J— 7 n—
N Z Bk - 1_[“ Ap1

(=0 (ky ey )ELL

Se (/el,/ez,...,/em)elgm ,allora ky+k,+---+k, =¢,quindi k,+k,+---+k, +(n—l)=n,
pertanto (ky,k,,...,k,,,n—{)€ 1, . . Inoltre ogni elemento di I, puo essere scritto

nella forma (kl,kz,...,km,n {) con { =0,1,...,n ¢ (kyskys-. s k,,) €1, . Quindi

n m

n! ki nt
Z Z kyky k (n_g)yl_[ﬂ] ﬂm—i-gl_

(=0 (ky ey )ELL j=1

m

n! ki km+1_
- > Eky -k 1_[“1' D1 =

(TR N S A— 12 +1 J=1

n m+1
QR PR S 8 X

(kpskyseesky ks 1 )EL, it

Pertanto la formula vale per m + 1.
Per induzione vale Vm e N\ {0,1}. u

1.3.19 Teorema

Siano 4,6 €R e n € N*. Allora

n—1
a"—b" =(a— b)Zakb”_k_l :
k=0

. J

In questo enunciato si richiede che sia 7 € N*, perché per #» =0 il secondo membro
non ha senso. Infatti 'indice £ nella sommatoria dovrebbe verificare contemporaneamente
le disuguaglianze £ >0 e b <—1.

DiMosTRAZIONE. Per 7 € N* indichiamo con 2 (n) 'uguaglianza da dimostrare. Possia-
mo applicare il principio di induzione 1.3.4 in forma modificata. Infatti ¢ evidente che se si
dimostra che 2 (1) € verae che 2(n) = Z?(n+ 1), possiamo concludere che 2 (n) ¢
vera Vn € N*.

Se n =1, allora il primo membro ¢ uguale a 2 — b, mentre il secondo &
0
(a— b)Zakb_k =(a—b)a’b’ =a—b;

percio 'uguaglianza ¢ verificata per n =1.
Se P (n) e vera, allora si ha

+1_ bn+1

=a" —a"b+a"b— b =(a—b)a" + b(a" —b") =
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n—1 n—1
=(a—0b)a"+b(a— b)Zakb”_k_l =(a—b)a"b’+(a— b)Zakbn_k =
k=0 k=0
:(a—b)Zakb”_k,
k=0

quindi & (n+1) & vera. u

1.3.20 Osservazione. Abbiamo affermato (v. osservazione 1.2.35) che un sottoinsieme fi-
nito di R ha massimo e minimo. Vediamo come il principio di induzione consente di dare
una dimostrazione rigorosa di questo fatto.

Dimostriamo I’affermazione che se un insieme ha 7 elementi, con » € N*, allora ha
massimo.

Se un insieme ha un elemento, allora questo ¢ maggiore o uguale a ogni elemento
dell’insieme, quindi ¢ il massimo.

Supponiamo che ogni sottoinsieme di R con 7 elementi abbia massimo e sia A C R
con 7+ 1 elementi. Scegliamo un arbitrario elemento @ di A. Allora A\ {a} ha n
clementi, quindi ha massimo; sia b = max(A\ {a}). Se b > a, allora b ¢ maggiore o

uguale a ogni elemento di A, quindi 5 ¢ il massimo di A. Se invece b < a, allora a ¢
maggiore o uguale a ogni elemento di A, quindi 4 ¢ il massimo di A.
Evidentemente per il minimo il ragionamento ¢ analogo. <

1.3.3 NUMERI INTERI

Una volta definito, come sottoinsieme di R, I'insieme dei numeri naturali, & semplice
definire 'insieme dei numeri interi e studiarne le proprieta.

Definizione di insieme dei numeri interi

Chiamiamo insieme dei numeri interi e indichiamo con Z il sottoinsieme di R
tale che
Z=NU{xeR|—xe&N}.

Analogamente a quanto definito nel caso dei numeri reali, indichiamo con Z* I'insie-
me 7\ {0}.

E evidente che NC Z.

E inoltre facile dimostrare che n €Z <= —n€Z.

Come per 1 numeri naturali le operazioni tra numeri interi danno come risultato un
numero intero.

1.3.21 Teorema

Siano m,n € Z. Allora:
) m4neZ,
) m-neZ.
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DimostrAZIONE. I) Esaminiamo i vari casi possibili.

Se m,n € N, allora, per il teorema I), st ha m +»n € N. Se meN e —n € N,
allora o m > —n, oppure m < —n; dal teorema 1.3.9 segue che nel primo caso st ha
m~+n=m —(—n) €N, mentre nel secondo caso si ha —(m +n)=(—n)—m € N. Infine,
se —m,—n € N, allora risulta —(m +n) =(—m)+(—n)€N.

In ogni caso o m+n €N, oppure —(m +n)eN, quindi m+neZ.

II) Esaminiamo i vari cast possibili.

Se m,n € N, allora, per il teorema II), m-n € N. Se m € N e —n € N, allora
—(m-n)=m-(—n)€N. Infine, se —m,—n €N, allora m-n =(—m)-(—n)eN.

In ogni caso o m-n €N, oppure —(m-n)eN, quindi m-n€Z. u

Questo teorema assicura che addizione e moltiplicazione possono essere considerate
come operazioni tra numeri interi. Continuando a usare i simboli + e - per indicare la
restrizione ai naturali di addizione e moltiplicazione, abbiamo le seguenti proprieta.

1.3.22 Teorema

Linsieme Z con le operazioni + e - verifica gli assiomi C1-C7 e C9, non verifica
I’assioma CS8.

DimMosTRAZIONE. Per motivi analoghi a quelli relativi a N, gli assiomi C1, C2, C5, Cé6
e C9 sono verificati in Z. Inoltre sappiamo che 0,1 € N C Z, quindi sono verificati gli
assitomi C3 e C7.

Se n€Z,allorao n €N, quindi —(—n) € N, pertanto —n € Z, oppure —n € N,
quindi —(—n) = n € Z; quindi ¢ verificato I’assioma C4

Come nel caso dei numeri naturali, se 7 € Z e n > 1, allora, 1/n ¢ Z . Percio non ¢
verificato 1’assioma C8. [ ]

Studiamo gli estremi di Z. St ha:

1.3.23 Teorema

infZ =—o0, supZ =+o0.

DimosTrAZIONE. Poiché Z contiene N, che ¢ superiormente illimitato (v. teorema 1.3.6,
anche 7Z ¢ superiormente illimitato.

Dimostriamo ora che Z ¢ inferiormente illimitato. Poiché N ¢ superiormente illimi-
tato, Yx € R, —x non ¢ un maggiorante di N, quindi esiste 7 €N tale che n > —x, cioe
—n < x; siccome —n € Z questo prova che x non ¢ minorante di Z. Pertanto Z non ha
minoranti. [ |

Analogamente a quanto avviene per i numeri naturali st ha:

1.3.24 Teorema

Siano m,n €Z.Se m#n , allora |n —m|>1.
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DimosTRAZIONE. Poiché n—m € Z, |n—m| € Z, inoltre |n—m| >0, quindi |n—m| € N*
Pertanto, per il teorema 1.3.8 [z —m|>1. u

Infine vale il seguente teorema, la cui dimostrazione ¢ simile a quella dell’analogo teo-
rema per i sottoinsiemi di N (v. teorema 1.3.11).

1.3.25 Teorema

Sia ACZ.
Se A ¢ superiormente limitato, allora ha massimo.
Se A ¢ inferiormente limitato, allora ha minimo.

1.3.4 NUMERI RAZIONALI

A partire dall’insieme dei numeri interi, definiamo I'insieme dei numeri razionali.

Definizione di insieme dei numeri razionali

Chiamiamo insieme dei numeri razionali e indichiamo con @ il sottoinsieme
di R tale che

Q:{xER‘ElpEZ: dgeZ*: ng}

7

\. J

Analogamente a quanto definito nel caso dei numeri reali, indichiamo con Q* Pinsie-

me Q\ {0}.
Poiché 1€Z*,se peZ,allora p=p/1€Q, quindi ZC Q.

1.3.26 Teorema

Siano p,q € Q. Allora:

I) p+q€@;
) p-q€Q.

DivmosTrAZIONE. I) Se p=j/k e g=m/n,con j,meEZ e k,n eN*,si ha

1.3.27 Teorema

L'insieme @ con le operazioni + e - verifica gli assiomi C1-C9 cioe ¢ un campo.
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DimMosTRAZIONE. Per motivi analoghi a quelli relativi a N, gli assiomi C1, C2, C5, Cé6
e C9 sono verificati in Q. Inoltre sappiamo che 0,1 € N C Q, quindi sono verificati gli
asstomi C3 e C7.

Se p/qe€Q,allora —p/q=(—p)/q€Q.
Se p/qe@Q*,allora p#£0, cioe p €Z*, percid q/p Q. u

Studiamo gli estremi di Q. Si ha:

1.3.28 Teorema

inf@Q =—oo0, sup@Q =+o0.

DivosTRAZIONE. Linsieme @ contiene Z che ¢ superiormente e inferiormente illimitato,
quindi anche @ ¢ superiormente e inferiormente illimitato. u

Il campo ordinato @@ non ¢ completo. Per provarlo dimostriamo anzitutto il seguente
teorema.

1.3.29 Teorema

Non esiste x € Q tale che x?=2.

DimosTRAZIONE. Dimostriamo il teorema per assurdo. Supponiamo che esista x € Q ta-
le che x? = 2. Possiamo supporre x > O, perché se fosse x < 0 sarebbe —x > 0 e
(—x) =x*=2.

Pertanto esistono m,7n € N* e tali che (72/7)* =2. Possiamo supporre che la frazione
sia ridotta ai minimi termini, cio¢ che 72 e 7 siano privi di fattori comuni. Siha m? =2n?,
quindi m? ¢ pari. Poiché il quadrato di un numero dispari ¢ dispari, 7 deve essere pari,
quindi esiste p € N* tale che m =2p . Allora risulta 4p*> =2n?, cio¢ 2p* = n*, quindi »?
¢ pari, pertanto 7 ¢ pari. Quindi sia m che 7 sono pari, ma questo ¢ assurdo, perché tali
numeri sono privi di fattori comuni. |

1.3.30 Teorema

Il campo ordinato @ non ¢ completo.

DiMmosTrRAZIONE. Poniamo
A={xeQ'|x*<2}, B={xeQ'|x*>2}.

Gli insiemi A e B sono separati, perché se a €A e b € B, allora si ha 4* < b?, quindi,
per il teorema 1.2.30, affermazione III, risulta a < b .

Dimostriamo che non esiste in @ un elemento di separazione tra A e¢ B, quindi Q
non verifica I'assioma di completezza.

Poiché 1€ A, un eventuale elemento di separazione ¢ maggiore o uguale a 1, quindi e
positivo.
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Poniamo ,
2—x 2x +2
.0t + _ _ .
FiQPoQ, f)=t =2
fBY pommmmmmm e Figura 1.3.4
fla) f-mmoos

|
| . oy
| | Grafico della funzione f utilizzata nella
i } dimostrazione del teorema 1.3.30.
‘ ! In blu la retta dei punti che hanno ordina-
| .
i | ta uguale all’ascissa.
| | Tale retta & piu in basso del grafico di f
1: 11 nei punti di ascissa 4 con a? < 2 men-
P ) tre € piu in alto nei punti di ascissa b
con b?>2.

Evidentemente se @ € A, quindi 2—4? >0, si ha f(a) > a, mentre se b € B risulta
f(b)< b .Inoltre, Yx € QT si ha

4x7 4+ 8x +4—2(x*+4x+4)  2x?—4
(x +2)? C (x422°

(f(x))—2=

Pertanto se @ €A, allora si ha ( f (d))z —2<0, quindi f(a)€A, seinvece b € B, allora si
ha (f(b))'—2>0, quindi f(b)€B.
Abbiamo cosi dimostrato che, se a € A, allora f(a) ¢ un elemento di A maggiore

di a, quindi 4 non ¢ elemento di separazione. Analogamente, se b € B, allora f(b) ¢ un
elemento di B minoredi 4, quindi 4 non ¢ elemento di separazione. Per il teorema 1.3.29,

se x € QT allorao x? <2 o x*>2, quindi QT = AUB; poiché non esiste un elemento
di separazione né in A né in B, non esiste un elemento di separazione in Q7. |

1.4 ULTERIORI PROPRIETA DEI NUMERI REALI

Enunciamo anzitutto un teorema semplice, ma fondamentale per lo sviluppo dell’ana-
lisi.

1.4.1 Teorema

Sia x €R.Se Yy €R" siha x <y, allora x <0.

DimosTRAZIONE. Dimostriamo che se ¢ vera la negazione della tes, allora ¢ vera la negazio-
ne dell’ipotesi. Quindi proviamo che, se x >0, allora esiste y € R™ tale che y < x. Cio ¢
ovvio, possiamo scegliere y =x/2. |
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1.4.2 Teorema (proprieta di Archimede®)

Siano x,y €R.Se x >0 e y >0, allora esiste 7 €N tale che y < nx.

DIMOSTRAZIONE. Siano x,y > 0. Poiché N ¢ superiormente illimitato (v. teorema 1.3.6)
y/x non ¢ maggiorante di N, percio 37 €N tale che 7 > y/x; da questo segue y < nx.
|

1.4.3 Teorema

Sia x €R. Se x>0, allora 37z €N tale che 1/n < x.

DimosTRAZIONE. Sia x > 0. Allora 1/x > 0 e per la proprieta di Archimede 1.4.2, appli-
cata ai numeri 1 e 1/x, esiste 7 €N tale che 1/x<n-1,quindi 1/n<x. u

Definizione di parte intera di un numero reale

Sia x € R. Chiamiamo parte intera di x e indichiamo con [x], il numero intero

max{n € Z|n < x}.

2t +—
|
|
|
1 t--—-r—
I I
| |
—2 =il } }
| | 1 2
| |
| |
| — —1
| |
| |
| |
%12
|
|
— 1 -3 Figura 1.4.1

Grafico della funzione parte intera.

Linsieme {n € Z|n < x} ¢ un sottoinsieme di Z superiormente limitato, perché x
¢ un suo maggiorante; quindi per il teorema 1.3.25 tale insieme ha massimo. Percio la
definizione ¢ corretta.

Abbiamo cosi definito una funzione da R a Z, che ¢ detta funzione parte intera.

3La prpoprieta prende il nome da Archimede di Siracusa (Siracusa, 287 a.C. - Siracusa, 212 a.C.), uno dei pit
grandi matematici della sua epoca, oltre che fisico e inventore.
La proprieta ¢ riportata in un volume di Archimede del 225 a.C., riferita ai segmenti: dati due segmenti, ¢
sempre possibile, ripetendo un numero sufficiente di volte uno dei due, ottenere un segmento pit lungo dell’altro.
Archimede attribuisce la paternita della scoperta al matematico e astronomo Eudosso di Cnido (Cnido, Asia
Minore, 408 a.C. - Cnido, 355 a.C.).
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1.4.4 Osservazione. Dalla definizione segue immediatamente che Vx € R st ha [x] € Z
e [x] < x. Inoltre [x]+ 1 € un intero piu grande del piu grande intero minore o uguale
a x,quindi [x]+1>x. <

1.4.5 Esempio. Risulta

Siano a,x € Rt U{0} e n € N\ {0,1}. Diciamo che x ¢ radice n-esima di a
quando

1.4.6 Teorema (esistenza e unicita della radice 7 -esima)

Siano 2« e RTU{0} e n € N\ {0, 1}. Allora esiste uno e un solo x € RTU{0} tale
che x” =a.

DIMOSTRAZIONE. Sia a = 0. Poiché 0” =0, 0 ¢ radice n-esimadi a. Se x e RTU{0} ¢
tale che x” =0, allora si ha x =0, perché un prodotto si annulla solo se almeno un fattore
\ . . 1 . . . .
¢ nullo. Quindi 0 ¢ I'unica radice 7-esimadi O.

Consideriamo ora il caso 2 > 0.

Dimostriamo 'unicita della radice 7-esima di a. Siano x; e x, radici 7-esime di a.
P-oiclhé a#0,siha x; #0 e x, #0, quindi si ha x;, >0 e x, > 0. Per il teorema 1.3.19
risulta

n—I1
0=x] —x] =(x,—x,) > xfxy .
k=0

Per la legge di annullamento del prodotto 1.2.5, uno dei due fattori deve essere nullo; si ha

n—1 k n_k—l /4 : A b : M —_
o X% > 0, perché ciascun addendo ¢ positivo, quindi deve essere x; —x, = 0.

Pertanto la radice 7 -esima di 4 € unica.

Per dimostrare I’esistenza della radice 7-esima di a, posto A = {y € R"|y” < a},
proviamo che A ¢ superiormente limitato e il suo estremo superiore ¢ la radice 7-sima
cercata.

Se a <1, allora a” <a, quindi a € A; inoltre Yy € R, se y > 1, allora y” > 1" =
1>a,quindi y ¢ A, percio 1 ¢ un maggiorante di A. Se invece a > 1, allora 1" =1<a,
quindi 1 € A; inoltre Yy € R, se y > a, allora y” >a” > a, quindi y ¢ A, percio a ¢
un maggiorante di A. Pertanto A ha un elemento positivo ed ¢ superiormente limitato,
quindi ha estremo superiore positivo. Poniamo x =supA.

Dimostriamo che x” =a. Sia ¢ € RT, tale che ¢ < x. Poiché x +¢ > x =supA, si
ha x+¢ ¢ A, pertanto (x +¢)” > a. Inoltre x —e < x, percio, per la caratterizzazione
dell’estremo superiore, esiste z € A tale che x—e < z, quindi (x—¢)” < z” < a; pertanto

(x—e)'<a<(x+e).
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Poiché 0<x—e<x<x+4e,si ha
(x—e)'<x"<(x+e),
cioe
—(x+e)'<—x"<—(x—e)".
Sommando membro a membro si ottiene
(x—e)'—(x+e)'<a—x"<(x+e)"—(x—e)";

per le proprieta del valore assoluto 1.2.31, affermazione I, queste disuguaglianze equivalgo-
no a
la—x"|<(x+e&)'—(x—e)".

Per il teorema 1.3.19, tenuto conto che ¢ < x, st ha

3
L

(x+e) —(x—e)" =((x+e)—(x—e)) > (x+ eV (x—ey R < 2e }12(296)/‘396”_16_1 ;
0 k=0

2~
[l

quindi, posto M = ZZZ:é(Zx)kx”_k_l ,risulta |[a—x"| < Me , cioe |a—x"|/M < ¢ . Questa
disuguaglianza ¢ vera per ogni ¢ compreso tra 0 ed x, quindi anche per ogni ¢ > 0. Per
il teorema 1.4.1, risulta quindi |a —x"|/M < 0; poiché tale numero ¢ non negativo, esso ¢
uguale a 0. Pertanto |a —x"| =0, cioe 2 =x”, quindi x & radice 7-simadi a. [

1.4.7 Teorema

Siano x,y €R taliche x <y.
I) Esiste g €@ taleche x<g<y.
II) Esiste ze R\ Q taleche x <z <.

La tesi del teorema viene espressa dicendo che Q@ e R\ @ sono densi in R.

DimostrAZIONE. I) Poiché y—x > 0, per il teorema 1.4.3 3m € N tale che y—x > 1/m..
Posto n =[mx] e g=(n+1)/m,siha g € Q; dimostriamo che g ¢ compresotra x e y.
Per Posservazione 1.4.4 si ha n < mx <n+1, quindi

1
Z<x< nt =q,
m m
pertanto x < ¢ . Inoltre
n 1
y=x+@p—x)>—+—=gq;
m  m

quindi g ¢ il numero cercato.

II) Poiché v/2x < /2y, per I'affermazione I esiste g € Q tale che v2x <g<+/2y,da
cui segue
x < =a <y.
V2
Siha ¢/v2¢ @, perché in caso contrario sarebbe v/2/g € Q, quindi v2= q(ﬂ/q) €Q,

contrariamente a quanto affermato dal teorema 1.3.29. [
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Definiamo una tipologia di sottoinsiemi di R di particolare interesse. Sono gli insie-
mi che potremmo chiamare “senza buchi”; cioe tali che dati due punti dell’insieme, ogni
punto compreso tra di essi appartiene ancora all’insieme. Formalizziamo questa idea nella
seguente definizione.

Definizione di intervallo

Sia I CR avente piu di un elemento. Diciamo che I ¢ un intervallo quando

Vx,y,z€R, (x,yel Ax<z<y)— z€el.

Ovviamente un insieme con un solo elemento verifica la condizione scritta sopra. Per
questo motivo un tale insieme viene detto intervallo degenere.

1.4.8 Esempio. Consideriamo gli insiemi studiati nell’esempio 1.2.34.

L'insieme A; = {—1} ha un solo elemento, quindi ¢ un intervallo degenere.

L'insieme A, ={0,2,3,4} non ¢ un intervallo, perché 0,2€ A4, e 0<1<2, ma 1 ¢A4,.

Linsieme A; = {x € R|1<x <3} ¢ un intervallo. Infatti se x,y €A; e z ¢ compreso
trax e y,alloraz>x>1e z<y <3, pertanto z €A4;.

Linsieme A, = {x € R|1 < x < 3} ¢ un intervallo, come si prova con ragionamenti
simili a quelli relativi ad A, .

Linsieme A; = {x € R|x < 2} ¢ un intervallo. Infatti se x,y € A; e z ¢ compreso
tra x e y,allora z <y <2, pertanto z € A;.

Linsieme A, = {x € R|x <0}U{x € R|x >3} non ¢ un intervallo, perché 0,4 € A, e
0<2<4,ma2¢A,. <

E facile rendersi conto che per conoscere un intervallo ¢ sufficiente conoscerne gli estre-
mi, inferiore e superiore, oltre a sapere se tali estremi, nel caso che siano reali, apparten-
gono o meno all’intervallo. Esaminando 1 casi possibili otteniamo le seguenti tipologie di
intervalli.

Definizione di intervallo aperto, chiuso, limitato, illimitato

Siano a4, b €R,con a<b.
Chiamiamo intervallo chiuso e limitato di estremi « e b, e indichiamo con
[a,b], Pinsieme
[a,b]={x€eR|a<x<b}.

Chiamiamo intervallo chiuso a sinistra, aperto a destra, limitato di estremi a
e b, e indichiamo con [a, b[, insieme

[a,b] ={xeR|a<x<b}.

Chiamiamo intervallo aperto a sinistra, chiuso a destra, limitato di estremi a
e b, e indichiamo con Ja,b], Pinsieme

Ja,b]={xeR|a<x < b}.
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Chiamiamo intervallo aperto e limitato di estremi 4 e b, e indichiamo con
Ja, b[, Pinsieme
la,b[ ={xeR|a<x < b}.

Chiamiamo intervallo chiuso, superiormente illimitato e inferiormente limi-
tato di estremo 4, e indichiamo con [4,+o0[, 'insieme

[a,+o0[ ={x €R|a < x}.

Chiamiamo intervallo aperto, superiormente illimitato e inferiormente limi-
tato di estremo 4, e indichiamo con ]a,+oo[, 'insieme

la,+oo[ ={x €R|a < x}.

Chiamiamo intervallo chiuso, inferiormente illimitato e superiormente limi-
tato di estremo 5, e indichiamo con ]—o0, 5], I'insieme

J—00,b]={x €R|x < b}.

Chiamiamo intervallo aperto, inferiormente illimitato e superiormente limi-
tato di estremo 5, e indichiamo con ]—o0, 5[, I'insieme

J-o0, 5[ = {x €R|x < b}.
Inoltre, per coerenza con quanto definito sopra, poniamo:

J—o0,+o0o[ =R.

\ J

E evidente che ciascuno di questi insiemi € un intervallo. Viceversa si dimostra facilmen-
te che ogni sottoinsieme di R che sia un intervallo rientra in una delle tipologie descritte
sopra.



SUCCESSIONI DI NUMERI REALI

2.1 SUCCESSIONI

In questo capitolo studiamo le successioni: sono liste numerate di elementi di un certo
insieme; possiamo indicare una successione con la scrittura

Ags Ays Ay evnslyyenn

In questo modo a ogni numero naturale corrisponde un oggetto, pertanto una successio-
ne puo essere vista come una funzione di dominio N e a valori in un determinato insieme,
che solitamente ¢ R.

Le successioni costituiscono I’ambito piu semplice in cui iniziare lo studio dei concetti
fondamentali dell’analisi, in particolare il concetto di limite.

2.1.1 TERMINOLOGIA

Definiamo anzitutto gli oggetti che studiamo.

Definizione di successione e di successione reale

Sia X un insieme non vuoto. Chiamiamo successione in X ogni funzione da N

aX.
In particolare, chiamiamo successione reale ogni funzione da N a R.

Una successione ¢ una funzione con un particolare dominio: I'insieme dei numeri na-
turali. Tuttavia nello studio delle successioni il fatto che esse siano funzioni risulta margi-
nale; pertanto c¢’¢ I’abitudine di utilizzare terminologie e notazioni diverse da quelle usate
solitamente per le funzioni; le introduciamo con le seguenti definizioni.

Definizione di termine di una successione

Sia a una successione ¢ 7 € N. Chiamiamo 7 -esimo termine (o termine di
indice 7 ) della successione 4, e indichiamo con 4, , 'elemento a().

Vista la notazione usata per indicarne i termini, indichiamo la successione a con la
scrittura (a,,),cp -

Con un abuso di linguaggio, chiamiamo successione anche una funzione di dominio N*,
cio¢ una successione per cui non ¢ definito il termine di indice 0. Questa viene indicata col

simbolo (a,),cx- -
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Definizione di insieme dei termini di una successione

Sia (4,,),cy unasuccessione. Limmagine di (a,,),,y , cioé {a, |7 € N}, € chiamato
insieme dei termini della successione (,))

neN *

E essenziale non confondere una successione con 'insieme dei suoi termini: una fun-
zione ¢ diversa dalla sua immagine. Successioni diverse possono avere lo stesso insieme dei
termini.

2.1.1 Esempio. Consideriamo le successioni reali con termine 7 -simo (v. figura 2.1.1):

1 1 1 1 1 1 1 1 )
T 2 3 4 5 6 7 7
—1)” 1 2
n:m, 1 o 1 = 1 z 1 :

n+1 2 3
1 1 1 1 1
y = , e R
5—2n 5 3 3 5 7
s,= 1, 0 1 2 3 4 5 6 ;
2 —1)"—1
‘= ”+(4) , 0 0 1 1 2 2 3 ;
n,=3—n, 2 1 0 -1 -2 3 ;
v, =(—1)", =1 1 -1 1 -1 1 ..
2 3 4 5 6 7 8
w,=(—1y 2= 2 -2 2 2 2 L2
n+1 2 3 4 5 6 7
2,=(—1)"n, 0 —1 2 -3 4 —5 6
Si prova facilmente che si ha:
(p |neN) { ! eN}
n = n ,
n
neN :{ nGN}Ul,
(g, ey ={ - )
1 11
(rolneny={- neNjultz.o),
2n+1 35
{s,|neN} =N,
{t,|n €N} =N,

{n,|neN}={neZ|n <3},
{v,|n e N} ={-1,1},

{wn|neN}:{(—1)"ZiﬂneN},

{zn|n€N}:{2n|n€N}U{—(2n+1)|n€N}.

Le successioni (s e (t hanno lo stesso insieme dei termini: I’insieme dei
n/neN n/neN
numeri naturali. Tali successioni sono diverse, ad esempio s; =1, mentre ¢, =0. <
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| | °
1 | 1 | i |
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* * 13
i 6 | 6 ! . 6
‘ |
: | ° ° ° ° o
—1 »%‘ ° ° ° ° _3/2 - °
Figura 2.1.1

Le successioni definite nell’esempio 2.1.1.

Una successione reale ¢ una funzione da N, che ¢ incluso in R, a R, quindi puo essere
rappresentata come sottoinsieme di R x R, cio¢ sottoinsieme del piano cartesiano. Percio
una successione (a,,),oy viene rappresentata dai punti di coordinate (7,4,,), con n € N.

Nella sottosezione 1.3.1 abbiamo definito per induzione il fattoriale di un numero na-
turale; abbiamo posto 0! =1 e, ¥n € N, abbiamo posto (7 + 1)! = (7 4+ 1)n!. Questa
procedura definisce una funzione da N a R, cioe una successione.

Le successioni studiate nell’esempio 2.1.1 sono definite mediante una formula, che con-

\

sente di determinare direttamente il termine 7 -simo; la successione (,,),cy = (72!),ey €
definita in modo diverso: si fissa 4, e si stabilisce una “regola” che consente di determina-

re a se s conosce a,, .

n+12
Le successioni definite in questo modo sono dette successioni definite per ricorrenza
(o per induzione).
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2.1.2 Esempio. Vediamo due esempi di successioni definite per ricorrenza.
Consideriamo la successione (c,,),cy , definita come segue:

=0,
2

C = —
1 ’
e, +2

per n € N.
Per essere certi che in questo modo risulta definita una successione occorre verificare che ¢
sempre definito 2/(c, +2), cioe che non si ottiene mai ¢, =—2. Cio segue dal fatto che si
ha ¢;>0 e, se ¢, >0, allora anche ¢, >0; quindi i termini sono non negativi, pertanto
¢ sempre ¢, #—2.

I primi termini della successione sono:

2 _, 2 2 2 3 2 8 211
0+2 142 3 (2/3)+2 4 (3/9H)+2 11 (8/11)+2 15

Consideriamo la successione (d,),,o , definita come segue:

dy=1,
d,,,=—d,+n, per neN.

I primi termini della successione sono:

1 —140=—1 141=2 —242=0 0+43=3 —3+4=1 .... |
€, dn
1 rt 3
8/11 737.717 e o 0 0 0 o 3 iiiii T .
- 1t
| | — Figura 2.1.2
; ; —1 4 Le successioni definite nel-

I’esempio 2.1.2.

2.1.2 ESTREMI E LIMITATEZZA DI SUCCESSIONI

Nella sottosezione 1.2.4 abbiamo definito i concetti di limitatezza e di estremo (inferiore
e superiore) per sottoinsiemi di R ; questi concetti possono essere definiti anche nell’ambito
delle successioni reali. Lidea che guida la definizione di questi concetti per le successioni ¢
che ogni affermazione ¢ relativa all’insieme dei termini.

Quindi risultano naturali le seguenti definizioni.
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Definizione di successione superiormente limitata, superiormente illimitata e di

estremo superiore di una successione

Sia (a,,),cy una successione in R.

Diciamo che (a,),cy € superiormente limitata quando.{an |n € N} .é superior-
mente limitato. In tal caso chiamiamo estremo superiore di (,,),cy , ¢ indichiamo
con sup, 4, , 'estremo superiore dell'insieme dei termini della successione.

Diciamo che (a,),cn € superiormente illimitata quando {a, |7» € N} ¢ superior-
mente illimitato. In tal caso poniamo sup, 4, =—+00.

Definizione di successione inferiormente limitata, inferiormente illimitata e di

estremo inferiore di una successione

Sia (a,,),cy una successione in R.

Diciamo che (,,),oy ¢ inferiormente limitata quando {4, |7 € N} ¢ inferior-
mente limitato. In tal caso chiamiamo estremo inferiore di (4,),cy , € indichiamo
con inf,_ya, , 'estremo inferiore dell’insieme dei termini della successione.

Diciamo che (,,),cy ¢ inferiormente illimitata quando {, |7 € N} ¢ inferior-
mente illimitato. In tal caso poniamo inf, _a, =—00.

\ J

Definizione di successione limitata e illimitata

Sia (a,,),cy una successione in R.
Diciamo che (a,,),cy ¢ limitata quando {4, |7 € N} ¢ limitato.
Diciamo che (a,,),oy ¢ illimitata quando {a, |7 € N} ¢ illimitato.

\, J

Osserviamo che la successione (a,,),oy ¢ superiormente limitata se e solo se esiste
M €R tale che, VneN, si ha a, < M. Analogamente inferiormente limitata se e solo
se esiste M €R tale che, Y2 €N, sihaa, >M.

2.1.3 Esempio. Riprendiamo in esame le successioni introdotte nell’esempio 2.1.1.

La successione (p,,),cn = <1 [(n+ 1)>n€N ¢ limitata, perché ogni suo termine ¢ compreso
traOe 1.

Evidentemente max{1/(n+1)|n eN}=p,=1.

Dimostriamo che inf,_ p, = 0. Ogni termine ¢ positivo, quindi O ¢ un minorante.
Dobbiamo dimostrare che 0 ¢ il massimo dei minoranti, cio¢ che, se ¢ € R, allora ¢ non ¢
un minorante della successione; cio significa che esiste un termine 1/(n+1) maggioredi ¢ .
Ladisuguaglianza 1/(n+1) > ¢ equivalea n+1> 1/¢ . Per la proprieta di Archimede 1.4.2,
esiste 7 € N tale che 1/e < 7 -1, quindi per tale 7 si ha anche n+1> 1/¢. Pertanto
qualunque ¢ >0 non ¢ un maggiorante della successione, quindi inf, p, =0.

La successione (g,),cn = <(n +(=1)")/(n+ 1)) o ¢ superiormente limitata, perché,
n
VneN,siha
_1\»
n+(—1) < n+1 —1
n+1 n+1

inoltre 7+ (—1)" >0, pertanto ¢, > 0, quindi la successione ¢ inferiormente limitata.

b
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Poiché g, = 1, 1 ¢ un maggiorante della successione che appartiene all’insieme dei
termini, pertanto max{q, |7 € N} =1.

Inoltre g, =0, quindi 0 ¢ un minorante della successione che appartiene all’insieme
dei termini, pertanto min{q, |7 € N} =0.

Consideriamo la successione (7,,),cny = (1 /(5 —2n)> Per ogni n € N risulta

neN’
5—2n€Z*, quindi |5—2n|>1, pertanto 1/|5—2n| < 1. Percio 1/(5—2n) & compreso
tra —1 e 1, quindi la successione ¢ limitata.

Inoltre st ha r, =1 e r; = —1, quindi risulta max{l/(Zn—5)|n GN} =r,=1ce

min{l/(Zn—S) E EN} =r,=—1.
Poiché I'insieme dei termini della successione (s,),cny = (72),oy € l'insieme dei nu-

meri naturali, € evidente che ¢ superiormente illimitata e inferiormente limitata; inoltre
min{s, |7 €N} =minN=0.

Poiché {¢,|n € N} = {(271 +(—1)" — 1)/4 ’ n e N} = {s,|n € N}, quanto affermato

relativamente a (s,,),oy Vvale anche per (z,,),cy -

La successione (#,,),cny = (3 —7),y ha tutti 1 termini minori o uguali a 3, pertanto
max{u, |n €N} =u;=3.

L’insieme dei termini contiene I'insieme degli interi negativi, quindi la successione &
inferiormente illimitata.

Poiche I'insieme dei termini di (v,,),cn = ((—1)”)neN ¢ {—1,1}, tale successione ¢

limitata. Evidentemente min{v, |7 € N} =—1 e max{v,|n €N} =1.

Consideriamo la successione (w,,),cny = ((—1)”(71 +2)/(n+ 1)>n€N. Per ogni n € N
si ha

<2,

n+1

(—1)”(n+2)’_ n+2 1
41 n+1

|wn|:\

pertanto la successione (w,,), oy ¢ limitata.

Si ha wy, =2, pertanto 2 =max{w, |7 € N}.

Se n ¢ pari, allora w, > 0, mentre se 7 ¢ dispari, allora w, ¢ negativo, quindi ogni
termine di indice dispari € minore di ogni termine di indice pari. Inoltre, se 7 ¢ dispari,
allora

nt+4 n+2 —(n+4Hn+D)+@R+2)(n+3) 2

n+3+n+1_ (n+3)(n+1) (”+3)(n+1)>0

wn—f—z —w,=

Pertanto al crescere dell’indice 7 dispari w, cresce, quindi w,; € minore di ogni altro
termine di indice dispari. Inoltre, come gia detto, ogni termine di indice dispari ¢ minore
di ogni termine di indice pari, pertanto min{w, |7n € N} = w, =—3/2.

Linsieme dei termini della successione (z,),oy = ((—1)”n>neN ¢ 'unione dell’insieme

dei numeri naturali pari con I'insieme degli opposti dei numeri naturali dispari; il primo in-
sieme ¢ superiormente illimitato, il secondo ¢ inferiormente illimitato, percio la successione
¢ illimitata sia superiormente che inferiormente. <
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2.2 LIMITI DI SUCCESSIONI

2.2.1 SUCCESSIONI CONVERGENTI

Puo essere interessante conoscere il comportamento dei termini di una successione
quando il loro indice diventa “grande”. L’idea € di verificare se per valori “grandi” del-
I'indice 7 il termine a, si “avvicina” a un particolare numero reale.

Ad esempio, consideriamo la successione (p,),en = (1/(7+1)), _y;» introdotta nell’e-

sempio 2.1.1. E evidente che al crescere di 7 la distanza di p, da O diventa arbitrariamente
piccola. Cerchiamo di dare un significato preciso a questa affermazione. Ricordiamo an-
zitutto che la distanza di un numero da O ¢ il valore assoluto del numero. Il fatto che la
distanza diventi arbitrariamente piccola significa che, scelto un qualunque numero ¢ po-
sitivo, risulta |p,| < ¢, se n ¢ grande. Resta da precisare cosa si intende dicendo che 7 ¢
grande. Possiamo chiedere che esista un valore soglia tale che gli indici 7 oltre tale soglia
sono considerati grandi e quindi per tali 7 risulta |p,| < ¢. Ovviamente tale valore soglia
dipende da ¢, piu ¢ ¢ piccolo, maggiore deve essere il valore soglia.

Il ragionamento relativo a una successione i cui termini si avvicinano a O puo essere fatto
anche quando i termini della successione si avvicinano a un qualunque numero reale ¢ ; ba-
sta considerare la distanza del termine 7 -simo da ¢, cio¢ il valore assoluto della differenza.

Queste considerazioni portano a dare la seguente definizione.

Definizione di limite reale di una successione

Siano (a,,),cy una successione in R e £ € R. Diciamo che (a,),oy ha limite ¢

(o che a, tende a ¢) quando

neN

VeeR",In, eN: YneN, n>n, = |a,—{|<e;

in tal caso poniamo lim,_ a,=7.

Per indicare che lim =/ si usa anche la notazione 4, — ¢ .

n—+oo %n
La condizione |2, —{| < ¢ ¢ tanto piu restrittiva quanto piu ¢ & piccolo, poiché, se &

verificata per un certo valore di ¢, allora e verificata anche per ogni valore piu grande.
Per le proprieta del valore assoluto 1.2.31, affermazione I, la condizione |a, —{| < ¢

equivalea { —e <a, <l +c¢.
2.2.1 Osservazione. E immediato verificare che
a, >l <= a,—{—0. <

Questa osservazione mostra che le successioni che hanno limite 0 rivestono un partico-
lare interesse, per questo motivo hanno una denominazione particolare: vengono chiamate
successioni infinitesime.

Definizione di successione convergente

‘ Siano (a,,),cy unasuccessione in R. Diciamo che (a,),cy ¢ convergente quando
esiste £ € R tale che a4, — ¢.
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[ ] | |
| |
° | 1
(e pmtmrmm - b
/ | S e o L .
tey po M Figura 2.2.1
/ 1 1 Definizione di limite £.
R T R e .. . ..
| | I termini della successione di in-
/2N O P N B e dice maggiore di », distano dal
! ° ! . . . .
C—e, pomode L limite ¢ meno di ¢, cio¢ sono
° | .
« | ! compresitra { —¢ e {+¢,.
" n Lo stesso avviene se si sostitui-
&l &2
sce £, a €.

2.2.2 Osservazione. Le successioni costanti, cioe quelle con tutti i termini uguali, sono
convergenti.

Infatti, se tutti i termini della successione (a,,), oy sono ugualia »z, allora, Ye € R e,
V¥n €N, risulta |a, —m| =0 < ¢; pertanto la definizione di limite ¢ verificata scegliendo

sempre 7, =0. Quindi lim,_,  a,=m. <

2.2.3 Esempio. Studiamo i limiti di alcune delle successioni introdotte nell’esempio 2.1.1.

Consideriamo la successione (p,,),cy = (1 [(n+ 1))71eN , dimostriamo che ha limite 0.
Sia e e R*. Siha |p,—0|<e seesolose 1/(n+1)<e,cioe n+1>1/e. Scelto
n. €N tale che n,>1/¢,se n>n_ sitha n+1>1/e dacuisegue |p, —0|<ce.

Quindi ¢ verificata la definizione di lim,_,_  p, =0.

Consideriamo la successione (g,,),cny = <<n + (—1)”) [(n+ 1)) . dimostriamo che ha

limite 1.
Sia eeR*.Siha, VneN,

n+(—1)" 1‘_
n+1 -

|q,,

n+(—1)”—(n+l)’_‘(—l)”—l‘< 2
n+1 | on+1 | T a4t
Pertanto, se 2/(n+ 1) < e, allora si ha |g, — 1| < ¢. Quindi, scelto 7, € N tale che
n,>2/e,cioe ¢ >2/n,,se n>n, risulta
2
n+1

2
<—<eg,
nE
pertanto |gq,—1|<e.
Quindi ¢ verificata la definizione di lim, | g, =1.

Consideriamo la successione (7,,),cy = (1/(5 —271))71GN , dimostriamo che ha limite 0.

Sia e e RT. Siha |7, —0|< ¢ seesolose 1/|5—2n| < ¢, cioe [2n—5]>1/c. Per le
proprieta del valore assoluto 1.2.31, affermazione II, tale disuguaglianza ¢ verificata se e solo
se 2n—5> 1/e, oppure 2n—5 < —1/¢ . Dalla prima condizione segue che la disuguaglianza
¢ verificata se 7 > (54 1/¢)/2. Percio, qualunque sia 7, €N tale che n, > (5+1/¢)/2, se
n>n,,risulta n>(5+1/¢)/2, pertanto |r, —0|<e.

Quindi ¢ verificata la definizione di lim, | 7, =0. <
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N

E intuitivamente evidente che i termini di una successione non possono, per valo-
ri grandi dell’indice, essere contemporaneamente vicini a due numeri reali distinti. Cio
significa che una successione non puo avere due limiti distinti. Vale quindi il seguente
teorema.

2.2.4 Teorema (di unicita del limite)

, Siano (a,,),y una successione in R e {,m € R. Se a, » { ¢ a, —» m, allora
=m.

DivosTrAZIONE. Poiché ¢ e m sono limiti della successione (a,,) si ha:

neN»

VeeR",3j. eN: VneN, n>j = |a,—l|<e,
VeeR",dk,eN: VneEN, n>k, = |a,—m|<ec.

Scelto ¢ € R*, sia » € N tale che » > max{j,,k.}; allora n > . e n>k_, quindi si ha
sia |a, —{| < ¢ che |a,—m| < e, pertanto

Pertanto, Ye € R, siha |{—m| < 2¢ . Poiché ogni numero reale positivo puo essere scritto
nella forma 2e, con ¢ € R, per il teorema 1.4.1si ha |{ —m| <0, quindi [{ —m|=0,
pertanto { =m. ]

E opportuno analizzare attentamente questa prima dimostrazione sui limiti di succes-
sioni, perché fa uso di alcune tecniche che ritroveremo in varie altre dimostrazioni.

Anzitutto osserviamo che nelle due definizioni di limite riportate abbiamo usato due
simboli diversi per indicare il valore soglia che individua gli indici “grandi”: ;. nella defini-
zione di a, — { e k, nella definizione di a,, — m . Questo perché le due definizioni sono
indipendenti tra loro, quindi, fissato ¢ € RT, la soglia che assicura che 4, ¢ vicinaa ¢ ¢
indipendente da quella che assicura che a,, ¢ vicino a m, dove “vicino” significa a distanza
minore di ¢. Per proseguire nella dimostrazione dobbiamo considerare un a,, che verifichi
entrambe le condizioni, per questo scegliamo un indice 7 che superi entrambe le soglie,
cio¢ 7 >max{/.,k.}.

Utilizzando queste informazioni, e la disuguaglianza triangolare per il valore assoluto,
otteniamo che la distanza tra ¢ e m ¢ minore di 2¢. A questo punto sfruttiamo il fatto
che, al variare di ¢ in RT, 2¢ percorre tutto R ; in altre parole la meta di un numero reale
positivo ¢ positiva, quindi ogni & € R* puo essere scritto come 2(8/2) con §/2€Rt.

Abbiamo cosi ottenuto che la distanza tra ¢ e m ¢ minore di ogni numero reale
positivo, quindi ¢ nulla. Percio £ =m.

Il teorema di unicita del limite assicura che la notazione lim,,_,, 4, indica un numero

ben preciso, non vi ¢ quindi possibilita di ambiguita.

Enunciamo alcuni teoremi che illustrano come si comportano i limiti rispetto alla rela-
zione d’ordine.
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2.2.5 Teorema (del confronto)

Siano (a,),cy € (b,),en Successioni in R. Supponiamo che (a,,),oy € (6,),ex

stano convergenti. Se, Yz €N, si ha a4, < b, , allora lim a, <lim

n—+00 “n n—+o0o “n *

DimosTRAZIONE. Posto ¢ =lim a, e m=Ilim b, , per definizione si ha:

n—+oo “n n——+oo
VeeR",3;.eN: VneN, n>) = l(—c<a,<l+e¢,
VeeR", 3k, eN: VneN, n>k, = m—e<b,<m+ec.

Scelto ¢ € Rt sia n €N tale che n > max{j_,k.};allorasiha { —e<a, e b, <m+-¢,
poiché a, < b, ,sthaanche / —e <m+c¢.

Quindi, Ye € RY, si ha £ —m < 2¢. Poiché ogni numero reale positivo puo essere
scritto nella forma 2¢, con ¢ € R™, per il teorema 1.4.1risulta { —m <0, cioe { <m. W

In particolare, se in questo teorema si sceglie come (5,),cy una successione che va-
le costantemente b, si ottiene che se, Yn € N, si ha a, < b, allora lim,_, ja, < b.

Analogamente, se Yz €N, siha a <), ,allora a <lim b

n——+o00 “n*

2.2.6 Osservazione. Se si rafforza I'ipotesi del teorema del confronto, chiedendo che sia,
Vn eN, a, < b,, non si puo concludere che vale sempre la disuguaglianza stretta tra i
limiti, essi possono essere uguali.

Consideriamo la successione (p,,),cn = (1 [(n+ 1))}1eN , introdotta nell’esempio 2.1.1.

Nell’esempio 2.2.3 abbiamo stabilito che 1/(nz + 1) — 0. Per losservazione 2.2.2 la suc-
cessione costante (0),cy ha limite 0. Quindi, V7 € N, risulta 0 < 1/(z+ 1), ma non ¢
lim, ,, O0<lim,  1/(n+1). <

2.2.7 Teorema (della permanenza del segno)

Siano (a,,),cy una successione in R e m € R. Supponiamo che (a,,),y sia
convergente.

I) Selim, .,  a,

) Selim, ,,  a,<m,alloraesiste 7 €N taleche, YneN, n>7n = a,<m.

\ J

> m ,alloraesiste 7 €N tale che, YreN, n>n = a,>m.

DmvosTrAZIONE. I) Posto { =lim, . 4, , per definizione si ha:

VeeR",3;.eN: VneN, n>) = l(—c<a,<l+e¢.
Scelto e =0 —m,se n>n,_,, sthaa, >l —({ —m)=m. Quindi la tesi ¢ verificata
ponendo 7w =mn,_,, .

II) Ladimostrazione ¢ analoga a quella dell’affermazione precedente. u

Questo teorema afferma che la proprieta a, > m (o a, < m) ¢ verificata dai termi-
ni a4, il cui indice 7 ¢ maggiore di una certa soglia (il numero 7 dell’enunciato). Nello
studio delle successioni ci si trova spesso nella situazione in cui una determinata proprieta ¢
verificata dai termini di una successione di indice “grande”. Risulta quindi utile la seguente
definizione.
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Definizione di proprieta verificata definitivamente

Per ogni n € N sia & (n) una proposizione. Diciamo che & (n) ¢ verificata
definitivamente quando

dmeN: VneN, n>m — P(n).

Questa terminologia verra usata frequentemente quando la proposizione & (n) € un’af-

fermazione riguardante il termine 7-simo di una successione. Ad esempio, il teorema
della permanenza del segno 2.2.7, affermazione I, puo essere enunciato nella forma: “se
lim, . a,>m,allora definitivamente risulta a, > m”
2.2.8 Esempio. La successione (7,),cn = <1 /(5— Zn))neN , introdotta nell’esempio 2.1.1
ha sia termini positivi che negativi; ad esempio a5y = 1/5 € a3 = —1. Se n > 2, allora
5—2n <0, quindi 7, < 0. Pertanto i termini della successione non sono tutti negativi, ma
sono definitivamente negativi.

Spesso questa affermazione viene abbreviata dicendo che la successione ¢ definitivamen-
te negativa. <

2.2.9 Osservazione. Siano, Yz €N, 2 (n) e £(n) proposizioni. Se sia 2 (n) che £(n)
valgono definitivamente, allora anche 22 (n) A £(n) vale definitivamente.
Infatti, se mp, mg €N sono taliche n>mp — P(n) e n>my — L(n), allora

n>max{mp,mqg} = P (n)\L(n). <

2.2.10 Esempio. Utilizziamo il teorema della permanenza del segno 2.2.7 per provare che
alcune delle successioni introdotte nell’esempio 2.1.1 non hanno limite.

Consideriamo la successione (v,,),cn = ((—1)”)n€N , dimostriamo che non esiste £ € R
tale che v, = ¢.

Se fosse v, — ¢, con £ >0, allora, per il teorema delle permanenza del segno 2.2.7, v,
sarebbe definitivamente positivo, ma questo non ¢ vero perché la successione ha termini
negativi di indice arbitrariamente grande. Poiché la successione ha anche termini positivi
di indice arbitrariamente grande, non puo neppure avere limite negativo. Infine non puo
essere v, — 0. Infatti, Yz €N, si ha v, —0| = |(—1)"| = 1. Pertanto, s nella definizione
di limite scegliamo ¢ =1/2, non si hamai |v, —0|<e¢.

Consideriamo la successione (w,)),cy = <(—1)”(n +2)/(n+ 1))71eN , dimostriamo che
non esiste £ €R tale che w, —¢.

Come la successione <(—1)”> , anche questa ha termini di indice arbitrariamente

neN
grande positivi e e termini di indice arbitrariamente grande negativi, quindi non puo avere

né limite negativo né limite positivo. Inoltre, Y7z €N, si ha

(—1)”(n+2)’ n+2 o1,

] =]
n+1 n+1

quindi (w,,),cy non puo convergere a 0. <
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2.2.11 Teorema (dei due carabinieri)

Siano (a,,),ens (8,)nen € (¢,)qen successioni in R tali che, Y7z € N, si ha
a,<b,<c,.Se (a,),cn € (c,),en SONO convergenti e

lim 4,= lim ¢,,
n——+00 n——+00

allora anche (4,),, o € convergente e

lim b,= lim 4,= lim c,.
n——+00o n——+00 n——+00

\. J

DmvosTrAZIONE. Posto ¢ =lim,_, 4, =lim, ., c,, per definizione si ha:

VeeR",3;.eN: VneN, n>; —= l(—c<a,<l+e¢,
VeeR",Jk.eN: VneN, n>k —= (—c<c,<l+c¢.

Scelto ¢ € RT, poniamo 7, =max{j,,k.};se n>n_,allorasiha n>]. e n>k,, quindi
{—c<a, ec,<l+e;poiché a, <b <c,,daquisegue { —e<b,<l+¢.
b,=1. u

Quindi ¢ verificata la definizione di lim,,_,, b,

| Figura 2.2.2
P B A | - Dimostrazione del teorema dei
Tttt tttittnnn, due carabinieri 2.2.11.

e In blu (a,),cny» in rosso (b,),cy
””””””””””” e in verde (c,,),cn -

Se n > ., allora a, > {—=¢,
quindi si ha anche b, >/ —¢;se
n>k,,allora ¢, <{+¢, quindi
st haanche b, </ +¢. Itermini
di (b,),cy di indice maggiore sia
di j. chedi k. sono compresi tra

{—cel+e.

o
=

()

2.2.12 Esempio. Sia k € N\ {0,1}. Consideriamo le successioni (0), ((n +1)* )neN
e (Py)pen = <(n + 1)_1)71eN (v. esempio 2.1.1). Poiché, ¥n € N, si ha 147 < (1+n)*,

risulta 0 < (7 +1)7* < 1/(1+4#n). La successione (0), oy ha limite 0 e nell’esempio 2.2.3
abbiamo provato che 1/(n 4 1) — 0. Pertanto, per il teorema dei due carabinieri 2.2.11,
risulta (74 1)7* — 0.

Osserviamo che si ha anche n® — 0. Infatti, fissato ¢ € R*, se n. ¢ tale che per
n>n, siha (n+1)* <e,alloraper n>n 4+1siha n*<e, <
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2.2.2 SUCCESSIONI DIVERGENTI

Vi sono successioni per cui 1 termini di indice grande non si “avvicinano” ad alcun
numero reale, ma diventano essi stessi “grandi” in valore assoluto, con segno sempre po-
sitivo o sempre negativo. Nello stesso ordine di idee della definizione di limite reale di
una successione, diamo due definizioni per individuare le successioni che hanno questo
comportamento.

Definizione di limite +00 e —oo di una successione

Sia (a,,),cy una successione in R.

Diciamo che (a,), .y ha limite 400 (o che 4, tende a +00) quando

neN
VMeR, dn, eN: VneN, n>ny, = a,>M;

in tal caso poniamo lim,_,, a,=400.

Diciamo che (a,), .y ha limite —oo (o che 4, tende a —oo ) quando

neN
VMeR, dny eN: VneN, n>ny = a,<M;

in tal caso poniamo lim,_,, a,=—00.

\ J

Osserviamo che nella definizione di limite +o00, se la condizione 4, > M ¢ verificata
per un certo numero M , allora ¢ verificata per tutti gli M minori; di conseguenza, se la
condizione ¢ verificata per ogni M € R*, allora ¢ verificata per ogni M €R.

Nel caso di limite —oo si ha analogamente che ¢ sufficiente chiedere che la condizione
sia verificata per gli M appartenenti a R™.

O T o Figura 2.2.3
Definizione di limite +oo .
I termini della successione di in-

M, S e dice maggiore di 7 4, SONO mag-
| |
o } giori di M, .
! . : ) o
. . Lo stesso avviene se si sostitui-
M M
! 2 sce M, a M, .

Definizione di successione divergente

Sia (a,,),cy una successione in R.
. g
Diciamo che (a,,),cy ¢ divergente quando 4, — 400 oppure a, ——o0.
In particolare diciamo che (a,),oy ¢ divergente positivamente o divergente
a +o0o nel primo caso, divergente negativamente o divergente a —oo nel secondo
caso.
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2.2.13 Osservazione. E evidente che 4, — 400 se e solo se —a, — —o0. Infatti, per
M € R, si ha definitivamente @, > M, se e solo se definitivamente —a, < —M e ogni
numero reale puo essere scritto nella forma —M per M € R opportuno. <

E utile definire un termine per indicare tutte le successioni che hanno limite, sia esso
reale 0 o0

Definizione di successione regolare e successione oscillante

Sia (a,,),cy una successione in R.

Diciamo che (a,,),oy € regolare quando ¢ convergente o divergente, cioe quando
ha limite.

In caso contrario diciamo che (a,),oy ¢ oscillante.

\, J

2.2.14 Esempio. Studiamo ilimiti di alcune delle successioni introdotte nell’esempio 2.1.1.

Consideriamo la successione (s,,),cn = (72),en » dimostriamo che ha limite +o0.
Sia M €R. Scelto n;, €N tale che n,, >M ,se n>n,,allorasithas, =n>n,; >M.

Quindi ¢ verificata la definizione di lim =+o00.

n—-+00 Sn

Consideriamo la successione (t,),cn = <<2n +(—1)"—1)/ 4) o dimostriamo che ha
n

limite 400 .

Sia M eR.Sitha, YneN,
2 —1)* —1 _ _
, n+(—1) >2n 2 n—1

" 4 =74 T2
Pertantose n—1>2M ,allorasiha ¢, > M . Quindi, scelto 7, €N tale che n,, >2M+1,
se n>ny, risulta t, > M.

Quindi ¢ verificata la definizione di lim

b

n_)+ootn:+oo.

Consideriamo la successione (#,,),cy = (3 — 1), » dimostriamo che ha limite —oo .
Sia M eR.Siha u, <M seesolose 3—n <M, cio¢ n>3—M . Pertanto qualunque
sia 7y, €N tale che n;, >3—M,se n>ny, stha3—n<M.

U, =—00. |

Quindi e verificata la definizione di lim,,_,,  #,

Per provare la divergenza di una successione vale un teorema analogo al teorema dei due
carabinieri 2.2.11.

2.2.15 Teorema

Siano (a,),cy € (b,),en successioni in R tali che, Yz €N, sihaa,<b,.
I) Sea,— +oo,alloraanche b, — +o0.

II) Se b, — —oo, allora anche 4, - —o0.

DimvosTRAZIONE. I)  Per definizione si ha:
VMeR,dny, eN: VneN, n>ny, = a,>M.
Qualunque sia M €R,se n>ny, stha b, >a,>M, cioe b, > M, pertanto b, — +oc0.

II) Ladimostrazione ¢ analoga a quella dell’affermazione precedente. [
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Osserviamo che nel teorema dei due carabinieri 2.2.11, per provare la convergenza di
una successione, si richiede ’esistenza di una successione che minora e di una che maggiora
la successione studiata; in questo teorema, a seconda dei casi, e sufficiente Pesistenza di
una successione che minora o di una successione che maggiora. Cio ¢ dovuto al fatto che
la definizione di successione convergente richiede che, definitivamente, 4, verifichi due
disuguaglianze, mentre la definizione di successione divergente richiede che a, verifichi
una sola disuguaglianza.

2.2.16 Esempio. Sia k € N\{0,1}.Siha, Y2 €N, n*F >n e n — 400 (v. esempio 2.2.14).
Pertanto, per il teorema 2.2.15, affermazione I, nk — 4o00. <

2.2.17 Esempio. Perogni n €N, risulta 7! > 7. Questo vale evidentemente per 7 =0. Se
si pensa al fattoriale di 7 come al prodotto dei numerida 1 a 7, I’affermazione ¢ evidente
anche per 7 > 0. Infatti ogni fattore € maggiore o uguale a 1, quindi il prodotto ¢ maggiore
o uguale a ogni fattore, in particolare maggiore o uguale a 7.

Una dimostrazione rigorosa della disuguaglianza 7! > n richiede il principio di indu-
zione, che applichiamo a partire da 1, invece che da 0. Poiché 1! =1 P’affermazione vale
per n=1. Se vale per 7, allora

(m+1)=n+D)n!>n+1)n>n+1,

dove nella prima disuguaglianza abbiamo usato I'ipotesi induttiva. Quindi I’affermazione
vale per n+1.

Poiché 7 — 400 (v. esempio 2.2.14), per il teorema 2.2.15, affermazione I, si ha anche
n!— +oo. <

2.2.3 SUCCESSIONI REGOLARI

Introduciamo alcune definizioni per unificare, per quanto possibile, i teoremi relati-
vi alle successioni convergenti e quelli relativi alle successioni divergenti. Introduciamo
anzitutto un insieme contenente tutti i possibili limiti di successioni.

Definizione di insieme dei numeri reali esteso

Chiamiamo insieme dei numeri reali esteso (o anche retta reale estesa) e indi-
chiamo con R Pinsieme ottenuto aggiungendo ai numeri reali due oggetti che indi-
chiamo con i simboli —oo e +00 (si leggono rispettivamente “meno infinito” e “piu
infinito”).

Abbiamo quindi

R=RU{—o00,400}.

\ J

La relazione di < in R puo essere estesa a una relazione in R, che ¢ ancora di ordine

lineare. E invece impossibile estendere le operazioni di addizione e di moltiplicazione a R
in modo che continuino a valere le abituali proprieta di tali operazioni (e in particolare gli
assiomi di campo C1-C9). Per tale motivo i simboli x+7y e x-y non hanno significato nel
caso che x 0 y siano +o00 0 —oo . Utilizziamo pero la notazione —x quando x = +o0,
intendendo che —(+00) = —00 e —(—00) = +00; la notazione ¢ impropria perché non
essendo definita la somma non e possibile parlare di opposto.
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Estendiamo la relazione di < a R considerando +o00 maggiore di ogni numero reale
e di —oo e —oo minore di ogni numero reale (e ovviamente di +o00 ). Si ha quindi

VxeR, —oco<x<-+o00.

Con questa definizione (intendendo come al solito che x < y significa x < y, ma
x #79) x < +00 ¢ equivalente a x # +00 e analogamente x > —oo & equivalente a
x #—00.

Si verifica facilmente che, anche in questo ambito, < € una relazione d’ordine lineare.
Si possono quindi definire per sottoinsiemi di R minimo, massimo, minoranti, maggio-
ranti, estremi, ripetendo le definizioni date per sottoinsiemi di R. Non hanno interesse le
definizioni relative alla limitatezza, perché in R ogni insieme ha il maggiorante +oo e il
minorante —oo .

Si prova facilmente, esaminando 1 vari casi possibili e riconducendost a ci6 che sappiamo
per sottoinsiemi di R, che anche in R ogni insieme di maggioranti ha minimo e ogni
insieme di minoranti ha massimo, quindi sono sempre definiti estremo inferiore ed estremo
superiore.

Talvolta per esprimere il fatto che un elemento di R appartiene a R (cioé non & né 400
né —oo ) diciamo che esso ¢ “finito”.

Nella definizione di successione che tende a ¢ € R compare la condizione |4, —c| < ¢,
che equivale a a, € Jc —e,c+¢[ . Se il limite ¢ 400 gioca un ruolo analogo la condizione
a,>M,cioe a, € ]M,+o00o[ , mentre se il limite ¢ —oo utilizziamo la condizione a, < M,
cio¢ a, € |—oo, M| .

E utile dare un nome agli insiemi individuati sopra.

Definizione di intorno di un elemento di R

Sia c €R.

Se ¢ € R chiamiamo intorno di ¢ ogni insieme del tipo Jc—e,c+¢[ con ¢ €RT.
Se ¢ =400 chiamiamo intorno di ¢ ogni insieme del tipo |M,+oo[ con M €R.
Se ¢ =—o0 chiamiamo intorno di ¢ ogni insieme del tipo J—oo, M[ con M € R.
In ogni caso indichiamo con .#. I'insieme degli intorni di c.

Pertanto, Yc € R, st ha

I ={lc—e,c+e[|c R},

inoltre

S :{]M,+oo[|M€]R},

Iy ={]—00,M[|M €R}.

—0Q0
2.2.18 Osservazione. Utilizzando il concetto di intorno, le definizioni di limite reale, +o00
e —oo possono essere unificate. Infatti ¢ facile verificare che, se (4,,),oy ¢ una successione

inReleR,sihalim,  a,=1{ seesolose

YVUed),dny, eN: VneN, n>n; = a,€U. <
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I teoremi del confronto 2.2.5 e della permanenza del segno 2.2.7, visti per le succes-
sioni convergenti, valgono anche per le successioni divergenti e quindi, in generale, per le
successioni regolari.

2.2.19 Teorema (del confronto)

Siano (a,),cy € (b,),en Successioni in R. Supponiamo che (a,,),oy € (6,),ex

stano regolari. Se, V2 €N, siha a, < b, ,allora lim,_ ja,<lim, b, .
DimMosTRAZIONE. Poniamo ¢ =lim,_,  a, e m=1lim, b, .
Se { = —o0, allora ¢ < m; se invece { =+o00, allora, per il teorema 2.2.15, afferma-
zione I, anche m =400
Se m = —o0, allora, per il teorema 2.2.15, affermazione II, anche ¢ = —o0; se invece
m=+4o00,allora { <m.
Infine se £,m € R, allora, per il teorema 2.2.5,stha { <m. [ |

2.2.20 Teorema (della permanenza del segno)

Siano (a,,),cy una successione in R e m € R. Supponiamo che (a,,),oy sia
regolare.

I) Selim
) Selim, ,,  a,<m,alloraesiste 7 €N taleche, VneN, n>n = a, <m.

\ J

> m , alloraesiste 7 €N tale che, YneN, n>n — a,>m.

n—-+00 dn

DimosTrRAZIONE. I)  Poniamo ¢ =lim . Poiché ¢ >m eR, risulta { #—oc0.
Se { € R, allora I’affermazione coincide con I'affermazione I del teorema della perma-
nenza del segno 2.2.7, .

Se { =+o00, allora la tesi segue immediatamente dalla definizione di limite +o0.

n——+00 dn

II) La dimostrazione ¢ analoga a quella dell’affermazione precedente. [

Il teorema seguente fornisce un collegamento tra il fatto che una successione abbia limite
e la sua limitatezza.

2.2.21 Teorema (sulla limitatezza delle successioni regolari)

Sia (a,,),cy una successione in R.
I) Se (a,),ey € convergente, allora (a,,),.y ¢ limitata.
II) Sea, —+o0,allora (4,),cy €inferiormente limitata e superiormente illimitata.

III) Sea, ——oo,allora (4,),.y €superiormente limitata e inferiormente illimitata.

\ J

DimosTrAZIONE. I) Posto ¢ =lim,_,_ 4, , per definizione si ha:

VeeR",In, eN: VneN, n>n —= l(—c<a,<l+e¢.

Se n>n,allora {—1<a,<{+1. Dunque { —1 e { + 1 sono rispettivamente un
minorante e un maggiorante di {a, |7 >n,}.
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Poniamo a =min({a,, |7 < 7, }U{{—1}) ¢ b =max({a, |n < n }JU{{+1}). E evidente
che a ¢ un minorante di {a, |7 € N}; infatti se n > n,, allora a4, > ¢ —1>a, mentre se
n<n, allora a, > min{ftn | n< ny} >a. Anangamepte b .\? 1\1n.m.aggiorante di (a,)
quindi la successione ha sia minoranti che maggioranti, percio ¢ limitata.

M) Per definizione si ha:

neN»

VMeR,dny, eN: VneN, n>ny; = a,>M.

Pertanto YM € R esistono termini della successione maggiori di M , quindi la successione
non ammette maggioranti, cio¢ ¢ superiormente illimitata.

Se n > ny stha a, >0, percio, posto a = min({an |n < nytU {O}) , ragionando come
al punto precedente si prova che 4 ¢ un minorante di {a, |7 € N}; quindi la successione ¢
inferiormente limitata.

III) Ladimostrazione ¢ analoga a quella dell’affermazione precedente. u

Per questo teorema una successione convergente non puo essere illimitata, né superior-
mente né inferiormente, quindi non puo essere divergente; per motivi analoghi una succes-
sione divergente a +00 non puo essere divergente a —oo . Quindi il teorema di unicita

del limite 2.2.4 vale considerando non solo limiti reali, ma anche limiti in R. Vale cioé il
seguente teorema.

2.2.22 Teorema (di unicita del limite)

Siano (a,,),cy una successione in R e {,m € R. Se a, » { ¢ a, — m, allora
l=m.

Risulta evidente che il concetto di limite di una successione, sia nel caso di limite reale
che di limite uguale a +o00, dipende solo dai termini della successione di indice grande. In
altre parole modificando un numero finito di termini di una successione il limite, se esiste,
non cambia. Cio ¢ precisato dal seguente teorema.

2.2.23 Teorema

Siano (,,),cy © (bn).neN successioni in R. Supponiamo che esista 7 € N tale
che, VneN,se n>7% risulta a, =0, .
Se (a,),en ¢ regolare, allora anche (4,), ¢ regolare e st ha
lim a,= lim b,.

n——4oo n——+o00o
\ J

DimosTRAZIONE. Posto ¢ =lim,_,, 4, , per definizione si ha:
YVUe Y, dnyeN: VneN, n>n; = a,€U.

Scelto U € .9,, poniamo k;; = max{n,n;}. Se n >k, allorasihaa, €U e b, =a
quindi 7 >k; => b, € U ; percio ¢ verificata la definizione di lim b,=1.

n—+o00 “n

n?
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2.2.24 Osservazione. L'ipotesi del teorema puo essere espressa anche dicendo che le suc-
cessioni (a,),cy € (b,),ey differiscono al pit per un numero finito di termini. Infatti puo
essere a, # b, solo se n <7, quindi le due successioni hanno al pitt 7+ 1 termini diversi.
Viceversa se le due successiont hanno un numero finito di termini diversi, allora, indicato
con 7 il piti grande indice tale che a;; # b5, evidentemente siha n>7 = a,=10,,.
Questa osservazione ha carattere generale: una proprieta vale definitivamente per una
successione se e solo se ¢ verificata da tutti i termini tranne, al piu, un numero finito. <«

2.2.25 Osservazione. Questo teorema ha una importante conseguenza: ogni proprieta
del limite di una successione che vale se una determinata ipotesi ¢ verificata da ogni termine
della successione, vale anche se I'ipotesi ¢ verificata solo definitamente.

Infatti se (a,),cy Verifica ipotesi definitivamente, modificando opportunamente i ter-
mini a, che non verificano I'ipotesi, si costruisce una successione (5,), oy definitivamente
uguale a (a,,),oy € avente tutti 1 termini che verificano I'ipotesi. Quindi lim b, ha

n——+o0o “n
la proprieta considerata, per il teorema 2.2.23 lim a, =lim

o0 @ >too by » pertanto anche

lim, . a, halaproprieta considerata.

Ad esempio, ¢ una immediata conseguenza del teorema del confronto 2.2.19 il fatto
che una successione regolare a termini non negativi ha limite non negativo. Il ragiona-
mento appena fatto ci consente di concludere che anche le successioni regolari a termini
definitivamente non negativi hanno limite non negativo. <

2.2.4 OPERAZIONI SUI LIMITI

Studiamo ora il limite di successioni ottenute, mediante le operazioni, da altre succes-
sioni. Iniziamo con le successioni espresse come somma di due successioni.

2.2.26 Teorema (sul limite della somma)

Siano (a,,),cn € (b,),en successioni in R.

I)  Se(a,),en € (8,),cy sono convergenti, alloraanche (a,+b,),c € convergente e

lim (2,4+5,)= lim 4,+ lim b,.

n——+00o n——+o0o n——+00

II) Sea,—+oc0e (b
IIl) Se a, —+oc0 e (b
IV) Se a, > —o0 e (b

V) Sea,——o0 e (b,),y halimite diverso da +o00, allora a,+ b, > —occ.

\. J

Ly ¢ inferiormente limitata, allora 4, + b, — +o00.

s ha limite diverso da —oo, allora a, + b, — +o0.

X . ..
,en ¢ superiormente limitata, allora 4, + b, — —o0.

)
)
)
n)

DimosTrRAZIONE. I) Posto £ =lim a, e m=Ilim

n—to00 n s+00 b, » per definizione si ha:

VeeR",3j,eN: VneN, n>) = |a,—{|<e,
VeeRY, 3k, eN: VneN, n>k, = |b,—m|<c.

Se n>max{j,, k. }, allora si ha

|(dn —I—bn)—(f+m)| = |(an—f)—|—(bn—m)| <la,—L|+|b,—m|<2e.
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\

Poiché ogni numero reale positivo puo essere scritto nella forma 2¢, con ¢ € R, ¢
verificata la definizione di lim,,_,, (4, +b,)={+m.

I) Per definizione si ha:
VMeR,In, eN: VneN, n>n, — a,>M,;

poiché (b,),oy ¢ inferiormente limitata, esiste » € R tale che, Yz € N, siha b, > b,
quindi
n>ny = a,+b,>M+b.

Poiché, scegliendo opportunamente M in R, ogni numero reale puo essere scritto nella
forma M + b, risulta verificata la definizione di 4, + b, — +o0.

III) Per il teorema sulla limitatezza delle successioni regolari 2.2.21, affermazioni I e I1, le
ipotesi dell’affermazione precedente sono verificate, quindi vale la tesi.

IV) Ladimostrazione ¢ analoga a quella dell’affermazione II.

V) Ladimostrazione ¢ analoga a quella dell’affermazione III. [

Questo teorema consente di calcolare il limite della somma di due successioni quando
si conosce il limite di ciascuno dei due addendi, con I’esclusione del caso in cui una delle
successioni diverge a +o0o e laltra diverge a —oo . In tal caso diciamo che si ha un limite
in forma indeterminata.

Precisiamo che parlare di forma indeterminata non significa che il limite non esiste o che
non ¢ possibile calcolarlo, ma significa che la sola conoscenza del limite delle due successioni
che si sommano non ¢ sufficiente per trarre conclusioni sul limite della successione somma.
Per il calcolo del limite occorre esprimere i termini della successione in una forma diversa.

2.2.27 Esempio. Vediamo alcuni esempi di successioni che mostrano che, sommando una
successione divergente a 400 e una divergente a —oo, la successione somma puo avere
qualunque comportamento.

Nella tabella seguente si ha sempre a,, — +00 e b, — —o0;lasuccessione (a,, + b,,),,cx
ha un comportamento diverso a seconda della scelta di 2, e b,. Con ¢ indichiamo un
arbitrario numero reale.

a, n+{ 2n n  n+(=1)
b, —n —n —2n —n
a,+b, 14 n  —n (—1)"
nETm(d” +b,) { 400 —o0 3

Verifichiamo che in tutti i casi 2, — 400 . Sappiamo che 7 — +o0 (v. esempio 2.2.14).
Per il teorema sul limite della somma, affermazione III, si ha n + ¢ — +oo. Poiché,
Vn € N, st ha 2n > n, per il teorema 2.2.15, affermazione I, 2n — 400 . Poicheé la suc-

cessione ((—1)”>n€N

n+(—1)" - 4o0.
Verifichiamo che in tutti i casi b, —» —oc0. Si ha —n — —o0 e —2n — —o0, perché

n— +00 e 2n — 400 (v. osservazione 2.2.13). <

¢ limitata, per il teorema sul limite della somma, affermazione II,
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Studiamo il limite di successioni espresse come prodotto di due successioni.

2.2.28 Teorema (sul limite del prodotto)

Siano (a,,),cn € (b,),en successioni in R.

I) Se(a,),en € (b,),ey sono convergenti, allora anche (a,5,),oy € convergente e

lim (.0 )= lim a4, lim b, .
n—>+oo( Z n) n——+00o nn—>+oo Z

II) Se (a,),oy € divergente e inf{b,|n € N} >0, allora (4, 5,),.y ¢ divergente e

lim (a.b )= lim a_.

IIT) Se (a,),cy € divergente e (b,),oy ha limite maggiore di 0, allora (4,5,),oy €
divergente e
lim (a,b,)= lim a,.

n——+00 n——+00

IV) Se (a,),cn € divergente e sup{b,|n €N} <0, allora (4,b,),oy ¢ divergente e

lm (a. b )=— lim a_.

\

V) Se (a,),cy ¢ divergente e (b,),oy ha limite minore di 0, allora (a,5,),cy ¢
divergente e
lim (a,b,)=— lim a,.
n——+oo n——+0o0
VI) Se a, -0 e (b,),y ¢ limitata, allora 4,56, — 0.

DimosTrAZIONE. I) Posto £ =lim a, e m=Ilim

n—to0 U st00 b, » per definizione si ha

VeeR",3. eN: VneN, n>j = |a,—{|<e,
VeeR",Jk.eN: VneN, n>k — |b,—m|<c.

Posto 7, =max{j,,k.},se n>n, siha:

|ﬂnbn_€m| = |(ﬂnbn_ﬂnm)+(ﬂnm_€m)| < |dnbn_dnm| + |dnm_€m| =
=la,|b, —m|+l|a,—L||m| <l|a,|e +e|m].

Poicheé la successione (a,,),oy € convergente, essa ¢ limitata per il teorema sulla limitatez-
za delle successioni regolari 2.2.21, affermazione I, percio {|a,|| 7z € N} ¢ superiormente

limitato (v. osservazione 1.2.37); sia ¢ un numero maggiore dell’estremo superiore di tale
insieme. Allora si ha

n>n, => la,b, —{m|<(la,|+|m|)e < (c+|m]|)e;

poiché ogni numero reale positivo puo essere scritto come <c + |m|>€ ,con ¢ €RT oppor-

tuno, ¢ verificata la definizione di lim,,_,, a,b, ={m.



68 Capitolo 2. Successioni di numeri reali

II) Supponiamo a, — 400, il caso a, — —oo si tratta in modo analogo.
Poniamo & =inf{b,|n € N}; per ipotesi b > 0. Per definizione si ha:

VMeR,In, eN: VneN, n>ny, — a,>M,;
se M € R* da qui segue
n>ny = a,b,>Mb,>bM.

Pertanto, se M € R™, allora si ha

M
n>ny, :>dnbn>bZ:M’

mentre se M € R-U{0}, allora si ha
n>ny = a,b,>b-0=0>M.

a b =+oco.

Quindi ¢ verificata la definizione di lim, | 4,5,
III) Sia m € R* tale che m <lim,_,, b, ; allora, per il teorema della permanenza del

segno 2.2.20, 37 €N tale che, per n>7,siha b, > m, quindi
inf{b,|n>n}>m>0.

Pertanto (b,),,oy verifica definitivamente la condizione richiesta nell’affermazione II, allora
(v. osservazione 2.2.25) vale la conclusione di tale affermazione, cioe a,b, — 400

IV) Ladimostrazione ¢ analoga a quella dell’affermazione II.

V) Ladimostrazione ¢ analoga a quella dell’affermazione III.

VI) Per definizione si ha:
VeeR",dn, eN: VYneN, n>n = |a,|<e.

Poiché (b,),cy ¢ limitata anche {|5,||» € N} ¢ limitato (v. osservazione 1.2.37); scegliamo
b>sup{|b,||n€N}.Se n>n_ sihala,b,|< be;pertanto a,b, — 0. [

Questo teorema consente di calcolare il limite del prodotto di due successioni se si co-
nosce il limite di ciascuno dei due fattori, con ’esclusione del caso in cui una delle suc-
cessioni diverge e l'altra converge a 0. In tal caso diciamo che si ha un limite in forma
indeterminata.

Vale anche per la forma indeterminata del prodotto quanto osservato per la forma
indeterminata della somma.

2.2.29 Esempio. Vediamo alcuni esempi di successioni che mostrano che, moltiplicando
una successione divergente a 400 e una infinitesima, la successione prodotto puo avere
qualunque comportamento.

Nella tabella seguente si ha sempre a, — +o00 e b, — 0; la successione (4,,0,),cx
ha un comportamento diverso a seconda della scelta di a4, e 4,. Con ¢ indichiamo un
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arbitrario numero reale non nullo.

a, n+l  n+l  (n4+17? (r+17 n+1

, ¢ 1 1 (=1

" n+1 (n+1?2 n+1 n+1 n+1
1

a,b, 4 " n+1 —mn—1 (=1)

liin (a,b,) { 0 +o0 —o00 3

n——+00

Verifichiamo che in tutti i casi @, — +o00. Sappiamo che n +1 — +o00 (v. esem-
pio 2.2.27). Poiché, Yn € N, si ha (n+1)* > n+1, per il teorema 2.2.15, affermazione I,
stha (n+1)? = 4o00.

Verifichiamo che in tutti 1 casi b, — 0. Sappiamo che 1/(n + 1) — 0 (v. esem-
pio 2.2.3). Per il teorema sul limite del prodotto, affermazione III, si ha ¢/(n + 1) — 0
e 1/(n+1)> = 0. La successione ((—1)”>n€N ¢ limitata, quindi, per il teorema sul limite
del prodotto, affermazione VI, (—1)"/(n+1)— 0. <

2.2.30 Esempio. Sia a € |1,+00[. Per la disuguaglianza di Bernoulli (v. esempio 1.3.14),
st ha
a” :(1—|—(a—1)>n >14+@—1)n>@—1)n.

Poiché 2 —1 > 0 e lim n = 400, per il teorema sul limite del prodotto 2.2.28,
affermazione III, risulta (¢ —1)n — 400, pertanto, per il teorema 2.2.15, affermazione I,
risulta a” — +o00. <

2.2.31 Teorema (sul limite del reciproco)

Sia (,),cy una successione in R tale che, Y7n €N, si ha a, #0.

n——400

I) Se (a,),cy ¢ convergente e lim
gente e

nstoo @y 7 0, allora anche (1/a,,),oy € conver-

II) Sea,—0e ¥YneN,sihaa,>0,allora 1/a, »4oco.
Il) Sea,—0e VYneN,sihaa,<0,allora 1/a, > —oc0.

IV) Se (a,),on € divergente, allora 1/a, — 0.

\. J

DiMOSTRAZIONE. I) Poniamo ¢ = lim,_,, 4, ; sappiamo che ¢ # 0. Per definizione
si ha
VeeR",dn, eN: VYneN, n>n, = |a,—{|<c.

Risulta
1 1

a, { -

n

{—a,| |{—a,
a,l | a,l0]

Se { >0, allora £ > ¢ /2, quindi, per il teorema della permanenza del segno 2.2.20, 37z € N
tale che se n>7 allora a, >{/2;seinvece { <0 allora £ <//2, per cui 37 €N tale che,
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se n>7n,allora a, < {/2. In ciascuno dei due casi per n>7 risulta |a,| > |¢|/2. Quindi,
se n>max{7n,n_}, st ha

a, /{

n

1 1’_|Z—an|< e _ 2.
|11 (1€1/2)le] 1P

Quindi 1/a, — 1/¢.
II) Se VneN siha a, >0, allora la definizione di 4, — 0 diventa
VeeR",In.eN: VneN, n>n = a,<c.
Se n>n_,siha 1/a,>1/e; percio, YM € R,
> — ! > !
n>n —>—=
1 a, 1/M

n

M.

Quindi 1/a, — +o0.
IIT) La dimostrazione ¢ analoga a quella dell’affermazione precedente.

IV) Consideriamo il caso a,, — 400 . Per definizione si ha:
VMeR,dn, eN: VneN, n>n, = a,>M.
In particolare se M ¢ positivo, dalla disuguaglianza 4, > M , valida per ogni 7 > n,,, segue

1 1
0<—<—=.
M

dﬂ

Percio, fissato ¢ € R, se n > n, Jeo allora si ha

1 1\!
O<—<<—> =c.
a, £

Quindi 1/a, —0.
Nel caso @, — —oo la dimostrazione ¢ analoga. [

Quando a, — 0, per applicare questo teorema deve essere verificata ['ulteriore ipotesi
che (a,),cy sia a termini positivi o a termini negativi. Naturalmente il teorema si puo
applicare anche se la successione ¢ a termini definitivamente positivi o definitivamente ne-
gativi. Consideriamo invece il caso in cui la successione non ¢ né definitivamente positiva
né definitivamente negativa, cioe, per ogni 7 € N, esistono sia termini positivi che termi-
ni negativi con indice maggiore di 7. In tal caso, fissato ogni ¢ € R™, definitivamente si
ha |a,| < e, cioe 1/]a,| > 1/e, quindi vi sono indici 7 arbitrariamente grandi tali che

1/a, > 1/e eindici n arbitrariamente grandi tali che 1/4, < —1/¢ . E chiaro che in questa
situazione non puo esistere lim,_ (1/a,).

Poiché a,/b, =a,(1/b,), da questo teorema e da quello sul limite del prodotto 2.2.28,
si possono ottenere informazioni sul limite del quoziente. Non sempre si puo applicare il
teorema sul limite del prodotto, perché questo non da informazioni nel caso del prodot-
to tra una successione infinitesima e una successione divergente. Scrivendo a,/b, come
a,(1/ bn) cl §i trova in questa situazione in due cas: .quando. (“n)ngN e (Ion')neN sono en-
trambe infinitesime oppure quando entrambe sono divergenti. Abbiamo quindi, come per
la somma e il prodotto, limiti che si presentano in forma indeterminata.
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2.2.32 Esempio. Sia a € ]0,1[. Si ha
1
(1/a)

e 1/a > 1; pertanto (v. esempio 2.2.30) (1/a)” — +oo, quindi, per il teorema sul limite
del reciproco 2.2.31, affermazione IV, risulta a” — 0. <

2.2.33 Teorema (sul limite del valore assoluto)

Sia (a,),cn una successione in R.

n

I) Se(a,),cy ¢ convergente, allora (|a,|) . ¢convergente e

eN

lim |a :‘ lim a
n—>+oo| n| n—+oo

II) Se (a,),cy ¢ divergente, allora |a,| — +oo.

III) Se |a,|— 0, allora a, — 0.

\. J

DimosTRAZIONE. I) Posto ¢ =lim,_,, a, , per definizione si ha:
VeeR",dn, eN: VYneN, n>n, = |a,—{|<c.
Fissato ¢ € RY, se n > n,_, per le proprieta del valore assoluto 1.2.31, affermazione V, si ha
||dn|_|€|| < |ﬂn_€| <e;

la,| = 1€].
II) Se a,— 400, poiché, VneN,siha |a,|>a,, per il teorema 2.2.15, affermazione I,
risulta |a,| — +o0.

Se invece a4, — —oo, poiché, Vn € N, si ha —|a,| < a,, per il teorema 2.2.15,

affermazione II, risulta —|a,| - —o0, quindi |a,| — +o0.

II) Per definizione si ha:

quindi ¢ verificata la definizione di lim,

VeeRY,In,eN: VneN, n>n, = |ja,|—0|<c.

Poiché ||a,,|—0| = |a,,| = |2,—0], questa coincide con la definizione di lim, 4, =0. ™

2.2.34 Esempio. Sia a € |—1,0[. Si ha |4] € ]0,1[, pertanto |a"|=|a|” =0 (v. esem-
pio 2.2.32), quindi, per il teorema sul limite del valore assoluto 2.2.33, affermazione III, si
ha a” — 0. <

2.2.5 CRITERIO DEL RAPPORTO

Sudiamo un criterio che consente di stabilire il limite di successioni a termini positivi. In
vari casi applicando questo criterio possiamo determinare il limite di successioni che si pre-
sentano come quoziente in forma indeterminata, 0/0 0 oo /o0, cio¢ possiamo confrontare
tra loro due successioni infinitesime o due successioni divergenti.
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2.2.35 Teorema (criterio del rapporto)

Sia (a,),cy unasuccessione in R tale che esiste lim,, 4, /a, .

I) Selim,  a,, /a,<1,alloraa,—0.

II) Selim,_,  a,,,/a,>1,allora a, »+o0.

\. J

DmvosTrAZIONE. Poniamo ¢ =lim,_,  a, . /a,. Poiché, Yn € N,siha a,  /a, >0,
per il teorema del confronto 2.2.19 risulta £ >0.

I) Se { <1, poniamo m = ({ +1)/2. Risulta { < m < 1, quindi per il teorema della
permanenza del segno 2.2.20, affermazione II, esiste 77 € N tale che, se n > 7, allora
a,.1/a,<m,cio¢ a, < ma,. Pertanto si ha

Tipy < Mty s

2
Uiy < Mgy < M dos

ripetendo il ragionamento, per ogni & € N, risulta a;,, < m*a;. Pertanto, se n > 7,
allora a, < m""a_. Poiché m € 0,1 si ha m” — 0 (v. esempio 2.2.32), quindi si ha
anche m""a_=m"m "a_— 0. Inoltre, Yn €N, si ha a, > 0, pertanto, per il teorema
dei due carabinieri 2.2.11, risulta a, — 0.

II) Se ¢ € ]1,400[, poniamo m = (¢ +1)/2, mentre, se { = +00, poniamo m = 2.
In ogni caso risulta £ > m > 1, quindi per il teorema della permanenza del segno 2.2.20,
affermazione I, esiste 7 € N tale che, se n > 7, allora 4, ,,/a, > m, cio¢ a,, , > ma,.
Pertanto si ha

Az > My,
2
Ay 9 > Mg > M dy;,

k

ripetendo il ragionamento, per ogni k € N, risulta a;,, > m"*a;. Pertanto, se n > 7,

allora a, > m""a_. Poiché m € ]1,4+00[ si ha m” — +o00 (v. esempio 2.2.30), quindi
si ha anche m"a_ = m"m"a- — +oo. Per il teorema 2.2.15, affermazione I, risulta

a, — +00. [ |

2.2.36 Osservazione. Se il limite che compare nell’enunciato di in questo teorema ¢ 1,
allora non si puo concludere nulla sul limite di (4,,),c . Infatti si verifica facilmente che
se (a,),en € una delle successioni (7)o, (1/(n+1)),eny © (£),en (con £ € RT), al-
lora lim, ,,  a,.  /a, =1 e queste successioni hanno limiti diversi. Infatti » — 400
(v. esempio 2.2.14), 1/(n+1) — 0 (v. esempio 2.2.3) e { — (. <

2.2.37 Esempio. Siano k& € N* e a € ]1,400[. Si ha n* — 400 (v. esempio 2.2.16) e

a” — +o00 (v. esempio 2.2.30), pertanto lim n*/a” si presenta in forma indetermi-

n—+00
nata. La successione (7%/a"), . ¢ a termini positivi, applichiamo il criterio del rappor-

to 2.2.35. Si ha

(n+1)/a™t  (n+1ka" 1<n+1>k 1<1+1>k

—_ —.

n a a
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Poiché 1/a < 1, per il criterio del rapporto 2.2.35 si ha n*/a” — 0. <

2.2.38 Esempio. Sia a € J1,4+00[. Si ha a” — 400 (v. esempio 2.2.30) e n! — 400
(v. esempio 2.2.17), pertanto lim,_,, . a”/n! si presenta in forma indeterminata. La suc-

cessione (a”/n!),oy € a termini positivi, applichiamo il criterio del rapporto 2.2.35. St ha

a"(n+1)! a"tn! a
a|n! ar(n+ 1! n+1
Per il criterio del rapporto 2.2.35 si ha a”/n!— 0. <

2.2.6 SimBoLI DI LANDAU

Introduciamo alcuni simboli utili per semplificare il calcolo dei limiti. Alla base del-
'introduzione di questi simboli ¢’e 'osservazione che nel calcolo di un limite spesso non
¢ necessario conoscere I’espressione precisa di una successione, ma interessa soltanto il suo
“comportamento all’'infinito”. I simboli che introduciamo sono detti simboli di Landau*.

Definizione di successione asintotica

Siano (a,,),cn € (b,),en successioni in R, tali che definitivamente 5, # 0. Dicia-

mo che (a,),o ¢ asintotica (o equivalente) a (4,),. quando lim

In tal caso scriviamo a, ~ b, .

neN n——+o00 an/bn =1.

Lasintoticitd puo essere vista come una relazione di equivalenza tra successioni defini-
tivamente non nulle. Vale cioe il seguente teorema.

2.2.39 Teorema

Siano (a,,),en> (&,),en € (¢,)qen successioni in R definitivamente non nulle.
Allora:

I) a,~a,;
) a,~b, = b,~a,;
m) (a,~b, Nb,~c,) = a,~c,.

\. J

DmvosTtrAZIONE. I) Sihaa,/a,=1—1,quindi a,~a,.
10)

a
anwbn — b—”—)l

n

:}—n—)
Ay

— b,~a,.

I simboli prendono il nome da Edmund Landau (Berlino, 1877 - Berlino, 1938), studioso di teoria dei numeri,
che li utilizzo in un trattato del 1909.
Il simbolo o grande era gia stato introdotto da Paul Bachmann (Berlino, 1837 - Weimar, Germania, 1920),
anch’egli studioso di teoria dei numeri, nel 1894.
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TII)

b
T 51 AL

Cn

b

n n
=— — =1
n bn Cﬂ

== a,~¢C,. [ |

%\|&

N

Q

-

m|&
3

Lutilita del concetto di asintoticita di successioni nel calcolo dei limiti ¢ dovuta al
seguente teorema.

2.2.40 Teorema

Siano (a, )neN e (b,),cy successioni in R, tali che definitivamente 4, #0. Sup-

poniamo che sia a4, ~ b, . La successione (a, )neN ¢ regolare se e solo se (b,),on €
regolare e in tal caso si ha

lim a, lim b,.
n—-+00 n—>+oo

. J

DmvosTrAZIONE. Poniamo, Yz €N, b, =a,/b, . Per ipotesi a, ~ b, , quindi

lim »,= lim &y,
n—-+00 7n—400 [9”

Supponiamo (b,), .y regolare. Poiché, Yn €N, sihaa,=5,b,, a, ¢ prodotto di due
successioni regolari, (5,),oy € (h,),cn > che halimite 1, pertanto, per il teorema sul limite
del prodotto 2.2.28, anche (a,,),o € regolare e il limite coincide con quello di (5,,), oy -

Viceversa, supponiamo (a,,),cy regolare. Poiché lim, A, >0, per il teorema del
confronto 2.2.5, definitivamente 5, >0, quindi 4, #0 erisulta b, =a, /b, . Come sopra,
da qui segue che b, ¢ regolare. [

Questo teorema assicura che per determinare il limite di una successione si puo studiare
il limite di una successione asintotica a essa; questo consente, in molti casi, di ricondursi
allo studio di una successione piu semplice.

2.2.41 Esempio. Consideriamo un polinomio p di grado k € N*. Sia cioe

k
px)= Za]-xf ,
7=0

con ay,ay,...,2,_; €R e o, € R*. Studiamo la successione (p(n))neN . Stha, Vn e N*,

k . E g 1y
p(n):Za]-nf :aknkZ—] —aknk<z—]n7_k+l>.
j=0

j=0 %k j=0 %k

Per j =0,1,...,k—1siha j —k <0, quindi #/~% — 0 (v. esempio 2.2.12), pertanto

Quindi si ha p(n) ~ a,n*.
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Poiché #* — 400 (v. esempio 2.2.16), per il teorema sul limite del prodotto 2.2.28, se

k ks _00. Peril teorema 2.2.40

a, >0, allora a,7n* — 400, mentre se a;, <0, allora a,7
possiamo concludere che ( p(n))neN diverge, positivamente se il coefficiente del termine di

grado massimo ¢ positivo, negativamente in caso contrario. <

Il seguente teorema ¢ una facile conseguenza dei teoremi sul limite del prodotto 2.2.28,
affermazione I e sul limite del reciproco 2.2.31, affermazione I.

2.2.42 Teorema

Siano (a,),ens (Oy)nens (€)nens> (d,),en successioni in R, tali che definitiva-
mente ¢, 70 e d, #0.
I) Sea,~c,eb,~d,  alloraa,b, ~cd,.
II) Sec,~d,,allora 1/c,~1/d,.

. J

DiMosTRAZIONE. I)

a b
a,~c, Nb,~d — C—”—)l/\d—”—>1
n n
di’lbn_)
Cndn

= a,b,~c,d,.

e 1

)
c,~d, = - —

- — =1
> — ~ —. [ |

2.2.43 Esempio. Consideriamo una funzione razionale fratta r . Siano cioe

k m

p)=2 ax,  qx)=> 8%,

/=0 /=0

con ke N, m e N, ag,ay,...,2_1,B0:B1s--» By €ER € 3,3, € R* e poniamo
r(x) = p(x)/q(x) pergli x €R che non annullano il denominatore. Poiché un polinomio
ha al pit un numero finito di radici, () ¢ definito per gli 7 naturali, escluso al piu un

numero finito. Possiamo quindi studiare il limite di 7 (7).

k

Come visto nell’esempio 2.2.41, si ha p(n) ~ a,n* e q(n) ~ B,,n™ . Pertanto, per il

teorema 2.2.42, si ha

r(n)= an\aank ! =2k,
=) ey~ g T B,

k—m
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b—

Se k> m,allora n*™” — +o00 (v. esempio 2.2.16), se k = m , allora ntm=1,se k<m,

k—m

allora n*7” — 0 (v. esempio 2.2.12). Pertanto, per il teorema 2.2.40, risulta

+oo, sek>me .83, >0,
—oo, sek>me a3, <0,
r(n)e{& se k=m
3 ;
0, se k< m. |

2.2.44 Osservazione. Abbiamo visto (affermazione I del teorema 2.2.42) che la moltiplica-
zione conserva |'asintoticita di successioni; cio non ¢ vero per I’addizione. Cioe se a,, ~ ¢,
e b, ~d,, non necessariamente a,+ b, ~c,+d,.

Ad esempio, consideriamo le successioni (a,,),cn = (7% +7) et s (8,)0en = (—72) 0en >
(€n)pen = (7 +1)sen> () ey = (—7%),,ny - Le successioni (a,,),.cy € (c,),en s0n0 polino-
miali, come visto nell’esempio 2.2.41 sono asintotiche al termine di esponente massimo, che
in entrambi i casi & 7% . Poiché sono asintotiche alla stessa successione, per il teorema 2.2.42

sono asintotiche tra loro. Poiché b, =d, siha b, ~d, . Tuttavia

a,+b n? 4+ n—n?

n n

c,+d, - n24+1—n2

quindi a,+ b, non ¢ asintoticaa ¢, +d,, . <

Definizione di successione trascurabile

Siano (a,,),cy € (8,),en successioni in R, tali che definitivamente b, # 0. Di-
ciamo che (a,,),cy ¢ trascurabile rispetto a (b,,), oy quando lim,_ . a,/b,=0.1In

tal caso scriviamo a4, =o(b,) (st legge “a, € o piccolo di b, ”).

2.2.45 Osservazione. L’uso del simbolo = per indicare che una successione ¢ trascurabile
rispetto a un’altra ¢ scorretto; sarebbe necessario usare il simbolo di appartenenza, perché
esistono piu successioni trascurabili rispetto a una successione fissata, quindi la definizione
individua un insieme di successioni. L’abitudine ¢ pero di usare il simbolo di uguaglianza,
perché cio consente di semplificare le notazioni. C’e un prezzo da pagare per questa scelta:
il fatto che il simbolo o piccolo indichi piu di una successione comporta che le regole di
calcolo con gli o piccoli sono diverse dalle ordinarie regole di calcolo.

Ad esempio, la differenza di due successioni trascurabili rispetto a una terza ¢ ancora
una successione trascurabile rispetto a quest’ultima. Infatti, se 4,/c, > 0 e b,/c, — O,
allora possiamo concludere solamente che

lim M = lim £ _ lim b— =0.
n——+400 Cn n——+00 Cn n——+00 Cn
Questo si traduce nella formula o(c,)—o(c,) = o(c,) . Evidentemente non possiamo con-
cludere che o(c,)—o(c,) € nullo, perché non consideriamo la differenza di una successione
con se stessa, come potrebbe fare pensare il fatto che facciamo la differenza di due oggetti
indicati con lo stesso simbolo. Stiamo invece considerando la differenza di due successioni
di cui sappiamo soltanto che il quoziente di ognuna di esse con ¢, tende a O. <
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2.2.46 Esempio. Siano b,k € N*, con h < k. Siha n”/n* =n"* =0, perché h—k <0
(v. esempio 2.2.12). Utilizzando 1 simboli di Landau, questo fatto puo essere scritto come
n” =o(n*).

Sappiamo che, se £ € N* e a € |1,+00[, allora 7*/a” — 0 (v. esempio 2.2.37). Risulta
quindi #* =o(a”).

Sappiamo che, se a € ]1,400[, allora a”/n!— 0 (v. esempio 2.2.38). Risulta quindi
a” =o(n!). <

Vi é un collegamento tra asintoticita e trascurabilita di successioni, stabilito nel seguente
teorema.

2.2.47 Teorema

Siano (a,),cy € (8,),ey successioni in R, tali che definitivamente 4, #0. Si ha

a,~b, seesolose a,=0b,+0(b,).

DIMOSTRAZIONE. Se a4, ~ b, , allora, posto ¢, =a,—b,, risulta a, = b, +¢, ¢

¢ _ by % 1_1=0;
b b

n n n

b b
quindi ¢, =0(b,).
Viceversa, se a, = b, +0(b,), allora

a, _b,tolb,) _,  olb,)

b b b

n n n

—-14+0=1;
quindi a, ~ b, . [

2.2.48 Esempio. Determiniamo lim,_, (2" 4+ n*)/(3” 4+ n?). Numeratore e denomina-
tore sono somma di successioni positivamente divergenti, quindi sono positivamente diver-
genti. Il limite ¢ quindi in forma indeterminata. Per I’esempio 2.2.37, si ha n*/2" — 0 e
n%/3" — 0, quindi, per il teorema 2.2.47,

2" 4 nt=2"40(2")~ 2",
3"+ n?=3"40(3")~3".

Pertanto, per il teorema 2.2.42, si ha

2" 4t 27 <2>” 0
~N — | — — U,
3n4pn2 3 3

dove la convergenza a 0 segue dall’esempio 2.2.32, perché 2/3 < 1. Quindi, per il teore-
ma 2.2.40, si ha anche lim, (2" + n*) /(3" +n?)=0.

Determiniamo lim,,_,, . (n!4+4")/(n!4+7n*). Numeratore e denominatore sono somma
di successioni positivamente divergenti, quindi sono positivamente divergenti. Il limite ¢
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quindi in forma indeterminata. Per 'esempio 2.2.38, si ha 4”/n! — 0, inoltre, per ’esem-
pio 2.2.37, si ha n*/4” — 0, quindi n*/n! = (n*/4")(4"/n!) — 0. Per il teorema 2.2.47,
risulta

n!+4" =n!l+o(n!) ~n!,
nl+n*=n!+o(n!)~n!.
Pertanto, per il teorema 2.2.42, si ha

n!+4"  n!

~—=1.
n'+nt  n!

Quindi, per il teorema 2.2.40, si ha lim,,_,, (n!+4")/(n!+n*)=1. <

Le regole di calcolo per o piccolo sono una semplice conseguenza della definizione e dei
teoremi di base sui limiti. Le enunciamo nel seguente teorema.

2.2.49 Teorema (regole di calcolo per o piccolo)

Siano (“n)ne s (B,)nens (€))nens> (d),),en successioni in R, tali che definitiva-
mente ¢, 70 e d 750 e meR*.

I) Sea,=o(c,) e b,=o0(c,),allora a,+ b, =0(c,).
II) Sea,=o(c,),allora ma,=o0(c,).

III) Se a, =o(c
IV) Se a,=o0
V) Sea,=o0
VI) Se a, =o(c

n

,allora a,d, =o(c,d,).
e b,=o0(d,),allora a,b, =0(c,d,).
ec,=o(d,),allora a,=0(d,).

ec,~d, ,alloraa,=o0(d)).

(
(c,
(c,
(

)
)
o
)
)
)

n

Le regole di calcolo stabilite da questo teorema possono essere espresse come:

o(c,)+o(c,)=o(c,),
mo(c,)=o(c,),
o(c,)d,=o(c,d,),
o(c,)o(d,) = o(c,d,),
o(o(d,)) =o(d,),

¢, ~d, = o(c,) = o(d,).

DimosTrAZIONE. I)

b
=o(c,) N b,=o0(c,) = I on 2 Lo
c

n C7l

a,+b,

Cn

— a,+b,=0(c,).

—0
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10

TII)

V)

b
a,=o(c,) N b,=o(d,) = I on 22 Lo
CVZ dn
dnbn
Cndn

0

V)
a,=0(c,) A ¢, =o(d,) =

VI)

Definizione di successione controllata

Siano (a,,),ey € (8,),en successioni in R, tali che definitivamente b, # 0. Di-

\

ciamo che (a,) yn ¢ controllata da (b,),ey quando la successione (a,/b,),cy ¢

limitata. In tal caso scriviamo a, = O(b,,) (st legge “a, ¢ o grande di b, ”).
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Abbiamo la seguente relazione tra i concetti di asintoticita, o piccolo e o grande.

2.2.50 Teorema

Siano (a,,),cy € (8,),en successioni in R, tali che definitivamente b, #0.
I) Sea,~b,,alloraa,=0(b,).
II) Sea,=0(b,),allora a,=0(b,).

DIMOSTRAZIONE. Se 4, ~ b, oppure a, = o(b,) , allora a,/b, converge, pertanto, per i\l
teorema sulla limitatezza delle successioni regolari 2.2.21, affermazione I, tale quoziente e
limitato; quindi risulta 2, = O(b,). [

2.2.51 Esempio. Consideriamo un polinomio p di grado k£ € N*. Sia cioe

k
px)= Za]-x] ,
=0

con @y, ..., ; € R e a, € R*. Per esempio 2.2.43, si ha p(n)/n* — a,, per il
teorema sulla limitatezza delle successioni regolari 2.2.21, affermazione I, ogni successione
convergente ¢ limitata, quindi p(1) = O(n*). <

Per o grande valgono regole di calcolo del tutto analoghe a quelle per o piccolo; anche
queste sono una semplice conseguenza della definizione e delle proprieta della limitatezza.

2.2.52 Teorema (regole di calcolo per o grande)

Siano (a,,),ens (8y)nens (€)nens> (d,),en successioni in R, tali che definitiva-
mente ¢, 70 e d, #0,e m eR*.

V) Sea,=0
VI) Se a, =0

ec, (d ), allora a2, =0(d,).
ec,~d, ,alloraa,=0(d,)).

Cn

I) Sea,=0(c,) e b,=0(,),alora a,+b,=0(c,).
II) Sea,=0(c,),allora ma,=0(c,).
1) Se a,=0(c,), allora a,d,=0(c,d,).
IV) Se a,=0(c,) e O(d,,), allora a,b, = O(c,d,,).
()
()

Cn

Le regole di calcolo stabilite da questo teorema possono essere espresse come:

O(c,)+0(c,) = O(c,),
O(c,) = O(c,),
O(c,)d, = O(c,d,,),
O(Cn) ( ) =0(c,d,),

O(
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DivmostrAzZIONE. )

M)

TII)

V)

V)

VI)

b
a,=0(c,) N b,=0(c,) = <—”> limitata A <—"> limitata
neN neN

C}’L C}’L

a,+b,
fr— <—

> limitata
¢ neN

n

= a,+b,=0(,).

Cn

a,=0(c,) = <d—"> limitata
neN

ma, .
— limitata
neN

C}’L

= ma, =0(c,).

a,=0(c,) = <—> limitata
neN

Cﬂ

ad o
— < L ”> limitata
Cnd neN

— a,d, =0(c,d,).

n

b
a,=0(,)Nb,=0(d,) = <—"> limitata A <—”> limitata
Cn/ neN n’ neN

a b ..
:>< z n> limitata
Cndn neN

- ﬂnbn = O(Cndn)

c d

n n

a, C .o
— <—”> = <—” —”> limitata
neN Cy dn neN

n

a,=0(c,)Nc,=0(d,) = <—> limitata A <C—”> limitata
neN neN

Q

Q

. c
a,=0(c,)\Nc,~d, = <—"> limitata A = — 1
Cn/ neN d

n n

a. c ..
= <—n> = <—” —”> limitata
neN Cy dn neN

n

— a,=0(d)). |

Q
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Abbiamo inoltre le seguenti regole che coinvolgono insieme o grande e o piccolo.

2.2.53 Teorema

Siano (a,),ens (Oy)nens (€)nen> (d,),en successioni in R, tali che definitiva-
mente ¢, 70 e d, #0.

I) Sea,=o(c,) e b,=0(c,),allora a,+b,=0(c,).
II) Sea,=o(c,) e b,=0(d,),allora a,b, =0(c,d,).
III) Se a,=o(c,) e c,=0(d,), allora a, =0(d,,).
IV) Se a, =O(c,) e ¢, =0(d,), allora a, = o(d,,).

.

Le regole di calcolo stabilite da questo teorema possono essere espresse come:

DimosTrRAZIONE. 1)

b
a,=o(c,) N b,=0(c,) = oA <—"> limitata
neN

Cn Cn

<an+bn

> limitata
Cn neN

— a,+b,=0(c,).

-

)
a b ..
a,=o(c,)Nb,=0(d,) = = —-0A <—”> limitata
Cn dn neN
— 4y 0
—_
Cﬂdn
1))
a ¢ .
a,=o(c,) Nc,=0(d,) = = —0A <—”> limitata
Cn dn neN
N
L= _,
d d
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IV)
a,=0(,) Nc,=0(d,) = <d—"> limitata A == —0
Cn / neN n
% S
—_ ===
dn Cn dﬂ
— 4, =o(d,) :

2.3 CONDIZIONI PER LA REGOLARITA DI SUCCESSIONI

Per determinare se una successione ¢ convergente (0, piu in generale, regolare) € necessa-
rio verificare la definizione di limite e per questo occorre conoscere il limite. In alternativa
si possono usare 1 teoremi che collegano limiti e operazioni, ma occorre gia conoscere il
limite delle successioni che sommiamo o moltiplichiamo.

In questa sezione adottiamo un diverso punto di vista e studiamo condizioni che assi-
curano che una successione reale ¢ convergente, o che ¢ regolare, senza conoscerne a priori
il limite.

2.3.1 SUCCESSIONI MONOTONE

Introduciamo una classe di successioni che hanno sempre limite.

Definizione di successione crescente, decrescente, monotona

Sia (a,,),cy una successione in R.
. . \
Diciamo che (a,),cy ¢ crescente quando

VneN, a, >a,.

Diciamo che (a,),oy ¢ strettamente crescente quando

neN

VneN, a,  >a,.

Diciamo che (4,), .y ¢ decrescente quando

neN

V?’ZGN, ﬂn-i—lgdn'

Diciamo che (a,),. ¢ strettamente decrescente quando

neN

VneN, a, ,<a,.

Diciamo che (a,),cy ¢ monotona quando ¢ crescente o decrescente.
Diciamo che (a,,),oy ¢ strettamente monotona quando ¢ strettamente crescente
o strettamente decrescente.

\, J

Se (a,,),en € crescente si prova facilmente che, Vm,n €N, se m <n,allora a,, <a,,;
proprieta analoghe valgono negli altri casi.
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Ogni successione strettamente crescente € crescente, mentre ogni successione stretta-
mente decrescente ¢ decrescente. Le successioni costanti sono sia crescenti che decrescenti.

2.3.1 Esempio. Studiamo la monotonia della successioni introdotte nell’esempio 2.1.1.
La successione (p,,),cy = (1 [(n+ 1))71eN ¢ strettamente decrescente, perché, Yn € N,
stha p, ., =1/(n+2)<1/(n+1)=p,.
Esaminando i termini della successione (g,,),cny = ((n +(—1)" ) [(n+ 1)>n€N si vede facil-

mente che non ¢ monotona. Infatti g, =1>0=¢,, quindi la successione non ¢ crescente,
e ¢, =0<1=gq,, quindi la successione non ¢ decrescente.

Analogamente, la successione (7,),cn = (1 /(5— Zn))neN non ¢ monotona. Infatti
risulta 7, =1/5<1/3=r e ,=1>—1=7r,.

Si verifica facilmente che la successione (s,),oy = (72),n € Strettamente crescente.

Consideriamo la successione (t,,),cn = <(2n +(—1)"— 1)/4)71eN . Siha

. . C2n 424 (1) =1 2n (=1 =1 1—(=1)* [0, sen ¢pari,

nt1 = bn 4 4 B 2 1, se n edispari.

. . N .
Pertantosiha t,, , =t, se n eparie 1, >, se n edispari. Quindi (z,),oy € crescente,
ma non strettamente crescente.

Siverifica facilmente che la successione (#,,),c = (3—7),,cy € strettamente decrescente.

M _ n \ \ 4
La successione (v,,),cny = <(—1) ) non ¢ monotona, perché v, > v, e v, <v,.

neN
Anche la successione (w,,),cn = ((—1)"(n +2)/(n + 1)>n€N non ¢ monotona, perché
wy=2>-3/2=w, e w;,=—3/2<4/3=w,.
Analogamente, la successione (z,),cy = ((—1)”n>n€N non ¢ monotona, perché si ha
zy=0>—1=2z e z,=—1<2=2,. <

Il principale risultato sulle successioni monotone ¢ il teorema seguente.

2.3.2 Teorema (sul limite delle successioni monotone)

Sia (a,,),cy una successione in R.

I) Se (a,),cy € monotona crescente, allora ¢ regolare e si ha

lim a, =supa,.
n n
n—+00 neN

II) Se (a,),cy € monotona decrescente, allora e regolare e si ha

lim a,=infa,.
n——+0o0 neN

DmvostrAZIONE. I)  Consideriamo anzitutto il caso sup, 4, =+00. Ogni M €R non
¢ un maggiorante della successione, pertanto esiste 7, € N tale che a4, > M. Poiché

(@,),en € crescente, se n>mny, siha a,>a, >M. Pertanto a,— +o00.
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S . B : Lo

Consideriamo orail caso sup, .y, €R. Posto { =sup, 4, ,qualunquesia ¢ € R* si
L . , . :

ha ¢ —e <sup,_ya, , quindi, per la caratterizzazione dell’estremo superiore 1.2.42, esiste

un termine della successione maggiore di ¢ — ¢ ; indichiamolo con 4, . La successione

(@,)nen ¢ crescente, quindi, se 7 > 7., si ha a, > a, > {—c. Poiché { ¢ estremo

e

superiore della successione, V7 €N, siha a, </ <!+ ¢; quindi

n>n, = l{—c<a,<l+c¢;

pertanto a, — { .

II) Ladimostrazione ¢ analoga a quella dell’affermazione precedente. [
\
L o
.°... l )
..'. R SR
) L .
1y n,
Figura 2.3.1

Dimostrazione del teorema sul limite delle successioni monotone 2.3.2.
A sinistra 1l caso di una successione crescente illimitata, a destra il caso di una successione
crescente limitata.

Osserviamo che per dimostrare il teorema si utilizza I’esistenza dell’estremo superiore
o inferiore dell’insieme dei termini di una successione, quindi ¢ essenziale la completez-
zadi R. In @@ questo teorema non vale, cioe esistono successioni monotone di numeri
razionali che non hanno limite razionale.

Notiamo che 'importanza di questo teorema risiede principalmente nel fatto che assi-
cura che una condizione semplice da verificare, la monotonia, implica la regolarita di una
successione. 1l fatto che il limite ¢ I’estremo superiore o inferiore della successione ¢ meno
rilevante, perché solitamente non ¢ facile determinare tale estremo.

In particolare da questo teorema segue che una successione crescente non puo avere limi-
te —oo, perché sup, 4, ¢ diverso da —oo. Analogamente una successione decrescente
non puo avere limite +o0 .

Osserviamo inoltre che questo teorema assicura che un successione crescente superior-
mente limitata ¢ convergente e, analogamente, una successione decrescente inferiormente
limitata ¢ convergente.



86 Capitolo 2. Successioni di numeri reali

2.3.3 Esempio (numero di Nepero o numero di Eulero®). Consideriamo le successioni
(ﬂn)neN* € (bn)neN* > deﬁnite da

1\” 1 n+1
dn:<1—|——> , bn:<1—|——> .
”n ”n

\
4 r
.
S e
| o ® eo°®
2 t4
|
|
| Figura 2.3.2
| Le successioni (a,),cy. (in ros-
) s0) e (b,),cn (in verde) studia-

te nell’esempio 2.3.3.

Dimostriamo che (,,),cn. € crescente e (b,,),oy. € decrescente.
Per n € N* si ha

e (141 + D))" ((+2)/(n+ 1) n+1<n+2 n >”+1 B
a,  (1+1/n)" (= +D/2)  n \n+ln+l B

_n+1<n2+2n>"+1_n+1<1 1 >”+1
n \(n+1)7 on (n+1)? '

Per la disuguaglianza di Bernoulli (v. esempio 1.3.14) risulta

1 \"" 1 1 n
) >1—(n4+1)——=1— = ,
(n+41)? (n+1)?2 n+l n+l
pertanto
an+12n+1 n _y
a, n n+1

Quindi, Y2 €N*,sihaa,<a, .

>Dal nome latinizzato di John Napier (Edimburgo, 1550 - Edimburgo 1617) e di Leonhard Euler (Basilea,
1707 - San Pietroburgo 1783).
Napier ¢ stato I'inventore dei logaritmi, che comparvero per la prima volta in un volume del 1614. In tale
volume sono utilizzati i logaritmi in base 1/e.
Euler, che ha dato molti importanti contributi in vari settori della matematica e della fisica, ¢ ricordato in
relazione a questo numero perché ¢ stato il primo, nel 1731, a indicarlo con la lettera e .

La definizione di e come limite di (1+(1 / n))" ¢ dovuta a Jakob Bernoulli (v. nota 1) che scrisse tale successione
nel 1683 per studiare un problema di interessi composti.
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Per n € N* si ha

b,  (1+1n)" ()T, <n+1 n+1>n+z_
by (1+1/(n+1))n+2 ((n —|—2)/(n—|—1)>nJr2 n+1\ n n+2
n+1\ n(n+2) n+1 n(n+2) '
Per la disuguaglianza di Bernoulli (v. esempio 1.3.14) risulta
<1+—> St (n42)—— =14 =21
n(n+2) n(n+2) n_
pertanto
b
n o " n+1 _y

b,., n+l n
Quindi, V2 eN*,siha b,>b, .

Per il teorema sul limite sul limite delle successioni monotone 2.3.2, (a,,) ,cn. € (8,,),env:
hanno limite. Dimostriamo che le due successioni hanno lo stesso limite reale.
Poiché, Y»n € N*, si ha

bn:<1—|——> ><1—|——> =a,,
n 7

per la monotonia delle successioni risulta a; <a, < b, < b ; pertanto 4, ¢ un minorante
di (b,),en € b, ¢ un maggiorante di (a,),cy. - Pertanto tali successioni sono limitate,

quindi hanno limite reale e si ha lim a,<by=4 e lim b,>ay=2.Inoltre

n——+o00 “n n——400

n——+o00 n——4o0 n n——+o0o 7 ) n—+0o0 n——+00

lim b = lim <1+l>dn: lim <1+1> lim = lim a,.

Indichiamo con e e chiamiamo numero di Nepero o numero di Eulero questo limite.

<

2.3.2 SOTTOSUCCESSIONI

Per studiare alcune proprieta delle successioni risulta utile il concetto di sottosuccessio-
ne. L'idea di base e di costruire una nuova successione “buttando via” alcuni termini di
una successione assegnata (ad esempio quelli di indice dispari) e si “rinumerano” i termini
rimanenti, conservando il loro ordine; naturalmente, perché i termini rimasti individuino
una nuova successione, questi devono essere infiniti.

Se (b,),en ¢ ottenuta in questo modo a partire da (a,,),,cy » allora b, ¢ uguale al primo
termine di (a,),oy che abbiamo conservato, indicando I'indice di tale termine con k; , ab-
biamo by =a;, . Analogamente &; ¢ uguale al termine successivo che abbiamo conservato,

indichiamo Pindice di tale termine con ;, quindi 4; =a; . Evidentemente si ha k; > k; .

Proseguendo a costruire la sottosuccessione, in generale si ha b, = a;, , con la proprieta
n
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che passando da 7 a n+1 il corrispondente indice per la successione (a,,),y cresce, cioe
k,.1>Fk,.

Per formalizzare I'idea, risulta naturale scegliere una successione (k,,), oy di numeri na-
turali, i termini di questa successione sono gli indici dei termini di (4,),cy che rimangono.
Per conservare ordine dei termini, questa successione deve essere strettamente crescente.

Diamo quindi la seguente definizione.

Definizione di sottosuccessione

Siano (a,,),cy una successione in R e (k,),y una successione di numeri natu-

rali strettamente crescente. La successione (a;, ) . ¢ detta sottosuccessione della
n

successione (4,),oy (0 anche successione estratta dalla successione (4,,),,cy )-

Per lo studio delle sottosuccessioni ¢ essenziale la proprieta dei loro indici enunciata nel
teorema seguente.

2.3.4 Teorema

Sia (k,),cn una successione in N strettamente crescente. Allora, V7 € N, si ha
k,>n.

DimosTRAZIONE. Dimostriamo il teorema applicando il principio di induzione 1.3.4.
Poiché k, ¢ naturale, per il teorema 1.3.5, si ha by >0.
Se k, > n, poiché¢ k, ., > k,,siha b, >n; quindi, per il teorema 1.3.10, si ha

b, >n+1. u
2.3.5 Teorema (sul limite delle sottosuccessioni)
Siano (a,,),cy una successione in R e (“k,,)neN una sua sottosuccessione. Se
(@,)nen € regolare, allora anche (4, ) _ ¢ regolare e
n/neN g > k, )neN 8
lim 4, = lim 4,.
n—+oo 7 n——+oo
. J

DimvosTrAZIONE. Posto ¢ =lim,_,, 4, , per definizione si ha:
VUed),dny eN: VneN, n>n; = a,€U.

Se n €N ¢ tale che n > n,, poiché, per il teorema 2.3.4, k, > n, si ha anche k, > n,
quindi @, € U. Percio ¢ verificata la definizione di lim,_,, a, ={. |
. »
Se una sottosuccessione ha limite, allora la successione da cui questa ¢ estratta non ne-
cessariamente ha limite; come vedremo € sempre possibile, data una successione oscillante,
trovare una sua sottosuccessione regolare.
Possiamo ricavare conclusioni sul limite di una successione a partire da informazioni sul
limite di sottosuccessioni se gli indici delle sottosuccessioni coinvolte esauriscono I'insieme
dei naturali. In tale ordine di idee si ha il teorema seguente.
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2.3.6 Teorema

Siano (a,,),cy unasuccessionein R, (“k,,)neN e (“h,, )neN due sue sottosuccessioni
regolari. Se lim,_,, a, =lim, , a4, ¢ N={k, |meN}U{h,|mecN},allora
esiste

lim a,= lim 4, = lim 4, .
n——+00 n—+oo 7 n—+oo n
\ J

DmmosTrRAZIONE. Posto £ =lim,,_,, a4, =lim,_ . 4, , per definizione si ha:

YUe Y, diyeN: VneN, n>i; — a4, €U,
VUe€ 9, 3jyeN: VneN, n>j; = a, €U.

Sia U € .9, e poniamo ny, :max{/eiU,hjU} . Sia n €N tale che 7> n, . Poiché
N={k, |meN}U{h, |meN},

risulta 7 € {k,,|m € N} oppure n € {h,,|m € N}, quindi » =k
un opportuno 7 € N. Nel primo caso si ha

» oppure n =h,, , per

k,, =n>ny :max{ki,,’hj,,} ZkiU ,

quindi m > 1;;, perche la successione (k,),c € strettamente crescente; pertanto risulta
a,=a, € U. Analoga conclusione nel secondo caso.

Abbiamo cosi dimostrato che YU € .%, esiste n; € N tale che se n > n;, allora

a, € U, quindi ¢ verificata la definizione di lim,,_,, ja, =/. [

2.3.7 Teorema

Sia (a,),cy una successione in R. Allora esiste una sottosuccessione <ak )
n/n€EN

monotona.

DimosTtrAZIONE. Nel corso di questa dimostrazione chiamiamo picco ogni 7 € N tale che,
se m>n,allorasiha a, <a,;cio¢ a, ¢ maggiore o uguale a ogni termine che segue.
Se 'insieme dei picchi ¢ infinito, elenchiamoli in ordine crescente: ky < k; <k, <---.
Allora, per la definizione di picco, ¥ €N risulta 4, <4, ; pertanto la sottosuccessione
\
(akn >n€N ¢ decrescente.

Se invece 'insieme dei picchi ¢ finito o vuoto, allora esiste by, € N maggiore di ogni
picco. Poiché 4, non ¢ un picco, esiste by > by tale che @, > a, . Anche b non ¢

un picco (perché maggiore di Ay ), quindi esiste /, > h; tale che a4, >4, . Ripetendo il

r agionamento s1 costruisce una sottosuccessione strettamente crescente. |

2.3.8 Esempio. Studiamo i picchi e le sottosuccessioni monotone di alcune delle successioni
introdotte nell’esempio 2.1.1.

Consideriamo la successione (7,,),,en = (1/(5— 271))}2EN . Stha
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quindi esiste un termine di indice maggiore di 0 che non ¢ minore o uguale a 7, ; percio 0
non ¢ un picco. Analogamente, poiché r, < r,, 1 non ¢ un picco. Siha r, >0 e, per
n>3, r,<0,quindi 2 ¢ un picco. Infine, per 7» >3, si ha

1 1
r, =— < — =7
2n—>5 2n—3

n+1-°

quindi 7 non ¢ un picco. Pertanto I'unico picco di (7,,),o € 2.

Seguendo la dimostrazione del teorema 2.3.7, poiché I'insieme dei picchi € finito, € pos-
sibile estrarre una sottosuccessione crescente. Per questo scegliamo k, maggiore di ogni
picco, ad esempio ky = 3. Poiché 3 non ¢ un picco esiste un indice k; maggiore di k;
e tale che 7, > r, . Possiamo scegliere kb, = 4. Poich¢ se » >3 siha r, >, , il ra-

1 0
gionamento puo essere ripetuto scegliendo ogni volta k, , =k, + 1, quindi in generale
k, =n+3. Pertanto si ha la sottosuccessione crescente

)
r =(r =(— :
( kn>n€N ( n+3)n€N < n+1 e

Consideriamo la successione (v,,),cny = ((—1)”) Ogni termine ¢ minore o uguale

Y \ . \ n€N . . \ . .
a 1, pertanto se v, =1, cio¢ se 7 ¢ pari, allora 7 ¢ un picco. Se invece 7 ¢ dispari, allora

v, =—1, mentre v, ,;, =1>o,, pertanto 7 non ¢ un picco. Quindi I'insieme dei picchi
¢ Pinsieme dei numeri pari, che ¢ infinito.

Come stabilito nella dimostrazione del teorema 2.3.7, la sottosuccessione di (v,,),,cp Ot-
tenuta prendendo come indici 1 picchi € decrescente. Pertanto abbiamo la sottosuccessione
(2,)nent = (1),,en - La sottosuccessione ¢ costante, quindi ¢ anche decrescente.

Consideriamo la successione (w,,),cny = ((—1)”(71 +2)/(n+ 1))77GN . Ogni termine di

indice pari € positivo, mentre ogni termine di indice dispari ¢ negativo. Quindi, se 7 ¢
dispari, allora w, <0< w,, percio 7 non ¢ un picco. Se 7 ¢ pari, allora w, ¢ maggiore
di ogni termine di indice dispari. Inoltre risulta

n+2 1 1 n+4
n+1 n+1 n+3 n+3

n wn—l—Z .

Percio ciascun termine di indice pari ¢ maggiore anche di ogni termine di indice pari piu
grande. Quindi ogni 7 pari ¢ un picco.

Siamo nella stessa situazione vista per la successione (v,),cy » 1 picchi sono tutti e soli 1
numeri pari, pertanto la sottosuccessione (w,,,),cn = ((Zn +2)/2n+ 1))71eN ¢ decrescente.

Consideriamo la successione (z,,),oy = ((—1)”n>neN. Qualunque sia 7 pari, risulta

o . : N :
z,=n<n+2=z, ,,quindi » non ¢un picco. Se » ¢ dispari, allorasiha z, <0<z, ,,

quindi, anche in questo caso, # non ¢ un picco. Pertanto (z,),y non ha picchi.

Come visto nella dimostrazione del teorema 2.3.7, per costruire una sottosuccessio-
ne crescente di (z,),oy scegliamo ky = 0. Successivamente scegliamo k; > O tale che
2}, > 27,3 possiamo scegliere k, = 2. Proseguendo, si puo sempre scegliere k, = 2n.

<

Abbiamo quindi la sottosuccessione crescente (2,,,),cy = (272) o -
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“n . “n . Figura 2.3.3

Le successioni studiate nel-
. . I’esempio 2.3.8. Sono mes-
si in evidenza prima 1 ter-
mini corrispondenti ai pic-
. . chi e poi la sottosuccessio-
ne monotona costruita nel-
la dimostrazione del teore-
ma 2.3.7.

Il teorema che segue ¢ di fondamentale importanza, lo utilizzeremo per provare vari
teoremi dell’analisi. Osserviamo che nella dimostrazione si fa uso della convergenza delle
successioni monotone, quindi si sfrutta la completezza di R.

2.3.9 Teorema (di Bolzano-Weierstrass®)

Sia (a,),cy una successione in R. Se essa ¢ limitata, allora esiste una sottosucces-

sione (dk >n€ convergente.
n

N

®1l teorema prende il nome da Bernard Bolzano (Praga, 1781 - Praga, 1848) e da Karl Weierstrass (Ostenfelde,
Germania, 1815 - Berlino, 1897); Bolzano pubblico il teorema in un articolo del 1817, che rimase quasi sconosciuto,
Weierstrass lo riscopri nel 1874.
Bolzano ha contribuito a rendere rigorosi i fondamenti dell’analisi matematica.
Weierstrass ha dato fondamentali contributi in vari settori dell’analisi, soprattutto nella teoria delle funzioni di
variabile complessa.
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DiMmosTRAZIONE. Per il teorema 2.3.7 esiste una sottosuccessione (ﬂk ) monotona, che

neN
ha limite per il teorema sul limite delle successioni monotone 2.3.2. Se (,,),cn ¢ limitata,

anche (4, ) _ ¢ limitata, quindi, per il teorema sulla limitatezza delle successioni regola-

neN

ri 2.2.21, il limite non puo essere né +00, né —oo, pertanto (a;, ) . ¢ convergente. M

neN

2.3.10 Esempio. Nell’esempio 2.3.8, con la procedura introdotta nella dimostrazione del
teorema 2.3.7, abbiamo costruito alcune successioni monotone. Studiamone il limite.
Consideriamo la successione (7,,),cy = <1 /(5— 2n)>n€N . Sappiamo che la sottosucces-

sione (7,,43),en = (1/(—271 — 1))}1eN ¢ crescente (v. esempio 2.3.8) e che 7, — 0 (v. esem-
pio 2.2.3). Pertanto, per il teorema sul limite delle sottosuccessioni 2.3.5, si ha 7,5 — 0.

Consideriamo la successione (v,,),cny = <(—1)”> Sappiamo che ¢ limitata (v. esem-

neN’
pio 2.1.3) e che la sottosuccessione (v,,),cny = (1),en ¢ decrescente (v. esempio 2.3.8).

Ovviamente tale successione ha limite 1.
Consideriamo la successione (w,,),en = ((—1)"(2 +2)/(n + 1))71eN .

limitata (v. esempio 2.1.3) e che la sottosuccessione (v,,),cny = <(27l +2)/2n+ 1))71eN &

decrescente (v. esempio 2.3.8). Quindi, per il teorema sul limite delle successioni monoto-
ne 2.3.2, tale successione ¢ regolare; poiché ¢ limitata il limite € reale. Si ha

Sappiamo che &

2n+2 1
= =1+ .
2n+1 2n+1

W,

Poiché lim,_, 7 =400 (v. esempio 2.2.14), per i teoremi sul limite della somma 2.2.26,
sul limite del prodotto 2.2.28 e sul limite del reciproco 2.2.31, si ha w,, — 1.

Consideriamo la successione (z = ((—1)"n . Nell’esempio 2.3.8 abbiamo
n/neN neN p
provato che la sottosuccessione (v,,),cy = (272),oy € crescente. Tale successione ¢ su-

periormente illimitata, quindi, per il teorema sul limite delle successioni monotone 2.3.2,
tende a +00. <

2.3.3 SuccessioNi b1 CAUCHY

Studiamo un’altra condizione che consente di stabilire se una successione € convergente
anche non conoscendo a priori il suo limite.

Sappiamo che, se una successione converge, allora i suoi termini di indice grande sono
vicini al limite, ma questo implica che tali termini sono vicini tra loro. Diamo un nome
alle successioni che hanno questa proprieta.

Definizione di successione di Cauchy’

Sia (a,),en una successione in R. Diciamo che (4,),oy ¢ una successione di
Cauchy (o che verifica la condizione di Cauchy) quando

VeeR"Y,In,eN: Vu,meN, nm>n, —> |a,—a,|<c.

’La condizione prende il nome da Augustin-Louis Cauchy (Parigi, 1789 - Sceaux, Francia, 1857), che la intro-
dusse in un trattato di analisi del 1821. Cauchy ha dato grandi contributi allo studio dell’analisi, dove ha introdotto
un maggior rigore rispetto a quanto era abituale a quei tempi.
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2.3.11 Esempio. Consideriamo la successione (p,,),cn = (1 [(n+ 1)) introdotta nel-

neN’
I’esempio 2.1.1; dimostriamo che ¢ una successione di Cauchy.
Siano n,m € N. Se n > m, allorasi ha |a,—a,|=(1/m)—(1/n) < 1/m; se invece

n>m,alorasiha |a,—a,|=(1/n)—(1/m)<1/n.In tuttii casi risulta

11 1
|la, —a,,| <max{—,—} =—.
m n min{m,n}

Pertanto, fissato ¢ € R", se n,m €N sono tali che 7n,m > 1/¢, risulta

1 1

a,—a, |<———< —=c¢
4 = min{m,n} 1/¢

Quindi ¢ verificata la condizione di Cauchy.

Consideriamo la successione (c,,),cy , definita per ricorrenza nell’esempio 2.1.2; dimo-
striamo che ¢ una successione di Cauchy.
Osserviamo che ¢, =0 e, se ¢, >0, allora ¢, ., =2/(c, +2) > 0. Per induzione tutti i

termini, tranne il primo, risultano positivi. Sia 7 € N*; per la definizione di ¢, si ha

zcn—l —ZCn . 2|Cn _Cn—1| |Cn _Cn—1|

2 2 ’_
e, + 2, + 2| (0, +2)(c,_ +2) 2

cn+2_cn_1—|—2

|Cﬂ+1_cn| -

Quindi si ha
1 1 1

|1 —c,l < 5|cn—cn_1| < % le, 1 —c, << o e, — | = ot

Pertanto, se 7,m €N, con n > m, allora risulta

n—1 n—1 n—I1 1 n—m—1 1 1 n—m—1 1
e, —¢c,,| = Z(ck+1—ck) §Z|ck+1—ck|§ = Z = Z —.
2 : 2m+) 2m £ 2)
k=m k=m k=m ]:O ]:O
Per il teorema 1.3.19 si ha

n—m—1 n—m—1 Ji n—m _ n—m

> 5= 2 6 T <=

o Y T \2 1—(1/2) 1—(1/2)

pertanto |c, —c,, | <1/2"71.

Poiché 1/2™ — 0, per m — +o00 (v. esempio 2.2.32), < 1/2"~! — 0, pertanto, fissato
¢ €R", esiste n, €N tale che, se m >n_, allorasi ha <1/2"7! < ¢, quindi, se n > m,
allora |c,—c,,| < ¢ . Unadisuguaglianza analoga vale scambiando 7 con 7, quindi (c,)
¢ una successione di Cauchy.

neN

Consideriamo la successione (d,,), oy » definita per ricorrenza nell’esempio 2.1.2; dimo-
striamo che non verifica la condizione di Cauchy.

Poiché, VneN,
dyy=—d,  +n+l=—(—d, +n)+n+1=d,+1,

risulta |d,,, —d,|=d,,,—d, =1. Pertanto, se si sceglic ¢ < 1, possiamo trovare due
termini di indice arbitrariamente grande che distano tra loro piu di ¢ ; quindi (d,,),oy non
verifica la condizione di Cauchy. <
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Proviamo che la condizione di Cauchy ¢ necessaria e sufficiente per la convergenza di
una successione n R.

La dimostrazione della necessita ¢ banale. La dimostrazione della sufficienza ¢ invece piu
complessa e la spezziamo in piu teoremi. Proviamo che ogni successione di Cauchy ¢ limita-
ta, quindi per il teorema di Bolzano-Weierstrass 2.3.9 ha una sottosuccessione convergente,
e che ogni successione di Cauchy che ha una sottosuccessione convergente ¢ convergente.

2.3.12 Teorema

Sia (a,,),cy unasuccessione in R. Se (a,,),oy ¢ convergente, allora ¢ di Cauchy.

DimosTrRAZIONE. Posto ¢ = lim per definizione si ha:

n—+00 Ay s
VeeR",In, eN: VneN, n>n, = |a,—{|<c.
Pertanto, fissato ¢ € R™, se » e m sono maggioridi #, si ha

la, —a,| = (@, =)+ —a,)| <la, =] +|{ —a,| < 2¢;

quindi € verificata la definizione di successione di Cauchy. [

2.3.13 Teorema

Sia (a,),cy una successione in R. Se (a,,),oy ¢ di Cauchy, allora ¢ limitata.

DIMOSTRAZIONE. Supponiamo che (a,,),oy sia una successione di Cauchy, cioe¢ tale che
+ :
VeeR",dn.eN: Vu,meN, nm>n, = |a,—a,|<c.

Scelto ¢ = 1,se n > ny siha |a,—a, 4| <1,cio¢ a, —1<a,<a, ; +1. Allo-

ra mm{al,az,...,anl,anIH —1} e max{ozl,az,...,oznl,oznlJr1 + 1} sono rispettivamente un
minorante e un maggiorante dell’insieme dei termini della successione; pertanto essa ¢
limitata. =

2.3.14 Teorema

~ Sia (a,),en una successione in\ R. Se (a,),cy ¢ di Cauchy e ha una sottosucces-
sione convergente, allora (a,,),oy € convergente.

DIMOSTRAZIONE. Sia (ak ) una sottosuccessione convergente. Posto ¢ =lim,_,, a; ,

neN
proviamo che a, — ¢
Poiché (a,,),cy ¢ di Cauchy, si ha
VeeR",dn, eN: Yun,meN, nm>n, = |a,—a,|<c.

Poiché a, — ¢ si ha:

VeeR", Jj,eN: VneN, n>j = |g —{|<e.
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Scelto ¢ €R™, sia 7> max{n,,j.}; poiché k, >n,si haanche k, >7n_, quindi
la, =] =|(a, —a, )+ (a, —0)|<la,—a |+la, —C]<2e.

Pertanto a, — { . [

2.3.15 Teorema

Sia (a,),cy unasuccessione in R. Se (a,,),oy ¢ di Cauchy, allora ¢ convergente.

DimosTRAZIONE. Per il teorema 2.3.13 (a,,), oy ¢ limitata, pertanto, per il teorema di Bolza-
no-Weierstrass 2.3.9, ha una sottosuccessione convergente; quindi, per il teorema 2.3.14,
(a,),ey € convergente. u

2.3.16 Esempio. Nell’esempio 2.3.11 abbiamo visto che la successione (c,,) definita

per ricorrenza nell’esempio 2.1.2 da

neN »

=1,
2

—, per n€N,
c,+2 P

Cot1 =
¢ di Cauchy. Per il teorema 2.3.15 tale successione ha limite reale, indichiamolo con £.
Ovviamente anche le successioni (¢, ),y © (2 /(c, + 2))71eN sono convergenti e hanno
limite £ e 2/(£ +2), rispettivamente. Quindi £ =2/({+2), che equivale a £?+2{—2=0.
Questa uguaglianza ¢ verificata se

(=—14++/1242=—14++/3.

Poiché (c,),cn € a termini positivi (v. esempio 2.3.11) il limite non pud essere negativo,
pertanto ¢, — —14+/3. <

2.3.4 MASSIMO LIMITE E MINIMO LIMITE

Introduciamo due concetti che sono utili per avere informazioni sul comportamento
per valori grandi dell’indice dei termini delle successioni oscillanti.

Sia (a,),cy una successione convergente a £ € R. Poiché ogni termine della suc-
cessione ¢ minore o uguale di sup{a, |7 € N}, per il teorema del confronto 2.2.5, si ha
¢ <sup{a,|n €N}. Scelto » €N poniamo

B, =sup{a,,|m>n};

1 termini della successione sono definitivamente minori o uguali a 3,,, quindi si ha anche
¢ < (B, . Evidentemente {a, |m > n+ 1} C {a,,|m > n}, quindi Pestremo superiore
del primo insieme ¢ minore o uguale a quello del secondo insieme, cio¢ 3, < 3, . Ab-
biamo qumdl d?ﬁr}lto una successione (B,)nen > decresceflt.e con ,5,1 > ¢ ; pertanto talF:
successione ha limite maggiore o uguale a . Per la definizione di limite, Ye € RT, esi-
ste 7, € N tale che se » > n_, allora a4, < {+ ¢, quindi per tali » siha B, </{+¢,
pertanto lim,_,, B, <{+ ¢, quindi, per 'arbitrarieta di ¢, risulta lim,__ 38, <{.
Percio lim, ., B, ={. Il limite della successione (,,),cy ¢ quindi anche limite di una
successione decrescente, che la “controlla dal di sopra”.
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In modo analogo, ponendo, Yn €N,
a,=inf{a, |m>n},

otteniamo una successione crescente che converge a ¢ e “controlla dal di sotto” la succes-

sione (a,,),cn -
La costruzione delle successioni (a,,),cy € (3,,),en puo essere fatta a partire da qualun-
que successione limitata, anche se non ¢ convergente, ottenendo due successioni monotone,

con la proprieta che, Y7 € N, si ha
a, < a, < /Bn :

Tali successioni hanno limite e i limiti ci danno indicazioni sul comportamento di (a,,),,cx
per n grande.

Formalizziamo 1 discorsi fatti, considerando anche successioni illimitate. Per definire
tali concetti € necessario il seguente teorema.

2.3.17 Teorema

Sia (a,,),cy una successione in R.

I) Supponiamo (a,,),y inferiormente limitata. Posto, Yz €N,
a,=inf{a |m>n},

o \
la successione (a,),oy ¢ crescente.

II) Supponiamo (a,),cy Superiormente limitata. Posto, Yz €N,

B, =supla,,|m=n},

la successione (f3,,),cn € decrescente.

Le ipotesi di limitatezza richieste assicurano che «, e [, sono numeri reali.

DmvostrAZIONE. I) Poiche, Yz eN,siha {4, |m>n+1} C{a,,|m > n}, risulta
a,=inf{a, |m>n+1}>inf{la, |m>n}=a,.

II) Ladimostrazione ¢ simile a quella dell’affermazione I. [

Per il teorema sul limite delle successioni monotone 2.3.2, ogni successione monotona
¢ regolare, quindi ¢ giustificata la definizione seguente.

Definizione di massimo limite e di minimo limite

Sia (a,,),cy una successione in R.
Se (a ¢ superiormente limitata chiamiamo massimo limite (o anche limite
n/neN P
superiore) di (a,,), oy il numero reale esteso

maxlima, = lim sup{a_|m >n}.
n—ostoo n——+00 P{ m| - }
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Se (a,,),en € superiormente illimitata poniamo maxlim, a4, =400.
Se (a,),en € inferiormente limitata chiamiamo minimo limite (o anche limite
inferiore) di (a,,),y il numero reale esteso

minlima, = lim inf{a,|m >n}.
n—too n——+00 { m| - }
Se (a,),cy ¢ inferiormente illimitata poniamo minlim,,_,, a4, =—c0.

\ J

Quando si usano i termini “limite superiore” e “limite inferiore” si usano le notazioni

limsup, . a, e liminf, _ _a,.

2.3.18 Esempio. Determiniamo massimo limite e minimo limite di alcune delle successioni
introdotte nell’esempio 2.1.1.

Consideriamo la successione (v,,),cy = ((—1)”>neN. Poiché definitivamente esistono
termini della successione uguali a 1 e termini della successione ugualia —1,siha, Yn €N,
{a, |m>n}={—1,1}, pertanto

n

maxlim(—1)" = lim sup{—1,1}= lim 1=1,

n——+400 n——+00 n—-+o00
r5111_r)1+l<1>£n(—1) = nkgrnoo inf{—1,1} = nl_ljrnoo(—l) =—1.

Consideriamo la successione (w,,), ey = ((—1)”(71 +2)/(n+ 1))71eN .

Nell’esempio 2.1.3 abbiamo osservato che, se 7 ¢ dispari, allora w, <0 e w, <w,,;
se invece 7 € pari, allora w, > 0. Percio, se 7 ¢ dispari, allora, qualunque sia m > 7, risul-
ta w, < w,, , quindi, con le notazioni del teorema 2.3.17,siha o, =inf{w,, |m >n}=w,, .
Se invece 7 ¢ pari, allora w, >0>w, , e, poiché¢ n+1 edispari, w, ; < w,,, qualunque
sia m >n+1; pertanto a, =inf{w,, |m >n}=w, ;. Quindi risulta

n+3 . .
w,  =———, Ssen ¢parl,
n+1 n—+2 p
a =
? n+2 N
w, =— ,  se n ¢ dispari.
n+1
Si ha
n+3 1 n+2 | 1
n+2 n+2’ n+1 n+1
ed ¢ facile verificare che —1—1/(n+1)<—1—1/(n+2), quindi risulta, Y7 €N,
1
—1— <o, <—1——.
n+1 n+2

Poiché la prima e I'ultima successione hanno limite —1, per il teorema dei due carabinie-
ri2.2.11 a, - —1, pertanto minlim,,_,,  w, =—1.

In modo analogo si prova che maxlim,_  w, =

1.
Consideriamo la successione (z,),oy = <(—1)”n>neN. Nell’esempio 2.1.3 abbiamo

stabilito che (z,),cy ¢ illimitata sia inferiormente che superiormente. Pertanto

minlimz, =—o0, maxlimw, =+4o0. <
n—-+4+00 n—-+4+00
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Dal teorema sul limite delle successioni monotone 2.3.2 si ottiene il seguente teorema.

2.3.19 Teorema

Sia (a,,),cy una successione in R.
Se (a,,),en ¢ superiormente limitata, allora

maxlima, = inf{sup{am |m>n}|ne N}.

n——+00
Se (a,,),en ¢ inferiormente limitata, allora

minlima, = sup{inf{am |m>n}|ne N}.

n——+00

Le affermazioni del teorema sono valide anche se non sono verificate le ipotest di limi-

tatezza, considerando sup e inf nel senso di R. Infatti se (), ¢ superiormente illi-
mitata, quindi maxlim, | a4, =+o00,siha, V2 €N, sup{a,, |m > n} =400, quindi

inf{sup{am |m>n}|ne N} =+o00.
Con una notazione meno precisa, possiamo scrivere le uguaglianze stabilite in questo
teorema come:

maxlima, = inf supa,,, minlima, =sup inf 4,
n—+00 neNm>n n—+00 neN m>n

Studiamo le proprieta di massimo limite e minimo limite.

2.3.20 Teorema

Sia (a,),cy unasuccessione in R. Allora

minlima, < maxlima,
n——+00 n——+00

DimOSTRAZIONE. Se la successione (a,),cy ¢ illimitata, allora minlim,_,, a4, = —oco

oppure maxlimn_) toody, =+00, quindi la tesi ¢ verificata. Se (a,),oy ¢ limitata, allo-
Vn € N, si ha inf{a,,|m > n} < sup{a,,|m > n}, pertanto, per il teorema del

confronto 2.2.19,

minlima, = lim inf{a,, |m>n}< lim sup{a,, |m >n}=maxlima, . n
n—+00 n—+00 —+00 n—-+00

2.3.21 Teorema

Siano (dn)nEN una successione in R e (d/en )nEN una sua sottosuccessione regolare.

Allora

minlima, < lim ay, < maxlima, .
n——+00o n——+00 n——+00
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DimosTrRAZIONE. Dimostriamo la disuguaglianza relativa al massimo limite, quella relativa
al minimo limite si prova in modo analogo.

= 400 la disuguaglianza ¢ evidentemente verificata.

< 400, poiche¢ Vn € N, siha k, > n (v. teorema 2.3.4), risulta
a, <sup{a,,|m >n}, pertanto, per il teorema del confronto 2.2.19, st ha

Se maxlim,_,, 4,

Se maxlim, | a4,

lim a4, < lim sup{a, |m>n}=maxlima,. n
k,
n—+00 n—+00 n—-+00

2.3.22 Teorema

Sia (a,,),cn unasuccessione in R. Allora esistono <dkn)neN e <“bn>neN , sottosuc-

cessioni di (,,),cy tali che

lim a4, =maxlima,, lim @, =minlima, .
n—+oo n—+00 n——+oo 7 n——+00

\ J

DimosTrAZIONE. Dimostriamo I’affermazione relativa al massimo limite, quella relativa al
minimo limite si dimostra in modo analogo.

Consideriamo anzitutto il caso maxlim,,_,, a4, =400, cioe (a,),cy Superiormente
illimitata. Allora {a,|n > m} ¢ superiormente illimitato qualunque sia m € N, perche
eliminando un numero finito di elementi da un insieme superiormente illimitato si ottie-
ne un insieme che ¢ ancora superiormente illimitato. Il numero 0 non ¢ maggiorante di
{a,|n €N}, quindi Jk; €N tale che ¢, > 0. Analogamente 1 non ¢ maggiorante di
{a,|n > ko}, quindi esiste k; > ky tale che @, > 1. Proseguendo, scelto k,,, esiste

k.1 >k, etaleche a4y > n+1. In questo modo si costruisce una sottosuccessione

(ﬂkn>n€N tale che, ¥ €N, siha 4, >n, quindi 4, — +o0.

. Consideriamo il caso maxlim, a4, =—oco.Per n €N siha a, <sup{a,, |m > n},
inoltre
lim sup{a,, |m >n}=maxlima, =—o0,
n——+oo n——400

pertanto, per il teorema 2.2.15, affermazione I, 4, —» —o0.

Infine sia maxlim = /¢ € R. Con le notazioni del teorema 2.3.17, la succes-

n—+00 n
sione (B)nen € decrescenFe e B,—1, qum(_il rlSI:llta B,>1 qualunque- sia. 7 € N. In
particolare B, > ¢ —1, quindi, per la caratterizzazione dell’estremo superiore 1.2.42, esi-

ste k, tale che 4, > ¢ —1. Evidentemente a, <sup{a,,|m >k,} = 3, . Analogamente
0 0 0
Br+1>€—(1/2), quindi esiste k; > ko +1> &y, tale che @, > ¢ —(1/2). Risulta inoltre

ap, < B k- Proseguendo si costruisce una sottosuccessione <a kn>neN tale che, Y7z €N, si ha

<a, < .
nt 1 “kn—/Bkn

Siha ¢ — (1 [(n+ 1)) — { e, per il teorema sul limite delle sottosuccessioni 2.3.5, risulta

B B ¢, quindi, per il teorema dei due carabinieri 2.2.11, lim,_,, a, = (. [ |

2.3.23 Osservazione. Periteoremi2.3.21¢2.3.22 minlim,,_, | 4, ¢ il minimo dei limiti
dell-lT so_tt_osuccessioni regolari di (a,),cy ; analogamente maxlim,_,, a4, ¢ il massimo di
tali limiti.



100 Capitolo 2. Successioni di numeri reali

In particolare minlim,,_,, . a, =—00 seesolo se esiste una sottosuccessione di (,,),,cx

divergente a —oo e maxlim = +00 se e solo se se esiste una sottosuccessione di

n——+o00 71

(a,),ey divergente a +oo. <

2.3.24 Teorema

Sia (a,,),cy una successione in R. Le seguenti affermazioni sono equivalenti:
I) (a,),cy € regolare;
) minlim a, = maxlim a

n—+oo “n n—+o0 “n °

Se tali affermazioni sono vere risulta

lim 4, =minlima, = maxlima, .
n——+o00 n——+oo n—-+00

. J

DimosTRAZIONE. I = II)  Per il teorema 2.3.22 esiste una sottosuccessione (@t )nen tale

che lim, |  a, =maxlim, , a,; per il teorema sul limite delle sottosuccessioni 2.3.5,
ogni sottosuccessione ha lo stesso limite di (4,,),,ey - Pertanto lim,_,, o4, =lim,_,, a,,
quindi maxlim,_, ja,=lm, _ _ a,.

Per motivi analoghi anche minlim, | a4, =lim, . a,.
I = I) Poniamo ¢ =minlim,_,, 4, =maxlim,_,  a,.

Supponiamo ¢ € R. Poiché, Yn €N, si ha

inf{a,, |m >n} <a, <sup{a, |m>n},

=/.
n——+00 n
Se { = +o0, poiché, Vn € N, si ha inf{a,,|m > n} < a,, per il teorema 2.2.15,
affermazione I, risulta lim =+4o00.

per il teorema dei due carabinieri 2.2.11 lim
n——+o00 n
Se { = —o0 la dimostrazione ¢ analoga. |

= 400, allora, per il teorema 2.3.20, si ha anche

2.3.25 Osservazione. Se minlim, 4,

max lim = 400, quindi, per il teorema precedente, lim

Analogamente, se maxlim,_,, a,=—o0,allora lim, ,, ja,=—00. <

Studiamo il comportamento di massimo limite e minimo limite rispetto all’addizione e
alla moltiplicazione per uno scalare.

2.3.26 Teorema

Siano (a,),eyn € (b,),en successioni in R.

I) Se minlim, ,,  a,€R e minlim, ., b, €R,allora

minlim(a, + 5,) > minlima, + minlim b,
n——+oo n—-+00 n—-+00

=400 e minlim b >—o0, allora

II) Se minlim pto0 Oy

n——+o00 7l

minlim(a, + b,) =+o00.

n——+00
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III) Se maxlim a, €R e maxlim b, eR,allora

n—+oo0%n n—+0o0 “n

maxlim(a, + &) < maxlima, + maxlimb, .
n——+oo n——+oo n——4oo

IV) Se maxlim, ,  a,=—00 e maxlim, b, <+4o00,allora
maxlim(a, + b, ) =—oc0.
n——+00

DiMOSTRAZIONE. I) Per n €N, se k> n, allorasi ha

a,+ b, >int{a,, |m>n}+int{b, |m>n},
pertanto
inf{la, + b, |k >n} >inf{a,, |m >n}+inf{b, |m>n}.

Passando al limite per » — +o00, si ottiene

minlim(a, + 5,) = 11£Lr1 inf{a, + b, |k >n} >

n—-—+o0o

> lim (mf{d |m>n}+int{b, |m>n}>

n——400

+minlimb, .

= lim inf{a, |m>n}+ lim inf{5,, |m>n}_m1nhmct
—+o00 ——+00 n—-+00

n
n——+00

II) Se minlim a, =400, allora lim = +o00 (v. osservazione 2.3.25), inol-

tre se minlim,_,, b, > —oo, allora (b,),oy ¢ mferlormente limitata, quindi, per il

teorema sul limite della somma 2.2.26, affermazione I, si ha lim, | (4, +b,)=+c0.

III) Ladimostrazione ¢ analoga a quella dell’affermazione 1.

IV) Ladimostrazione ¢ analoga a quella dell’affermazione II. [

2.3.27 Esempio. Nelle affermazioni I e III di questo teorema ¢ stabilito che il minimo
limite della somma € minore o uguale della somma dei minimi limiti, mentre il massimo
limite della somma ¢ minore o uguale della somma dei massimi limiti. In generale non vale
'uguaglianza.

Consideriamo le successioni (a,,),cn = ((—1)”>n€N e (b,),en = ((—1)”+1>n€N . Eviden-

temente, Yz €N, siha {a,,|m>n}={—1,1} e {b,,|m >n}={—1,1}, pertanto

minlima, =minlimb, =—1,
n—+00 n——+00

maxlima, = maxlimb, =1.
n——+o0 n—-+o00

Inoltre
a,+b,=(=1)"+ (=1 =(=1)"(1+(-1)) =0,

pertanto la successione (@, + b,,),oy ha limite 0. Percio

m1n+hmctn + m1n+hrn b,=—2<0= min}im(nn +b,),
maxlima, + maxlimb, =2>0=maxlim(a, + b,). <

n——+00 n——+00 n——+00
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2.3.28 Teorema

. : : *
Siano (a,,),cy una successione in R e A€R*.

a, €R.Se A>0, allora

n——+o0 “n

I) Supponiamo minlim

minlim(Az,) = Aminlima,
n—+00 n——+00

se A<0, allora

max lim(Az,) = Aminlima,,
n——+00 n——+00

II) Supponiamo minlim,_, a4, € {—00,+00}.Se A>0, allora

minlim(Az,) = minlima,, ;

n—+0o0 n——+00
se A<0, allora
maxlim(Az,) = —minlima, .
n——+00 n——+00

a, €R.Se A>0, allora

III) Supponiamo maxlim, ,, 4,

max lim(Az, ) = Amaxlima, ;
n——+00 7n——+00

se A<0, allora
minlim(Az,) = Amaxlima,, .

n—+00 n—+00

IV) Supponiamo maxlim a, €{—o0,+00}.Se A>0, allora

n——+00 ﬂ

max lim(Az,,) = maxlima ,;

n—+0o0 n——+00
se A<0, allora
minlim(Az,) = —maxlima,, .
n——+00 n——+00
. J

DimosTrAZIONE. I) Poniamo ¢ = minlim . Per il teorema 2.3.22 esiste una sotto-

n——+00 n
successione (ak )neN tale che a4, — ¢ ; inoltre, per il teorema 2.3.21, ogni sottosuccessione
regolare ha limite minore o uguale a .

Sia A>0. Evidentemente Aa, — A e ogni sottosuccessione regolare di (Aa,,), o ha
limite minore o uguale a A¢ . Allora, per 'osservazione 2.3.23, minlim,,_,, (Aa,)=Al.

neN ha

(a,)= L.

II) Supponiamo minlim,_, 4, =—o00 ;allora esiste una sottosuccessione (akn )neN tale

Sia A< 0. Evidentemente Aa;, — A¢ e ogni sottosuccessione regolare di (Aa,))

limite maggiore o uguale a A¢ . Allora, per I'osservazione 2.3.23, maxlim,,_, ,

che 4, — —o00. Se A >0, allora Az, — —oo, quindi minlim,_,, (42,) = —00; se
(/161 ) =+40c0.

= +oo;risulta lim, | a4, =400 (v. osservazio-
Aa,) = +00; se invece

invece A< 0, allora Az, — 400, quindi maxlim,_,

Supponiamo ora minlim,_, 4,

ne 2.3.25). Se A > 0, allora A4, — +o0, percid minlim
(Adn):D_

IIT) Ladimostrazione ¢ analoga a quella dell’affermazione 1.

nﬁ+w(

A<0,allora Az, - —o0, quindi maxlim,_,

IV) Ladimostrazione ¢ analoga a quella dell’affermazione II. [
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LIMITI E CONTINUITA DI FUNZIONI
REALI DI VARIABILE REALE

3.1 ToPOLOGIA DELL’INSIEME DEI NUMERI REALI

In questo capitolo iniziamo lo studio delle funzioni da sottoinsiemi di R a R. Tali
funzioni sono dette anche funzioni reali di variabile reale. Prima di affrontare questo
studio ¢ opportuno introdurre alcuni concetti relativi ai sottoinsiemi di R ; sono i concetti
di base di un ampio capitolo della matematica chiamato “topologia”.

Scelto A C R, classifichiamo i punti di R aseconda della loro “vicinanza” ad A oa CA.

Definizione di punto interno, punto esterno, punto di frontiera

Siano ACR e ceR.

Diciamo che ¢ ¢ punto interno ad A quando U € .¢, taleche U CA.

Diciamo che ¢ ¢ punto esterno ad A quando U € £, tale che UNA=@.

Diciamo che ¢ ¢ punto di frontiera per A quando non ¢ né punto interno né
punto esterno ad A.

\ J

Poiché U C A se e solo se UNCA = &, i punti interni ad A sono quelli “lontani”
da CA; analogamente 1 punti esterni sono quelli “lontani” da A4; i punti di frontiera sono
“vicini” siaad A chea CA.

Dalle definizioni ¢ evidente che 1 punti interni ad A appartengono ad A e quelli esterni
non appartengono ad A. Inoltresiha U C A seesolose UNCA =@, quindi i punti interni
ad A sono quelli esterni a (A e viceversa i punti esterni ad A sono quelli interni a CA.

Definizione di interno, frontiera, chiusura di un sottoinsieme di R

Sia ACR.

Chiamiamo interno di A e indichiamo con intA 'insieme dei punti interniad A.

Chiamiamo frontiera di A e indichiamo con JA I’insieme dei punti di frontiera
per A.

Chiamiamo chiusura di A e indichiamo con A I'insieme intAUJA.

e

Poiché ogni numero reale ¢ interno o esterno o di frontiera per un insieme, R ¢ 'unione
dei tre insiemi, a due a due disgiunti, intA, int(CA) e JA.
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Si verifica facilmente, negando la definizione di punto interno e di punto esterno, che
vale il seguente teorema.

3.1.1 Teorema

Siano ACR e c€R; c € dA seesolo se

YUef, (UNA#@)A(UNCA#£Q).

3.1.2 Osservazione. Poiché C(CA) = A da questo teorema segue immediatamente che un
punto ¢ di frontiera per A se e solo se ¢ di frontiera per (A, cio¢ A = J(CA). Pertanto

CA=int(CA)UIA.
Poiché intA, int(CA) e A sono a due a due disgiunti, ¢ evidente che ANlA=204. <«

3.1.3 Esempio. Poiché ogni intorno di un numero reale ¢ incluso in R, ogni punto di R
¢ interno 2 R. Quindi R non ha né punti di frontiera né punti esterni.

Poiché @ ha intersezione vuota con qualunque insieme, ogni numero reale ¢ esterno
a @. Quindi @ non ha né punti interni né punti di frontiera.

L'insieme Z non ha punti interni. Infatti non esistono intervalli inclusi in Z, quindi
nessun punto ha un intorno incluso in Z. Da qui segue che ogni punto di Z ¢ di frontiera.
Infine ogni punto di 0Z ¢ esterno a Z. Infatti se ¢ ¢ Z, allora [c] < ¢ <[c]+ 1 e non

esistono interi compresi tra [c¢] e [¢]+ 1. Posto & = min{c —[c][c]+1— C}, risulta
[c]<c—& e c+ 8 <[c]+1, pertanto

Je—=38,c+8[ S |lcL[c]+1] SCZ.
Quindi ¢ ¢esternoa Z.
Abbiamo quindi intZ=g, dZ=7 ¢ Z=17.

Ogni punto di R e di frontiera per Q. Infatti, se ¢ € R, allora, per il teorema 1.4.7,
V& eR™, esistono x € Q e y € R\ Q compresi tra ¢ — 8 e ¢+ J'; pertanto risulta
Je=38,c+38[NQ#D e Jc—8,c+8[NLQ # @. Quindi, per il teorema 3.1.1, ¢ ¢ un
punto di frontiera per Q. Poiché tutti gli elementi di R sono di frontiera, Q non ha né
punti interni, né punti esterni

Abbiamo quindi intQ =g, IQ=R ¢ Q=R. <
3.1.4 Esempio. Siano
A ={0}, A =112, A, =[1,2], A,=10,1[U]L,2[,

As={0}U[1,2], A, =10,+00], A, =[0,400[, Agz{%

nGN*}.

Il punto O ¢ di frontiera per A, . Infatti non € interno ad A, , perché qualunque intorno
di O contiene numeri diversi da 0, quindi non ¢ incluso in A, ; inoltre non ¢ esterno ad A,,
perché appartiene all’insieme.

Se c ¢ A, allora ¢ eesternoad A, . Infatti 0 ¢ ]c—|c|,c—|—|c|[ , quindi ¢ haun intorno

incluso in EAl .

Quindi si ha int4, =@, dA, ={0} e A, = {0}.
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Al
0
AZ
1 2
A3
1 2
4,
0 1 2
AS
0 1 2
A6
0
A7
0
Aq . .
12 1 Figura 3.1.1

Gli insiemi studiati nell’esempio 3.1.4

Se ¢ € ]1,2[, allora ¢ ¢ interno ad A,. Infatti, posto & = min{c —1,2—c}, risulta
Je—=8,c+3[C1L,2[.

Il punto 1 ¢ difrontiera per A, . Infatti ogni intorno di 1 contiene numeri minoridi 1,
quindi non ¢ incluso in A,, e numeri compresi tra 1 e 2, quindi non ¢ incluso in CA, . Per
motivi analoghi 2 ¢ di frontiera per A, .

Se ¢ € ]2,400[ , allora ¢ ¢ esterno ad A,, perché Je—(c—2),c+(c=2)[ =12,2¢—2[ ¢
un intorno di ¢ disgiunto da A,. Analogamente se ¢ € ]—o00,1[, allora ¢ ¢ esterno ad A4,
perché Je—(1—c),c+(1—c)[ =]2¢—1,1[ ¢ un intorno di ¢ disgiunto da 4,.

Quindi si ha intA, =]1,2[, dA,={1,2} e Zz =[1,2].
Ragionando come per A, si prova che intA, =]1,2[, dA, ={1,2} e A, =[1,2].

Poiché A, CA,,ipuntiinterni ad A, sono interni ad A,, quindi se ¢ € ]1,2[, allora ¢
interno ad A, . Con ragionamenti analoghi a quelli fatti per A, si prova che se ¢ € 10,1[,
allora ¢ ¢ interno ad A, .

I punti O, 1 e 2 sono di frontiera per A,. Infatti ciascuno di essi non appartiene
ad A,, quindi non ¢ interno, e si prova facilmente che ogni intorno di uno di tali punti
interseca A, , quindi non sono punti esterni.

Se ¢ € 12,400, allora ¢ ¢€esterno ad A, , perche ]c—(c—Z),c+(c—2)[ =12,2¢—2[ ¢
un intorno di ¢ disgiunto da A,. Analogamente se ¢ € ]—00,0[, allora ¢ ¢ esternoad A,,
perché ]c —(—c¢),c+ (—c)[ =]2¢,0[ ¢ un intorno di ¢ disgiunto da A, .

Quindi si ha intA, =10,1[U]1,2[, dA, ={0,1,2} e A, =[0,2].

Poiché A, C A, i punti interni ad A, sono interni ad As, quindise ¢ € ]1,2[, allora ¢
¢ interno ad A .
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. . . , oy

Ipunti O, 1 e 2 sono di frontiera per A, perché essi appartengono ad A;, quindi non
sono esterni, e si verifica facilmente che ogni loro intorno non ¢ contenuto in A;, quindi
non sono interni.

Con ragionamenti analoghi a quelli fatti per gli insiemi precedenti, si prova che ogni
punto di ]—o0,0[ U]0,1[ U ]2,400[ ¢ esterno ad As.

Quindi si ha intA; =11,2[, dA;=1{0,1,2} e As ={0}U[1,2].

Se ¢ €]0,400[,allora Jc—c,c+c[ £]0,+00[, quindi ¢ ¢ interno ad Ag.

Ogni intorno di O contiene sia numeri positivi che numeri negativi, quindi ha interse-
zione non vuota sia con A, che con il suo complementare; percio 0 ¢ punto di frontiera
per A, .

Se ¢ € ]—00,0[, allora ]c —(—c¢),c+ (—c)[ N10,+oo[ =&, quindi ¢ ¢ esterno ad A, .

Quindi si ha intA, = 10,+o00[, dA, = {0} e A, =[0,+00[.

Ragionando come per A, , si prova che intA, = 10,400, dA, ={0} ¢ A, =[0,+o0[.

L'insieme Ag non contiene intervalli, quindi non puo contenere un intorno di un punto;
pertanto Ag non ha punti interni. Quindi ogni punto di Ag ¢ di frontiera.

Il punto 0 ¢ di frontiera per Ay . Infatti la successione (1/7), .. convergea O (v. esem-
pio 2.2.12), quindi, Y& € R, definitivamente si ha 1/n € ]—8, [, pertanto ogni intor-
no di 0 ha intersezione non vuota con Ag. Poiché 0 ¢ Ay, ogni intorno di 0 ha anche
intersezione non vuota con [Ag, pertanto, per il teorema 3.1.1, 0 ¢ punto di frontiera.

Se ¢ € ]1,400[, allora ]c—(c—l),c+(c—1)[ =1]1,2¢—1[ eunintorno di ¢ disgiunto
da Ag quindi ¢ ¢ esterno ad Ag. Se ¢ € ]|—00,0[, allora ]c —(—c¢),c + (—c)[ = 12¢,0[ e
un intorno di ¢ disgiunto da Ag, quindi ¢ ¢ esterno ad Ag. . Se ¢ € ]0,1[ \ 4y, allora
esiste 7 € N* talechesiha 1/(n+1)<c<1/n.Posto & = min{c—l/(n+1),(l/n)—c} ,
risulta Jc —&,c+8[ € |1/n,1/(n+1)[ CCAg. Pertanto ¢ ¢ esterno ad Aq.

Quindi si ha intAg =@, dA; =A,U{0} e A, =A,U{0}. <

Dalle definizioni si ottiene immediatamente il seguente teorema.

3.1.5 Teorema

Sia ACR. Allora:
I) intACACA;
) A=AUJA.

\ J

Anche il teorema seguente ¢ una semplice conseguenza delle definizioni.

3.1.6 Teorema

Siano A,BCR.
I) Se ACB,allora intACintB;
IT) Se ACB, allora ogni punto esterno a B ¢ esterno ad A;
I) int(ANB)=intANintB.

\ J
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DimosTtrAZIONE. I, II) Sono immediata conseguenza della definizione.

IIT) Per I'affermazione I si ha int(ANB) C intA e int(ANB) C intB, pertanto risulta
nt(ANB)CintANintB.

Viceversa se ¢ € intANintB, allora esistono Uy, U € %, taliche Uy CA e U, CB.
Pertanto risulta Uy,NUy € £ e U,NUy CANB; quindi ¢ € int(ANB). Percio st ha
intANintB Cint(ANB). |

I punti interni, esterni e di frontiera e la chiusura di un insieme possono essere caratte-
rizzati mediante successioni convergenti, come risulta dal seguente teorema.

3.1.7 Teorema

Stano ACR e ceR.
I) Il punto ¢ appartiene ad A se e solo se esiste (a,,),cy successione in A conver-
gente a ¢.

II) Il punto ¢ ¢ interno ac.l Asee solo se, qualunque sia (,,),cy » successione in R
convergente a ¢, definitivamente a, €A.

IIT) II punto ¢ ¢ esterno ad A se e solo se, qualunque sia (a,,),y > successione in R
convergente a ¢, definitivamente a, ¢ A.

IV) 1l punto ¢ ¢ di frontiera per A se e solo se esistono (a,,),y Successione in A e
(b,),en successione in 0A convergentia c.

Per I’affermazione I, A ¢ I'insieme dei punti che sono limite di successioni in A.
DimosTRAZIONE. I)  Se ¢ € A, allora ¢ non ¢ interno a (A, quindi YU € £, non si ha

U C (A, pertanto UNA#@. Quindi, Y72 €N, siha |e—1/(n+1),c+1/(n+1)[ NA #£ 2,
percio esiste a, €A tale che c—1/(n+1)<a,<c+1/(n+1). Poiché

. 1 . 1
lim (c— = lim (c+ =c,
n—-—+00 n -+ 1 n——400 n+ 1

per il teorema dei due carabinieri 2.2.11 a, — c.

Viceversa, se ¢ ¢ A, allora ¢ ¢ interno a (A, quindi esiste U € .#, incluso in CA. Se
(a,),ey ¢unasuccessione convergente a ¢, allora definitivamente 4, € U, quindi 4, € CA.
Pertanto non esistono successioni in A convergenti a c.

II) Se ¢ ¢interno ad A, alloraesiste U € .%, incluso in A. Se (a,,),o ¢ una successione
convergente a ¢, allora definitivamente a, € U, quindi definitivamente 4, €A.

Viceversa, se ¢ non ¢ interno ad A, allora ¢ € CA, quindi, per Paffermazione I, esiste
S N :
(a, )neN successione in CA convergente ac. Pertanto.non ¢ vero che, qualunque sia (a,))
successione in R convergente a ¢, definitivamente si ha a, € A.

neN

II) Segue dall’affermazione II, perché i punti esterni ad A sono quelli interni a CA.

IV) Per Posservazione 3.1.2, ¢ € JA se e solo se ¢ € ANCA. Per Paffermazione I, que-
sto equivale al fatto che esistano (a,,),cy successione in A e (b,),.y successione in CA
convergenti a c. |
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Definizione di insieme aperto, chiuso

Sia ACR.
Diciamo che A ¢ aperto quando A =intA.

Diciamo che A ¢ chiuso quando A=A4.

Vale la seguente semplice caratterizzazione degli aperti e dei chiusi.

3.1.8 Teorema

Sia ACR.
I) Linsieme A ¢ apertose e solose ANJA=@.
II) Linsieme A ¢ chiuso se e solose JACA.

DimosTrAZIONE. I)  Poiché intANJA=@,se A=intA siha ANJA=0.
Viceversa, poiché ACintAUJA,se ANJA=, allora ACintA.

II) Siha A=A seesolose AUJA=A e questo equivalea JACA. ]

Si verifica facilmente che gli intervalli che abbiamo chiamato aperti sono insiemi aperti
secondo questa definizione, mentre gli intervalli che abbiamo chiamato chiusi sono chiusi
secondo questa definizione.

3.1.9 Osservazione. L’insieme R ¢ aperto, perché ogni punto ¢ interno, ed ¢ chiuso,
perché, non avendo punti di frontiera, coincide con I'unione dell’interno con la frontiera.

Anche @ é sia aperto che chiuso, perché non ha né punti interni né punti di frontiera,
quindi coincide sia con il suo interno che con la sua chiusura.

Gliinsiemi @ e R sono gli unici sottoinsiemi di R che sono sia aperti che chiusi. Infatti
se A ¢siaaperto che chiuso, allora, per il teorema 3.1.8, JA ¢ incluso in A, ma ¢ disgiunto
da A, quindi dA = . Gli unici insiemi che hanno frontiera vuota sono R e &.

Infatti, sia A C R non vuoto e diverso da R. Allora esistono a € A e b € R\A. Suppo-
niamo a < b, in caso contrario la dimostrazione ¢ analoga. Posto C ={x € A|x < b}, si
ha a€C,quindi C # @, e b & un maggiorante di C, quindi C ¢ superiormente limitato.
Posto ¢ = sup C, proviamo che risulta ¢ € dA. Infatti, Y& € R, si ha ¢ — & <supC,
quindi esiste un elemento di C compreso tra ¢ —& e ¢, ma C C A, quindi esiste un
elemento di A appartenentea Jc—3&,c[ C Jc—&,c+ [, quindi ogni intorno di ¢ interse-
ca A. Inoltre, se ¢ < b, allora ogni elemento di ]c, 5] non appartiene ad A, e, Y& € RT,
Je —&,c+ 8 interseca tale intervallo, quindi non ¢ incluso in A. Se invece ¢ = b, allora
ogni intorno di ¢ contiene & che non appartiene ad A, quindi tale intorno non ¢ incluso
in A. Pertanto ¢ non ¢ né interno né esterno ad A, quindi ¢ di frontiera. <

3.1.10 Esempio. Ricordando ’esempio 3.1.3, Z ¢ chiuso, Q@ non ¢ né aperto né chiuso.
Determiniamo quali degli insiemi introdotti nell’esempio 3.1.4 sono aperti o chiusi.
Ricordando quanto provato in tale esempio, gli insiemi A, = ]1,2[, A, =10,1[U]1,2[ e
A, =10,+00[ sono aperti, mentre gli insiemi A, = {0}, A; =[1,2], A; = {0} U[1,2]
e A, =[0,+00[ sono chiusi, infine insieme Ag = {1/n|n € N*} non ¢ né aperto né

chiuso. |
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3.1.11 Teorema
Sia ACR.

I) A ¢aperto se e solo se LA ¢ chiuso.

II) A ¢ chiuso se e solo se CA ¢ aperto.

DmmosTrAZIONE. 1) Ricordiamo che dA = J(CA) (v. osservazione 3.1.2). Per il teore-
ma 3.1.8, A ¢ aperto se e solo se ANJA =g, cioe JA=JI(CA) CCA e questo equivale al
fatto che CA sia chiuso.

1) Segue subito da I, applicata a CA. u

La proprieta di essere aperto e quella di essere chiuso si conservano per unioni e inter-
sezioni. Per la precisione valgono 1 seguenti teoremi.

3.1.12 Teorema

Sia {A; |z €I} una famiglia di insiemi.
I) SeViel, A; ¢aperto,allora | J,_,A; ¢aperto.
II) SeViel, A, échiuso, allora ﬂie]Ai ¢ chiuso.

\

DmvosTrAZIONE. T)  Sia ¢ €| ., 4;, dimostriamo che ¢ ¢ un punto interno a tale insie-
me. Sia j €1 tale che c €4;; poiché A; ¢ aperto, esiste U € .4, tale che U CA;, quindi
UC Uie[Ai , percio ¢ ¢ interno a Uie[Al- .

Pertanto ogni punto di Ul. </ 4; ¢ interno, percio Ul. < A; € aperto.
II) Siha E(ﬂieIAi> = Uie] CA; . Per il teorema 3.1.11, Vi € I, CA; ¢ aperto, quindi, per
Paffermazione I, [ J._, CA; ¢ aperto, pertanto, nuovamente per il teorema 3.1.11, ()., 4,
¢ chiuso. m

3.1.13 Teorema
Siano A,BCR.

I) Se A e B sono apert, allora ANB ¢ aperto.
IT) Se A e B sono chiusi, allora AUB ¢ chiuso.

DimostrAZIONE. I) Sia ¢ € AN B, dimostriamo che ¢ € int(ANB). Poiché A e B sono
aperti, ¢ ¢ interno ad A ea B, quindi 3U,,U; € .4, taliche U; CA e Uy C B. Posto
U=UNUg,sthaed, UCU,CAe UCU;CB,pertanto UCANB, quindi ¢
¢ interno ad ANB.

Poiché ogni punto di ANB ¢ interno, ANB ¢ aperto.

II) Siha C(AUB) =CANCB. Per il teorema 3.1.11 CA e (B sono aperti, quindi, per
Iaffermazione I, CANCB ¢ aperto, pertanto, nuovamente per il teorema 3.1.11, AUB ¢
chiuso. n
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Da questo teorema segue che se A, B e C sono tre insiemi aperti, allora ANB ¢ aperto
e quindi anche (ANB)NC ¢ aperto; quest’ultimo ¢ I'intersezione dei tra insiemi. Ripetendo
il ragionamento si prova che 'intersezione di un numero finito di insiemi aperti ¢ aperta.
In modo analogo si ha che I'unione di un numero finito di insiemi chiusi ¢ chiusa.

3.1.14 Osservazione. Tra i teoremi 3.1.12 e 3.1.13 c’¢ una differenza fondamentale: nel
primo si considerano unioni e intersezioni di una famiglia di insiemi anche infinita, nel
secondo unioni e intersezioni di due insiemi. Come osservato sopra, dal fatto che una pro-
prieta si conserva per unione o intersezione di due insiemi segue che si conserva per unione
o intersezione di un numero finito di insiemi, ma non si puo trarre la stessa conclusione per
famiglie infinite di insiemi. In particolare il teorema 3.1.13 ¢ falso per intersezioni e unioni
di famiglie infinite.
Per ogni n € N* Pinsieme ]—1/n,1/n[ ¢ aperto. Si ha

g

neN=

perché se x appartiene a tale intersezione, risulta, Y7 € N*, x < 1/n, quindi x <0, e
x>—1/n, quindi x > 0. Linsieme {0} ha interno vuoto (v. esempio 3.1.4), quindi non
¢ aperto. Pertanto la famiglia di insiemi aperti {]—1/7,1/n[ |7 € N*} ha intersezione che
non ¢ aperta.

Considerando i complementari di questi insiemi, abbiamo la famiglia di insiemi chiusi
{1—00,—1/n]U[1/n,+00[ |7 €N}, la cui unione ¢ R* che non ¢ chiuso. <

3.1.15 Teorema
Sia ACR. Allora:
I) intA e aperto;

II) A & chiuso.

DmvosTtrAZIONE. I) Dobbiamo provare che int(intA) = intA. Poiché intA C A, per
il teorema 3.1.6, affermazione I, si ha int(intA) C intA, quindi resta da dimostrare che
intA Cint(intA).

Se ¢ €intA, allora esiste & € RT tale che Jc—8,c+8[ CA. Se x € Jc—38,c+ [,
allora, posto 7 =min{(c +&)—x,x—(c—&)} si ha

x—n=x—(x—(c—8))=c—5,

x+n<x+((c+8)—x)=c+7,
quindi
Jx—n,x+n9[CJc—38,c+ [ CA;

pertanto x € intA. Percio Jc —&,c + & C intA, ma tale intervallo ¢ un intorno di c,
pertanto ¢ € int(intA). Quindi intA C int(intA).

) Poiché A =intAUJA, LA & costituito dai punti esterni ad A, cio¢ CA = int(CA).

Poiché, per I'affermazione I, int(CA) ¢ aperto, per il teorema 3.1.11, A ¢ chiuso. [ |
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Definizione di insieme compatto

Sia A € R. Diciamo che A ¢ compatto quando ogni (a,,),cy Successione in A
ha una sottosuccessione convergente a un elemento di A.

Gli insiemi compatti possono essere caratterizzati sulla base di concetti gia definiti.

3.1.16 Teorema (caratterizzazione degli insiemi compatti)

Sia A CR. Le seguenti affermazioni sono equivalenti:
I) A ¢compatto;

I) A ¢ chiuso e limitato.

DmvosTtrAZIONE. I = II) Dimostriamo che se A non ¢ chiuso oppure non ¢ limitato,
allora non ¢ compatto.

Supponiamo che A non sia superiormente limitato. Allora Y7 € N esiste un elemento
di A, che indichiamo con 4, , tale che 4, > n. Per il teorema 2.2.15, affermazione I,
a, — +00, quindi, per il teorema 2.3.5, ogni sua sottosuccessione diverge, cio¢ (a,)
non ha sottosuccessioni convergenti a un elemento di A. Pertanto A non € compatto.

neN

La dimostrazione ¢ analoga se A ¢ inferiormente illimitato.

Supponiamo ora che A non sia chiuso, cioe che esista ¢ € A\ A. Poiché ¢ €A, per il
teorema 3.1.7, affermazione I, esiste una successione (,,),oy in A convergente a ¢. Ogni
sottosuccessione Cl.l (@) pen converge a ¢ che non appartiene ad A, gumdl (a,),ey DON
ha sottosuccessioni convergenti a un elemento di A. Pertanto A non € compatto.

Il = 1I) Sia (a,),cy unasuccessione in A. Poiché A ¢ limitato, (a,),cy ¢ limitata; per

il teorema di Bolzano-Weierstrass 2.3.9, esiste una sottosuccessione <ak ) convergente.
n

neN

Per il teorema 3.1.7, affermazione I, si ha lim,,_,, 4, € A=A. Quindi A ¢ compatto. H

3.1.17 Esempio. Consideriamo gli insiemi studiati negli esempi 3.1.4 e 3.1.10.
Gliinsiemi A; ={0}, A; =[1,2] e A; ={0}U[1,2] sono chiusi e limitati, quindi, per il

teorema 3.1.16, sono compatti. L'insieme A, =[0,4o00[ non ¢ limitato, quindi non € com-

patto. Gli insiemi A, = ]1,2[, A, =]0,1[U]1,2[, A, =10,+00[ e A;={1/n|n e N*}

non sono chiusi, quindi non sono compatti. <

Per lo studio dei limiti, hanno interesse 1 punti che sono “vicini” a un insieme privato

del punto stesso. Risulta quindi utile la seguente definizione, che estendiamo ai punti di R.

Definizione di punto limite, punto di accumulazione, punto isolato, insieme

derivato di un sottoinsieme di R

Siano ACR e c€R.
Diciamo che ¢ ¢ punto limite di A quando, YU € .%,,siha ANU \ {c} #@.
Indichiamo con PL(A) I'insieme dei punti limite di A.

Diciamo che ¢ ¢ punto di accumulazione per A quando ¢ ¢ un punto limite
di A che appartiene a R.
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Chiamiamo insieme derivato di A e indichiamo con D(A) l'insieme dei punti di
accumulazione per A.

Diciamo che ¢ ¢ un punto isolato per A quando c € A\ D(A).

Dalle definizioni segue subito che ¢ D(A)=PL(A)NR.

Per definizione, la condizione che ¢ € R sia punto di accumulazione per A equivale al

fatto che ¢ non sia esterno ad A\ {c}, cioe che sia c € A\ {c}.

3.1.18 Osservazione. Sia A C R; si ha +o00 € PL(A) se e solo se, YM € R, risulta
ANM,+oo[ #@, cioe esiste un elemento di A maggiore di M. Quindi +o0o0 € PL(A) se
e solo se A e superiormente illimitato.

Analogamente —oo € PL(A) se e solo se A ¢ inferiormente illimitato.

Per definizione, ¢ € A ¢ punto isolato per A se e solo se non ¢ vero che

VS eR", ANlc—8,c+38[\{c}#@,
cioe

I8 eRt: ANJe—8,c+8[\{c}=@;

siha ANJc—8,c+8[\{c} =T seesolose AN]c—&,c+ [ ={c}, quindi ¢ & punto
isolato per A se e solo se

IS eRT: ANJc—38,c+8[={c}. <

Il teorema seguente mette in relazione il concetto di punto di accumulazione con quello
di punto interno e di punto di frontiera.

3.1.19 Teorema

Sia ACR. Allora:
I) intACD(A)CA;
M) JA\ACD(A).

DmvosTrAZIONE. I)  Se c €intA, alloraesiste U € %, tale che U C A, quindi qualunque
sia Ved sithah ANV \{c} 2UNV\{c}. Poich¢ UNV ¢ un intervallo, ha piu di un
elemento, quindi UNV \ {c} # @, pertanto anche ANV \ {c} # &; percio ¢ € D(A).

Se c€D(A), allora, YU € 4. ,siha ANU \ {c¢} # @, quindi ANU # @, pertanto ¢

non ¢ esterno ad A, cio¢ c€A.

II) Se c € dA\ A, allora, qualunque sia U € ., , s ha ANU # @. Poiché ¢ ¢ A,
ANU=ANU\{c}, pertanto ANU \ {c} # @. Quindi c € D(A). |

3.1.20 Esempio. Determiniamo il derivato degli insiemi introdotti nell’esempio 3.1.4. Uti-

lizzeremo ripetutamente il fatto che intA € D(A) C A e che JA\ A C D(A) (v. teore-
ma 3.1.19).

Consideriamo A, = {0}. Si ha D(A,) C A, = {0}. Qualunque sia U € .%,, risulta
A,NU\ {0} ={0}\ {0} =@; quindi 0¢ D(A).
Pertanto D(A;)=@ e 0 ¢ un punto isolato per A, .
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Consideriamo A, =1]1,2[. St ha
11,2[ =intA, C D(A,) €A, =[1,2].

Ipunti 1 ¢ 2 sono punti di frontiera che non appartengono ad A,, quindi sono punti di
accumulazione.

Pertanto D(A,)=][1,2
Consideriamo Ay =[1, ] Poiché A, C A, siha D(A,) C D(A;), pertanto

[1,2]=D(4,) € D(4;) € 4, =[1,2],
Pertanto D(A;)=[1,2].
Consideriamo A, =1]0,1[ U ]1,2[. St ha
10,1[U]1,2[ =intA, € D(A,) CA, =[0,2].

I Punti 0, 1 ¢ 2 sono punti di frontiera che non appartengono ad A, , quindi sono punti
di accumulazione.

Pertanto D(A,)=[0,2].
Consideriamo A; ={0}U[1,2]. Si ha
11,2[ = intA; € D(A;) CA; = {0} U[1,2].

Poiché A, C A, e 1 e 2 sono punti di accumulazione per A, , essi sono di accumulazione
anche per A; . Il punto 0 non ¢ di accumulazione per A, perché il suo intorno ]—1/2,1/2[
interseca A5 solo in 0.

Pertanto D(A;)=[1,2] e O ¢ un punto isolato per A; .
Consideriamo A, =]0,4+00[. Si ha
10, +00[ =intA, € D(A,) C A, =[0,+00].

Il punto 0 ¢ punto di frontiera che non appartiene ad A,, quindi ¢ di accumulazione.

Pertanto D(A)=[0,+0o0[ .
Consideriamo A, =[0,4+00[ . Poiché A, C A, st ha D(A;) € D(A,), quindi
[0,+00[ =D(4,) € D(4;) EE: [0,+o0[.
Pertanto D(A,)=[0,+00[.
Consideriamo Ag = {1/n|n € N*}. Si ha D(A) C Ay = AgU{0}. Inoltre
A

pertanto 1 non ¢ punto di accumulazione. Se » € N*\{1}, allora 1/(n+1) < 1/n < 1(n—1)
e 1/n ¢ 'unico elemento di Ag compreso tra tali numeri. Pertanto, ponendo

) { 1 1 1 1 } : { 1 1 } 1
= mmy ———,——— — —  =min s = >
n n+ln—1 n n(n+1) n(n—1) n(n+1)
risulta AgN]1/n—38,1/n+ 8] = {1/n}, pertanto 1/n non ¢ di accumulazione per Ay .
Poiché O ¢ un punto di frontiera e non appartiene ad Ag, O € un punto di accumulazione.
Pertanto D(Ag) ={0} e tutti i punti di A4 sono punti isolati. <
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I punti limite possono essere caratterizzati anche mediante le successioni, come mostra
il seguente teorema.

3.1.21 Teorema

Siano A CR e ¢ € R. Risulta ¢ € PL(A) se e solo se esiste una successione
(a,),ey 10 A\ {c} chetendea c.

DIMOSTRAZIONE. Sia ¢ € PL(A), proviamo che esiste una successione in A\ {c} che ten-
dea c.

Se c € R, allora ¢ non ¢ esterno ad A\{c}, cioe c €A\ {c} quindi, per il teorema3.1.7,
affermazione I, esiste una successione in A\ {c} convergente a c.

Se ¢ =+o00, allora, Y7 €N, si ha Jn,+00[NA# @, pertanto esiste a, EA=A\{c}
tale che a, > n. Per il teorema 2.2.15, affermazione I, 4, — +oc0.

Se ¢ =—oo0 la dimostrazione ¢ analoga, considerando gli intorni del tipo ]—oo,—n[ .

Viceversa, sia (,,),cy una successione in A\ {c} tale che 4, — ¢ . Per la definizione di
limite si ha

YUe S ,In, eN: YneN, n>n;, = a,€U.

Pertanto, YU € 4, , st ha 4, ;€ U; poiché ogni termine della successione appartiene ad
A\{c},sihaanche 4, ;€ UNA\{c}, quindi UNA\{c} # @; pertanto ¢ € PL(A). ™

3.2 ESTREMI E LIMITATEZZA DI FUNZIONI

Le definizioni che seguono sono del tutto analoghe a quelle date per le successioni di
numeri reali; invece dell’insieme dei termini, si considera I'immagine della funzione.

Definizione di funzione superiormente limitata, superiormente illimitata e di

estremo superiore di una funzione

Siano ACR e f: A—R.

Diciamo che f ¢ superiormente limitata quando Im(f) € superiormente limita-
ta. In tal caso chiamiamo estremo superiore di f e indichiamo con sup f I’estremo
superiore di Im(f).

Diciamo che f ¢ superiormente illimitata quando Im(f) e superiormente illi-
mitata. In tal caso poniamo sup f = +o0.

Definizione di funzione inferiormente limitata, inferiormente illimitata e di

estremo inferiore di una funzione

Siano ACR e f: A—R.

Diciamo che f ¢ inferiormente limitata quando Im(f) ¢ inferiormente limita-
ta. In tal caso chiamiamo estremo inferiore di / e indichiamo con inff I’estremo
inferiore di Im(f).

Diciamo che f ¢ inferiormente illimitata quando Im(f) ¢ inferiormente illimi-
tata. In tal caso poniamo inff =—o0.
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Definizione di funzione limitata

Siano ACR e f:A—R. Diciamo che f ¢ limitata quando Im(f) ¢ limitata.

E conseguenza immediata di queste definizioni il fatto che una funzione f: A —>R ¢
superiormente limitata se e solo se esiste M € R tale che, Yx € A, siha f(x) <M, mentre
¢ inferiormente limitata se e solo se esiste M €R tale che, Yx €A, siha f(x)>M.

3.2.1 Esempio. Consideriamo le funzioni:

1:R—>R, fl(x):xz—l,
1
fZ:R—HR, fz(x):x2+1
fFLI=R, )=
fi f 55

=il

Figura 3.2.1
Le funzioni studiate nell’esempio 3.2.1.

Per x € R si ha fi(x) = x> —1> —1, quindi £, ¢ inferiormente limitata. Inoltre,
poiché f(0)=—1,si ha —1 =minm(f)).

Se x > 1, allora x*> x, quindi f,(x)>x—1. Pertanto, se y >0, allora f;(y+1)>y,
quindi y non ¢ maggiorante dell'immagine di f;, pertanto f; ¢ superiormente illimitata.

Il fatto che f; e superiormente illimitata puo essere provato anche osservando che la

successione < 1(n)>n€N = (n? — 1),y ha limite +o00, quindi, per il teorema sulla limita-

tezza delle successioni regolari 2.2.21 ¢ superiormente illimitata. Poiché {f;(n)|n € N} C
Im(f,), anche Im(f,) ¢ superiormente illimitata.

Evidentemente, Yx € R, f,(x)>0, quindi f, ¢ inferiormente limitata e 0 ¢ un mino-
rante di Im(f;). Inoltre la successione (f2(n)>n€N = (1/(n*+1)),,y converge a O, pertanto,
qualunque sia ¢ € R*, ¢ non ¢ un minorante della successione, quindi non ¢ neppure un
minorante di /m(f;). Pertanto inf f, =0.

Per x €R siha x?4+1>1, quindi f(x)=1/(x*+1) < 1. Pertanto f, ¢ superiormente
limitata, inoltre 1= £,(0) = maxIm(f,).
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Si ha

+00.

n \_  n/(n+1)  nr+1)  nr+1)
f3<n+1>_1—n2/(n+1)2_(n—|-1)2—n2_ 2n41 n—otoo

Quindi { f3(n [(n+ 1)) ’ ne N} ¢ superiormente illimitato, per il teorema sulla limitatezza

delle successioni regolari 2.2.21. Poiché Im(f;) contiene tale insieme, ¢ anch’esso superior-
mente illimitato, quindi sup f; =+o0.

Considerando la successione < £ <—n /(n + 1)>>neN
dimostra che inf f; = —o0. <

e ragionando in modo analogo, si

3.3 LIiMITI DI FUNZIONI

3.3.1 DEFINIZIONI

Estendiamo il concetto di limite, che abbiamo definito per le successioni, alle funzioni
reali di variabile reale.

Nella sezione 2.2 abbiamo definito il limite di una successione per n — +oo, di-
stinguendo il caso di limite reale o +00 0 —oo, abbiamo poi unificato le definizioni

utilizzando gli intorni di un punto di R;si ha a, — ¢ €R se e solo se
YUe.9,dn, eN: VneN, n>ny = a,€U.

La condizione 7 > n;, equivale a n € |n;,+00[ e questo insieme € un intorno di +oo.
Quindi, se ¢ verificata la definizione di limite, allora esiste V € .#,  tale che, per » €N, ri-
sulta n € V = a, € U . Viceversa, supponiamo che esista V € .#,___ tale che, per n €N,
sthaneV = a,€ Ujallorarisulta V = ]M,+o0[, perun M € R, scelto 7, € N mag-
giore o uguale a M, se n > ny; siha n € V, quindi 4, € U. Pertanto la definizione di
limite ¢ equivalente a

VUe.9,3Vyed : VneEN, neV, = a,€U.

Questa definizione puo essere immediatamente estesa alle funzioni reali di variabile
reale. Occorre pero tenere presente che, assegnata una funzione f: A — R, ha senso chie-
dersi come si comporta f(x) per x — +00 solo se la funzione ¢ definita per valori di x
arbitrariamente “grandi”, cio¢ se A ¢ superiormente illimitato. Come visto nell’osserva-
zione 3.1.18 ci0 equivale al fatto che sia +00 € PL(A), cioe che ogni intorno di +o00 abbia
intersezione non vuota con A. Sotto questa condizione su A, possiamo dire che f(x) ha

limite £ € R, per x — 400, quando
YUed,,3Vyed . VxeA, xeVy, = f(x)eU.

La definizione puo essere facilmente modificata in modo da tenere conto del compor-
tamento di f(x) quando x si “avvicina” a un numero reale ¢ 0 a —oo, basta chiedere
esistenza di un intorno di ¢ o di —oo, anziché di un intorno di +o00 . Nel caso del nu-
mero reale ¢ risulta utile considerare il comportamento della funzione nei punti vicini, ma
diversi da ¢, pertanto nella definizione si considerano solo gli elementi di A\ {c}.
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Perché la definizione abbia qualche interesse ¢ necessario che, qualunque sia V € .£,,
esistano in V' elementi di A\ {c}; in caso contrario, scegliendo come Vi, un intorno di ¢
che ha intersezione vuota con A\ {c}, 'implicazione x € V;; = f(x) € U ¢ sempre
verificata, portando a concludere che qualunque elemento di R ¢ limite di f(x). Nel dare
la definizione di limite per x — ¢ ¢ quindi necessario supporre che ¢ sia un punto limite

del dominio di f.

Diamo quindi la seguente definizione.

Definizione di limite di una funzione

Siano ACR, f:A—>R, cePL(A) e {eR.
Diciamo che f(x) ha limite ¢ per x che tende a ¢ e scriviamo lim,_, f(x)=/
(o anche f(x)—{ per x — ¢ ) quando

YVUe9,,3V,ed: VxeA\{c}, x€eV, = f(x)eU.

\ J

La definizione di limite si puo scrivere anche in un’altra forma, che cambia a seconda
che ¢ e ¢ siano reali o no. Esplicitando la definizione di intorno, abbiamo quanto segue.
SeceReleR,sihalim _,  f(x)=/{ seesolose

VeeR", 38, eR": VxeA\{c}, x€lc—3.,c+3.[ = |f(x)—{|<c.
SeceR el =+o00,sihalim_, f(x)=+0c0 seesolose
YMeR,3I5,,eRT: VxeA\{c}, x€]c—38;,c+8y[ = fx)>M.
Se ceR e { =—o0,sihalim_, f(x)=—oc0 seesolose
YMeR, 38, eR": YxeA\{c}, x€lc—38),c+8y[ = flx)<M.
Se c=+4o00 el eR,sihalim _,  f(x)={ seesolose
VeeR",IK, €R: VYx€A, xe€lK,, +oo[ = |f(x)—{|<c.
Se c=+00 e { =+o0,sihalim, _,_  f(x)=+400 seesolose
VMeR,IK,, eR: VxeA, xe€lK,,+too] = f(x)>M.
Se c=+00 e { =—o00,sihalim, _,_  f(x)=—00 seesolose
VMeR,IK,, eR: VxeA, xe€lK,,+too] = f(x)<M.
Se c=—o0 el €R,sihalim_,_ f(x)=/{ seesolose
VeeR", 3K €R: VYx€A, xe€l]-oo K[ = |f(x)—{|<c.
Se c=—o00 e { =+o00,sihalim_, _ f(x)=+00 seesolose
YMeR,IK, eR: Yx€A, x€]-o00,K,[ = f(x)>M.
Se c=—00 e { =—o0,sihalim_,_  f(x)=—o0 seesolose

YMeR,IK,, eR: Vx€A, x€]-00,K,[ = f(x)<M.
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Figura 3.3.1

Definizioni di lim__ f(x)=¢ €R (asinistra) e di lim _  f(x)=+o0 (adestra).

A sinistra: se x ¢ compresotra c—3, e ¢+ 3, , allora f(x) ¢ compresotra { —c e { +¢.
A destra: se x ¢ compresotra c—38,, e ¢+ 38, allora f(x) € maggiore di M .

Osserviamo che nel caso £ € R la condizione |f(x)—£| < ¢ ¢ tanto pili restrittiva
quanto piu ¢ € piccolo: se essa ¢ verificata per un certo valore di ¢, allora ¢ verificata anche
per ogni valore piu grande. Nella definizione di limite +o00, se la condizione f(x)>M ¢
verificata per un certo M, allora € verificata per tutti gli M piu piccoli; ad esempio se la
condizione ¢ verificata per ogni M € R™ | allora ¢ verificata per ogni M €R. Nel caso di
limite —oo si ha analogamente che ¢ sufficiente chiedere che sia verificata la condizione per
ogni M e R™.

Analogamente, quando ¢ = +00, se si puo scegliere un certo K, , allora anche ogni
numero piu grande verifica la condizione; in particolare nella definizione si puo richiedere
chesia K, > 0. Se invece ¢ =—o00, allora si puo richiedere che sia K, <0.

Per indicare che una funzione ha limite utilizziamo una terminologia analoga a quella
introdotta per le successioni.

Definizione di funzione convergente, divergente, regolare, oscillante

Siano ACR, f:A—>R e cePL(A).

Diciamo che f(x) ¢ convergente per x che tende a ¢ quando esiste lim__, f(x)
e esso e appartiene a R.

Diciamo che f(x) ¢ divergente per x che tende a ¢ quando f(x) halimite +o0
oppure —oo per x che tende a ¢; in particolare diciamo che f(x) ¢ divergente
positivamente nel primo caso, divergente negativamente nel secondo caso.

Diciamo che f(x) ¢ regolare per x che tende a ¢ quando € convergente oppure
divergente.

Diciamo che f(x) ¢ oscillante per x che tende a ¢ quando non e regolare.
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Un particolare esempio di funzioni convergenti sono le funzioni costanti, cioe quelle

che a ogni elemento del dominio fanno corrispondere lo stesso valore. E ovvio infatti che
se f ¢ tale che, Vx € 2(f), st ha f(x) = m, allora lim__ _ f(x) = m, qualunque sia
cePL(2(f)).

3.3.1 Esempio. Consideriamo le funzioni:
% 1
fi:R" >R, ﬂ(x):;,
f5:[0,400[ = R, f(x)=vVx+1—y/x,

fo: [0 1[U]L,+oo[ =R, fi(x)=

x—1

Ji Js Js
1 +--

» | 2/3
N
-4 —1

3
Figura 3.3.2

Le funzioni studiate nell’esempio 3.3.1.

Studiamone alcuni limiti.

Proviamo che lim_,_ f,(x) = 0. Fissato ¢ € R, si ha |f,(x)—0| < ¢ se e solo se
|1/x| < ¢, che equivale a |x| > 1/e, cioe x > 1/¢ 0 x < —1/¢. Pertanto, se x < —1/e,
allora |f,(x)—0| < e, quindi f,(x)—0, per x —» —o0.

Da ci0 segue che anche per x > 1/¢ st ha |f,(x)—0| < ¢, quindi risulta f,(x) — 0, per
X — +00.

La funzione f, € superiormente e inferiormente illimitata in ogni intorno di 0. Infatti
siano &,M € R*. Se x € ]O,min{@, 1/M}[ ,allora x € |-8,8[\ {0} e fi(x)=1/x>M,
pertanto f,(]—8,8[\ {0}) ¢ superiormente illimitato. In modo analogo si dimostra che
tale insieme ¢ inferiormente illimitato. Pertanto, per il teorema 3.3.12, f, non ha limite
per x —0.

Dimostriamo che f5(x) — 0, per x — +00. Sia ¢ € R". Poiché, Yx €[0,+o0[, si ha

Vx+1>y/x, risulta |f5(x)] <e seesolose vx+1—4/x <e. Cid equivale a

Ve+1<yx+e,
x+1<x+2e4/x+¢2,
1—e?<2e4/x.
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Se ¢ > 1 la disequazione ¢ verificata per x € [0,400[, mentre se ¢ < 1 ¢& verificata per
x € ](1 —52)2/(452),4—00[. Pertanto f;(x) — 0, per x — +o00.

Proviamo che f,(x)—1/2,per x — 1.

Fissato ¢ € R, studiamo la disequazione |fy(x) —(1/2)| < e. Tale disequazione

equivale al sistema

—=<g,
x—1 2
x_ﬁ—1>—s,
x—1 2
e quindi equivale a
2(x—y/x)—(x—1)—2e(x—1)
<0,
2(x—1)
2(x—y/x)—(x—1)+2e(x—1)
>0,
2(x—1)
1—2 —
(1—2¢)x 2ﬁ+1+25<0’
2(x—1)
1 _ _
(142e)x—24/x+1 2E>O.
2(x—1)

Studiamo il segno del numeratore di ciascuna delle due frazioni. Ponendo y = 4/x, dob-
biamo studiare il segno dei seguenti trinomi di secondo grado:

(1—2¢)y* —2y + 1+ 2¢, (142e)y* =2y +1—2¢.

Per studiare il segno del primo occorre distinguere a seconda che il coefficiente 1—2¢ sia
positivo, nullo o negativo; tale coefficiente ¢ positivo per ¢ < 1/2, quindi ¢ sufficiente
studiare questo caso. Il primo trinomio si annulla per

14 2¢
1R/ 12—(1=26)(1+2e)  1£v4e2 1420 T 2.
= 1—2¢ T2 1-2e |
Il secondo trinomio si annulla per
L,
1R 12— (1426)(1—26) 1442 1420 s
a 1+2¢ T 1420 142 | ——.
1+42e
Pertanto
1+2
(1—26)y2—2y+1+25:(1—25)()}—1)()}—1+2€>,
—2¢

1—25>

14+2e)y% =2y +1—2e = (142 —1<—
(14+2e)y"—2y e=(1+2e)y—Dly TR
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Pertanto il sistema equivale a

1-2 —1 1+2
e VX < X — + €><O,

2 x—1 1—2¢
1+2 — —

+2¢ 4/x 1< x_l 25>>o.

2 x—1 14 2¢

Poiché, Vx €[0,1[ U ]J1,400[, st ha (ﬁ— 1)/(x —1)> 0, il sistema equivale a

142¢
1—2¢°
1—2¢
142

Vx <
Vx>

che ¢ verificato per
(1—2e)? e (142¢)?
—<x <.
(142¢)? (1—2¢)?

Pertanto, posto

s :min{l— (1—2e) (142e)? _1}’

(142¢)2” (1—2¢)?

se x € D(fy) ¢ tale che x € ]1—5,1+ 8, allora |f;(x)—(1/2)| < ¢.
Quindi lim,_, f,(x)=1/2.
Proviamo che lim,_ fo(x)=1.

Fissato ¢ € R, studiamo la disequazione |fi(x)—1| < ¢. Poiché studiamo il limite
per x — 400, per semplificare la risoluzione possiamo considerare x > 1, per cui risulta
x—4/x <x—1,percio f,(x)< 1. Quindi la disequazione equivale a

x—yx

x—1

(e—1)(x—1)+(x—/x)

x—1
ex—4/x+1—e>0.
Posto y = 4/x, la disequazione diventa ¢y*—y +1—¢ > 0. Il trinomio di secondo gra-
do ¢y?> —y +1—¢ ha coefficiente di y? positivo, quindi esiste K (che possiamo sceglie-
re positivo) tale che per y > K il trinomio ¢ positivo; pertanto se x > K2, allora si ha

ex—4/x+1—e>0.
Questo prova che f,(x)— 1, per x — +o0. <

1—

<e,

>0,

Risulta chiaro dalle premesse fatte che il concetto di limite di funzione ¢ strettamente
collegato a quello di limite di successione. Precisiamo questo legame.

Anzitutto una successione di numeri reali ¢ una funzione da N a R, quindi essa ¢
anche una funzione reale di variabile reale; poiché PL(N) = {+o00} per una tale funzione
¢ definito il limite solo quando I’argomento tende a +00 . Si verifica facilmente che in tale
caso il concetto di limite di funzione coincide con il concetto di limite di successione.
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Inoltre 1 limiti di funzioni sono legati ai limiti di successioni dal teorema seguente, che in
molti casi consente di dedurre facilmente un teorema per i limiti di funzioni da un analogo
teorema relativo ai limiti di successioni.

3.3.2 Teorema (di relazione tra limite di funzione e limite di successione)

Siano ACR, f:A— R, c € PL(A) e { € R. Le seguenti affermazioni sono

equivalenti:

D lim,_, f(x)=¢;

II) perogni (a,),cy > successione in A\{c} chetendea c,siha lim,_,, f(a,)=2.

\. J

DmvostrAZIONE. I = II) Consideriamo una successione (a,,),oy in A\ {c} che ten-
deac.
Per la definizione di limite si ha:

YUe.¥,3V,ef: VxeA\{c}, xeV, = f(x)eU,
mentre per la definizione di @, — ¢ si ha
YWed,Iny €N YneN, n>ny = a,eW.

Fissato U € .#,, poniamo W = V. Se n € N ¢ tale che » > ny allora risulta
a,€VyNA\{c}, quindi f(a,)€ U . Percio

n>ny, — f(a,)€U,

quindi ¢ verificata la definizione di f(a,)— ¢ .

II = I) Dimostriamo che, se ’affermazione I ¢ falsa, allora ¢ falsa anche la IT; cioe pro-
viamo che, se non si ha lim _,_ f(x) =/, allora esiste una successione (a,,),y in A\ {c}
tale che @, —» ¢, manonsiha f(a,)—¢.

Senonsiha lim__f(x)=¢, allora

Wed:VWes,IxcA\{c): xeV Af(x)¢U.

Se c € R, allora, Yn € N, siha Jc—1/(n+1),c+1/(n+ 1) € .4, pertanto esiste
un elemento di ANJc—1/(n+1),c+1/(n+1)[ \ {c}, che indichiamo con 4, , tale che

f(a,)¢ U. Lasuccessione (a,),cy cosi costruita ha termini in A\ {c}; inoltre, Y7 €N,
risulta

c— <a,<c+

n+1 n+1’
quindi, per il teorema dei due carabinieri 2.2.11 si ha a, — ¢. D’altra parte, Yz €N, si ha
f(a,) ¢ U, quindi la successione (f(a, ))neN non puo avere limite ¢ . Percio ’affermazio-
ne II non ¢ verificata.

Se invece ¢ = 400 si procede in modo analogo considerando gli intorni di +o00 del
tipo |n,4o0[.

Infine se ¢ = —oo si procede in modo analogo considerando gli intorni di —oo del
tipo |—oo,—n[. |
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3.3.3 Esempio. Consideriamo la funzione
R->R, f(x)=x.

Sia c €R. Allora ¢ € PL(R) e, qualunque sia (), successione in R\ {c}, si ha

Pertanto, per il teorema di relazione tra limite di funzione e limite di successione 3.3.2,
VceR,sihalim,_, x=c. <

3.3.4 Esempio. Consideriamo un polinomio p di grado k£ € N*. Sia cioe

k
p0)=2
j=0
con @y, ..., ER e o, R

Sia ¢ € R. Dai teoremi sul limite della somma 2.2.26 e sul limite del prodotto 2.2.28
segue che, qualunque sia (a,,),,o , successione in R\ {c} convergente a ¢, si ha

k k ; k
. Ji .
i = i al = { 1 — o) =
Jim pla,) = lim D e =2, i Jim a,) =3 ¢ = ple).
1= ]=

=
Pertanto, per il teorema di relazione tra limite di funzione e limite di successione 3.3.2, si ha

lim p(x) = p(c).

Sia (a,),cn unasuccessione in R divergente a +00. Si ha, per » €N tale che 4, #0,

k , kg 1y
b —k
pla,)= E ajaﬁl:akaﬁ E L4 :akaﬁ<2 L4 +1>.

=0 %k

Per j =0,1,...,k—1 siha k—; >0, quindi ai_kZI/aﬁ_j — 0, pertanto

g
S 4wt o1,
=0 %k

Poiché a,a* — sgn(a, )00, risulta p(a,) — sgn(a, )oo . Pertanto, per il teorema di relazio-
ne tra limite di funzione e limite di successione 3.3.2, si ha

lim p(x)=sgn(a;,)o0.

xX—+00

Sia (a,),cn una successione in R divergente a —oo . Come nel caso in cui a,, — +00,

p(a,) pud essere scritto come prodotto di a,a* per il termine 7 -simo di una successione
k

ayak . Se k ¢&pari, allora af

k

n

che convergea 1. Quindi lim,,__  p(a,) =lim
k

n

n—~400 — +09,

mentre se k ¢ dispari, allora a

¢ dispari si ha a,af — sgn(—a,)oo. Pertanto, per il teorema di relazione tra limite di

funzione e limite di successione 3.3.2, si ha

{sgn(ak)oo, se k ¢ pari,

sgn(—a;)oo, se k ¢ dispari.

— —00 ; percio, se k ¢ parisi ha a,a; — sgn(a,)o0, se k

<

lim p(x)=

X——00
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3.3.5 Osservazione. Per il teorema di relazione tra limite di funzione e limite di succes-
sione 3.3.2, se esiste lim_,_ f(x), allora, date due successioni (,,),cy € (8,),cy 1n A\ {c}

convergenti a ¢, le successioni < f (an))neN e ( f (bn)>n€N sono regolari e hanno lo stes-

so limite. Pertanto se due successioni di tale tipo hanno limite diverso, allora non esiste

lim,_, f(x). <

3.3.6 Esempio. L'osservazione 3.3.5 puo essere utilizzata per dare una dimostrazione di-
versa da quella dell’esempio 3.3.1 del fatto che non esiste lim,_ ,(1/x). Infatti le successioni

(1/(71 + 1))71eN e <—1/(n + 1))}1eN convergono a 0, ma

1
- =n+1— +o00, _ = p—1——00. |
1/(n+1) —1/(n+1)

3.3.2 TEOREMI FONDAMENTALI SUI LIMITI

Riprendiamo ora 1 teoremi fondamentali sui limiti di successioni, studiati nella sezio-
ne 2.2, e studiamo i teoremi corrispondenti relativi ai limiti di funzioni. In molti casi il teo-
rema di relazione tra limite di funzione e limite di successione 3.3.2 consente di dimostrare
facilmente questi teoremi.

Per utilizzare la notazione lim___ f(x) senza ambiguitd ¢ necessario assicurarsi che

una funzione non possa avere due limiti distinti per x che tende a uno stesso punto. Cio ¢
garantito dal teorema seguente.

3.3.7 Teorema (di unicita del limite)

Siano ACR, f:A—R, cePL(A) e {,meR. Se { e m sono entrambi limite
di f(x), per x —>c,allora { =m.

DIMOSTRAZIONE. Sia (a,,), oy una successione in A\ {c} che ha limite ¢ (tale successione
esiste per il teorema 3.1.21). Allora, per il teorema di relazione tra limite di funzione e

limite di successione 3.3.2, la successione < f(a )) ha come limite sia ¢ che m, quindi,
n/)neN
per il teorema di unicita del limite 2.2.22,si ha £ =m. u

E evidente dalla definizione che il limite di una funzione dipende solo dai valori che essa
assume in punti del dominio vicini a ¢ (e diversi da ¢ stesso). In altre parole: se si modifica
una funzione al di fuori di un intorno di ¢ il limite per x — ¢, se esiste, non cambia. Cio
si traduce nel teorema seguente.

3.3.8 Teorema

Siano A,BCR, f:A—>R, g:B—R e cePLA)NPL(B). Supponiamo che
esista W €. tale che

a) ANW\{c}=BNW\{c},

b) VxeANW\{c},siha f(x)=g(x).

Se f(x) € regolare per x — ¢, allora anche g(x) e regolare per x — ¢ e risulta
limx—»c f(x) = limx—»c g(x) *
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DimosTRAZIONE. Poniamo ¢ =lim_,_ f(x). Per la definizione di limite risulta
YUe.¥,3V,ef: VYxeA\{c}, xeV, = f(x)eU.

Fissato U € %, stha ANV, N W\ {c}=BNV,;NW\{c}, quindi
x€BNV,NW\{c} = x€AnNV,\{c} = f(x)eU;

inoltre
x€BNV,NW\{c} = xeBNW\{c} = f(x)=g(x),
percio
xeBNV,NW\{c} = g(x)eU;
poiché V;; N W ¢ un intorno di ¢, ¢ verificata la definizione di lim__ g(x)=/¢. |

Questo teorema assicura che i teoremi che seguono sono applicabili anche se le ipotesi
sono verificate solo in un intorno del punto a cui tende la variabile, escluso il punto stesso,
e non in tutto il dominio.

3.3.9 Teorema (del confronto)

Siano ACR, f,g:A— R, c€PL(A). Supponiamo che f(x) e g(x) siano rego-
lariper x - ¢. Se Vx € A\{c},stha f(x) < g(x),allora lim _ f(x)<lim _ _ g(x).

DIMOSTRAZIONE. Sia (a,,),cy una successione in A\ {c} che tende a ¢; si ha, V»n € N,
f(a,) < g(a,). Peril teorema di relazione tra limite di funzione e limite di successione 3.3.2
risulta lim,,_,, o f(a,)=1lim,_, f(x) e lim,_,, . g(a,)=1lim _, g(x). Per il teorema del
confronto per limiti di successioni 2.2.19 si ha lim,_,  f(a,) <lim,_, . g(a,), quindi

limx—»c f(X) S hmx—»c g(x) ‘ u

3.3.10 Teorema (della permanenza del segno)

Siano ACR, f:A—R, c € PL(A) e m €R. Supponiamo che f(x) sia regolare
per x —c.
I) Se lim,_, f(x)> m, allora esiste W € .9 tale che, Yx € AN W\ {c}, st ha
flx)>m.
II) Se lim,_, f(x) < m, allora esiste W € .4, tale che, Yx € AN W\ {c}, st ha
flx)<m.

\ J

DivosTrAZIONE. I) Poniamo ¢ =lim,_,, f(x). Per la definizione di limite si ha
YUe.¥,3V,ef: VxeA\{c}, x€eV, = f(x)eU.

Se m = —o0 la tesi ¢ verificata; non puo essere 7 =+00, perché m < /.

Consideriamo il caso m € R. Poiché ¢ > m , si ha { #—occ . Poniamo U = ]m,+oo[
se { =400, mentre poniamo U = ]Z —(l—m), L+ — m)[ se £ €R. In ciascuno dei
due casi ogni elemento di U ¢ maggiore di m, quindi x e ANV, \ {c} = f(x)>m.

II) Ladimostrazione ¢ analoga a quella dell’affermazione 1. [
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3.3.11 Teorema (dei due carabinieri)

Siano ACR, f:A->R, g:A—>R, h:A—>R e c € PL(A). Supponiamo che,
VxeA\{c},sia f(x)< g(x)<h(x).

I) Se f(x) e h(x) sono convergenti per x — ¢ €

lim f(x) = lim h(x),

allora g(x) ¢ convergente per x — ¢ e
lim g(x)=lim f(x) = lim A(x).

II) Se f(x)— 400, per x —c,allora g(x)— 400, per x —c.

III) Se h(x)— —o0, per x — ¢, allora g(x) - —o0, per x —c.

\ J

DivosTRAZIONE. I) Poniamo ¢ =lim__, f(x)=Ilim,_ h(x). Peril teorema di relazione
tra limite di funzione e limite di successione 3.3.2, qualunque sia (a,,),cy > Successione in
A\ {c} convergente a c, si ha
li = lim h(a,)=/;
Jim f(a,)= lim h(a,)

poiché, Vn e N, sia f(a,) < g(a,) < h(a,), per il teorema dei due carabinieri 2.2.11 risulta
lim,_,_ . g(a,)="{. Pertanto, utilizzando nuovamente il teorema di relazione 3.3.2, si puo6
concludere che lim,_ g(x)=".

II, III) La dimostrazione ¢ analoga a quella dell’affermazione 1. n

A differenza dei teoremi visti finora, per cui la versione relativa alle funzioni si ottiene
con ovvie modifiche dal corrispondente teorema per le successioni, il teorema sulla limi-
tatezza delle successioni regolari 3.3.12 nell’ambito delle funzioni ha un corrispondente
sostanzialmente diverso.

Ci0 si comprende facilmente esaminando la dimostrazione della limitatezza delle succes-
sioni convergenti. Anzitutto dalla convergenza di una successione si deduce che I'insieme
dei termini che hanno indice oltre una certa soglia ¢ limitato; successivamente si osserva
che 1 termini con indice inferiore alla soglia sono in numero finito, quindi costituiscono
un insieme limitato. Percio 'insieme dei termini € unione di due insiemi limitati, quindi &
limitato. Analogamente, nel caso delle funzioni, se f(x) converge per x — ¢, allora esiste
un intorno di ¢ in cui f ¢ limitata; non c’¢ pero alcun motivo per cui, in generale, f sia
limitata fuori da tale intorno.

Abbiamo quindi il seguente teorema.

3.3.12 Teorema (sulla limitatezza delle funzioni regolari)

Siano ACR, f:A—>R e cePL(A).
I) Se f(x) & convergente per x — c, allora esiste W € .#. tale che f(ANW) e

limitato.
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II) Se f(x) = 400, per x — ¢, allora, YV €.2., f(ANV) ¢ superiormente
illimitato ed esiste W € ., tale che f(ANW) ¢ inferiormente limitato.

II) Se f(x) - —oo, per x — ¢, allora, YV € £, f(ANV) ¢ inferiormente
illimitato ed esiste W € .%, tale che f(AN W) & superiormente limitato.

\. J

DivosTRAZIONE. I)  Scelto un arbitrario intorno di lim _, f(x), questo ¢ limitato; poi-
ché, per la definizione di limite, esiste V € .#, tale che f(ANV '\ {c}) ¢ incluso in tale
intorno, risulta f (A NnV\ {c}) limitato. Se ¢ ¢ A tale insieme coincide con f(ANVy),
che quindi ¢ limitato; in caso contrario f(ANVy)={f(c)}Uf(ANV\{c}), che ¢ limitato,
perché unione di due insiemi limitati.

II) Sia V € .4, . Poiché ¢ € PL(A), per il teorema 3.1.21 esiste (a,,),cy successione in
A\ {c} che halimite c. Esiste 7 tale che per n > 7% si ha a, € V, quindi la successio-
ne (a;,,)qen» € una successione in AN V'\ {c} convergente a ¢. Per il teorema di rela-

zione tra limite di funzione e limite di successione 3.3.2, si ha lim,_,,  f(a;,,)=+o0,
pertanto, per il teorema sulla limitatezza delle successioni regolari 2.2.21, affermazione II,
{ flaz,,)|n € N} ¢ superiormente illimitato. Percio anche f(AN V), che contiene tale
insieme, ¢ superiormente illimitato.

Poiché ogni intorno di +o00 ¢ inferiormente limitato, come nella dimostrazione del-
’affermazione I si prova che esiste W € .4, tale che f(AN W) ¢ inferiormente limitato.

IIT) La dimostrazione ¢ analoga a quella dell’affermazione II. n

Studiamo il limite della restrizione di una funzione. Si tratta di un teorema che non ha
corrispondente nell’ambito delle successioni.

3.3.13 Teorema (sul limite della restrizione)

Siano ACR,BCA, f:A—R e cePL(B). Seesiste lim__,_ f(x), allora esiste
mx_,cf|B(x) e st ha
1imf|B(x) =lim f(x).

X—C

DimosTRAZIONE. Poniamo ¢ =lim_,_ f(x). Per la definizione di limite si ha
YUe.¥,3V,ef: VxeA\{c}, x€eV, = f(x)eU.

Poiché BC A e, Vx€B,siha f| x) = f(x), qualunque sia U € .9,,se x e BNV \{c},
allora si ha f| )€ U ; percio hmx_,cf| (x)="¢. [

Studiamo il limite della composizione di due funzioni f e g, supponendo che esista
tale composizione, cioe sia Im(f) C 9(g). Per determinare il limite di gof inun punto ¢

occorre conoscere (gof )(x) = g(f(x)) per x vicinoa ¢ . Cio significa anzitutto conoscere

f(x) per x vicino a c; per questo supponiamo che esista lim,_,_ f(x) = ¢. Sotto questa
condizione, se x € vicino a ¢, 'argomento di g nella funzione composta ¢ f(x) che ¢
vicino a £ . Quindi per determinare lim,_, (g o f)(x), interessa lim,_, g(y) e non, come

si potrebbe erroneamente pensare, il limite di g in c.
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3.3.14 Teorema (sul limite della composizione)

Siano A, BCR, f:A—>R, g:B >R, c € PL(A), { € PL(B) ¢ m € R.
Supponiamo che sia f(A4) C B, che esistano lim,_, f(x) = e lim,_,g(y)=m e

che sia verificata una delle seguenti condizioni:
a) YxeA\{c},siha f(x)#(,
by {eBegll)y=m.

Allora esiste lim,_, (g o f)(x) e tale limite ¢ uguale a 2.

. v

DimosTrRAZIONE. Per la definizione di limite si ha:

YUue.#, ,3V,ed,:VyeB\{{}, yeV, = gly)eU,
YWeg,3Zy, e d: VxeA\{c}, x€Zy = f(x)eW.

Scelto U € S, , per x € ANZy, \{c} siha f(x) € V; poiché 'immagine di f ¢
inclusa in B, ¢ anche f(x)eBNV,,.
Per poter proseguire nella dimostrazione bisogna utilizzare una delle condizioni a) e b).

Se vale a), allora si ha sempre f(x)# ¢, quindi
x€ANZy, \{c} = f(x)e BNV, \{{}
= g(f(x)) eU;

percid risulta lim,_, . g(f(x))=m.
Se invece vale b), allora si ha
yEBNV, = (yeBNV,\{{} Vy={)

= (g0 eUV gly)=m)
— g(y)elu{m}=U,

quindi
x€ANZy \{c} = f(x)eBNVy
= g(f(x)) elU.
Anche in questo caso risulta lim_,. g(f(x))=m. |

Notiamo che, se { =+00, allora ¢ verificata I'ipotesi a), perché f assume valori reali.

3.3.15 Osservazione. Il teorema sul limite della composizione, oltre alla naturale richiesta
dell’esistenza dei limiti delle funzioni che si compongono, ha una ipotesi aggiuntiva. Come
risulta evidente dalla dimostrazione, cio ¢ necessario perché, se ¢ appartiene al dominio
di g, per studiare il limite della funzione composta sono necessarie informazioni su g(¢),
che non seguono dalla conoscenza di lim,_,, g(y).

Vediamo, con un esempio, che se non ¢ verificata nessuna delle due ipotesi aggiuntive,
allora puo non essere verificata la tesi del teorema.
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Siano

fo:R->R, fo(x)=—1,

2y, sey#—1,
I]R R =
g9 - b g9(y> {_3, se y — _1.

Risulta lim o fo(x)=—1 e lim _,_; go(y) =—2, ma

lim(gy 0 5)(x) = lim gy(f (x)) = lim gy(~1) = lim(~3) = 3.

x—0
Quindi, con le notazioni del teorema, lim _, (g0 fo)(x)# m. <
fo &
—1
,
|
—1 |
1 Figura 3.3.3
bo4 =3 Le funzioni f, e g, studiate

nell’osservazione 3.3.15.

3.3.16 Esempio. Consideriamo le funzioni:

el AUl oo~ B, fi =2,

fg:]—l,O[U]O,l[eR, fs(x):x—kl,

Nell’esempio 3.3.1 abbiamo provato che lim,_,; f,(x) = 1/2. La funzione f; ¢ restri-
zione di una funzione polinomiale, quindi, per x — 0, tende al valore del polinomio in 0

(v. esempio 3.3.4), cioe lim__,fe(x) = 1. Si ha fg(]—l,O[ U ]O,l[) C [0,1[ U ]1,4o0[,
quindi ¢ definita la composizione f, o f; e si ha

x+1—yx+1

X

(fo o fo)(x) =

Applichiamo il teorema sul limite della composizione 3.3.14 per calcolare il limite per
x — 0 di questa funzione. Con le notazioni dell’enunciato del teorema, siha ¢ =0, £ =1,

Xt =1 x—1 2’

quindi m = 1/2. Inoltre ¢ verificata la condizione a), perché se x € ]—1,0[ U ]0, 1], allora
stha x+1#£1=/
Pertanto si ha

ox+1—4/x+1 1
lim =—. |
x—0 X 2
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3.3.3 LIMITE SINISTRO E LIMITE DESTRO

Studiamo limiti di particolari restrizioni di una funzione che hanno un notevole inte-
resse.

Definizione di limite sinistro e limite destro di una funzione

Siano ACR, f:A—Re ceR.
Se c e D(A N ]—oo,c[) , diciamo che f(x) ha limite sinistro ¢ per x che ten-
de a ¢ (o anche f(x) ha limite ¢ per x che tende a ¢ da sinistra) e scriviamo

lim_, _ f(x)=/¢ quando limx_)cf|A [(x) =/.

Se ¢ € D(AN]c,+0oo[), diciamo che f(x) ha limite destro ¢ per x che ten-
de a ¢ (o anche f(x) ha limite ¢ per x che tende a ¢ da destra) e scriviamo

lim . f(x)=/¢ quando limx_)CfLm] (x)=".

,+OO|:

\ J

N]—o0,c

3.3.17 Esempio. Sia ¢ €R e consideriamo la funzione

1

X—C

fior R\ {c} =R, fio(x) =

Studiamo 1 limiti sinistro e destro di tale funzione in c.

Qualunque sia (a,,),,cy » Successione in <]R\{c}>ﬂ]—oo, c[ = ]—o0,c[ convergentea c,
sithaa,—c—0ea,—c<0,per neN. Allora, per il teorema 2.2.31, affermazione III,
risulta fiy(a,)=1/(a, —c)— —oo. Pertanto lim,_, _ fj,(x)=—00.

Qualunque sia (a,,),,cy » Successione in <R\{c}>ﬂ]c, +o00o[ = ]Jc,+oo[ convergentea c,
sithaa,—c—0ea,—c>0,per ne€N. Allora, per il teorema 2.2.31, affermazione II,
risulta fi4(a,)=1/(a, —c)— 4o0o. Pertanto lim,__, . fjo(x)=+00. <

3.3.18 Osservazione. Dalla definizione segue che lim,_, _ f(x) =/ se e solo se
YUe¥,,38,eRT: Vx€A, x€]c—38,,c[ = f(x)eU,

mentre lim__ . f(x)=/{ se e solo se
YUe¥,,38,eRT: Vxe€A, x€le,c+8y] = f(x)eU. |

Il limite sinistro e il limite destro rientrano nella definizione generale di limite per fun-
zioni reali di variabile reale, percio per essi sono validi tutti i teoremi sui limiti, sia quelli
gia enunciati che quelli che verranno enunciati in seguito.

Per il teorema sul limite della restrizione 3.3.13 ¢ evidente che se una funzione ha
limite per x — ¢, con ¢ € R, allora essa ha anche limite sinistro e limite destro per
x — ¢, purché le corrispondenti definizioni abbiano senso; ciog, se lim,_ f(x) = /¢ e
c e D(Aﬂ ]—oo,c[) , allora si ha anche lim,_, . f(x) = ¢ e analogamente per il limite
destro.

Se ¢ possibile definire il limite sinistro di una funzione per x — ¢, ma non il corrispon-
dente limite destro, cioe se ¢ € D(A N ]—oo,c[) ,macé¢ D(A N ]c,—}—oo[) ,allora c € D(A)

e le definizioni di limite e di limite sinistro sono equivalenti, quindi o esistono entrambi e
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sono uguali, oppure nessuno dei due esiste. Infatti, se ¢ ¢ D(A N]c,+o0 [) , allora 18 e R+

tale che, se & < &, allora (ANJe,+oo[)NJc—8,c+8[ =&, ciot AN]e,c+8[ =
pertanto si ha AN]c—38,c+8[\{c} =ANJc—3,c[ . Poiché nella definizione di limite si
puo scegliere &, < &8, le due condizioni x €ANJc— S.c+ 8 [\{c} exeAN]c—=3,,c[
coincidono, quindi la definizione di limite coincide con quella di limite sinistro.

Analogamente, se non ¢ definito il limite sinistro, allora la definizione di limite e di
limite destro coincidono.

Nel caso che abbiano senso sia il limite destro che il limite sinistro si ha il teorema
seguente.

3.3.19 Teorema (di relazione tra limiti unilateri e limite bilatero)

Siano ACR, f:A— R, c € D(AN]—oco,c[)ND(AN]Jc,+o0[) e £ €R. Le
seguenti affermazioni sono equivalenti:
) lim,_,, f(x)=¢;
M) lim_, f(x)={elim _, . f(x)=4¢

\. J

DimosTrAZIONE. | = II) E una ovvia conseguenza del teorema sul limite della restri-
zione 3.3.13, perché limite sinistro e limite destro sono limiti di restrizioni.

II = I) Supponiamo chesia lim__ _ f(x)=lim_ . f(x)=/.

Per la definizione di limite sinistro e destro (v. osservazione 3.3.18) si ha
YUeY,,dpy eRT: Vx€A, x€lc—py,c[ = f(x)eU,
YUe€Y,do,eRT: VxeA, x€le,c+oy] = f(x)eU.

Fissato U € .4, , poniamo &8 =min{p, 0 }. Si ha
le=38y,c+y[\{c}=lc—=0y,c[Ule,c+8y[ S e —pysc[Ule,c+oy[;

quindi, se x € ANJe—38y,c+8y[\{c}, allora x € ANJe—p,, c[ oppure x € AN]c,c+0y[,
in ciascuno dei due casi f(x) € U. Pertanto lim_,, f(x)=/. u

3.3.20 Esempio. Sia ¢ €R e consideriamo la funzione

for R\ =R, filn) = —

—C

Nell’esempio 3.3.17 abbiamo visto che lim _,_ fo(x) =—o00 e lim _ ., fjo(x) =+00.
Poiché lim,_, - fi5(x) # lim _, , fio(x), per il teorema di relazione tra limiti unilateri e
limite bilatero 3.3.19, non esiste lim_,_ f,(x). <

3.3.4 OPERAZIONI SUI LIMITI

I teoremi che seguono sono del tutto analoghi ai teoremi relativi alle operazioni per i
limiti di successioni (teoremi 2.2.26, 2.2.28, 2.2.31 e 2.2.33); essi sono dimostrabili a par-
tire da tali teoremi, utilizzando il teorema di relazione tra limite di funzione e limite di
successione 3.3.2.
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3.3.21 Teorema (sul limite della somma)

Siano ACR, f,g:A—>RecePL(A).

I) Se f(x) e g(x) sono convergenti per x — ¢, allora f(x)+ g(x) ¢ convergente
per x —>c e

lim(f (x) + g(x)) = lim  (x) + lim g (x).

X—C

II) Selim_, f(x)=+o00 e g ¢ inferiormente limitata, allora

lim(f(x)+ g(x)) =+o00.

X—C

II) Se lim,_, f(x)=+o0 e g(x) halimite diverso da —oo, per x — ¢, allora

lim(f (x) + g(x)) =+o0.

IV) Se lim__, f(x)=—oc0 e g ¢ superiormente limitata, allora
lim(f () + g(x)) = —o00.
V) Selim_,_ f(x)=—o0 e g(x) halimite diverso da 400, per x — ¢, allora

lim(f (x) + g (x)) =—o0.

Come nel caso delle successioni, questo teorema consente di calcolare il limite della som-
ma di due funzioni quando si conosce il limite di ciascuno dei due addendi, con I’esclusione
del caso in cui una delle due funzioni diverge a +o00 e I’altra diverge a —oo . In tal caso
diciamo che si ha un limite in forma indeterminata.

3.3.22 Teorema (sul limite del prodotto)

Siano ACR, f,g:A—>RecePL(A).
I) Se f(x) e g(x) sono convergenti per x — ¢, allora f(x)g(x) ¢ convergente per
x—ce
lim(f (x)g(x)) = lim / (x) i g(x).

II) Se f(x) ¢ divergente per x — ¢ e infg(A \ {c}) >0, allora
lim(f(x)g(x)) =lim f(x).

X—C X—C

IIT) Se f(x) & divergente per x — ¢ e g(x) ha limite maggiore di O, per x — ¢,

allora
lim(f (x)g(x)) = lim £ (x).

IV) Se f(x) ¢ divergente per x — ¢ e sup g(A\ {c}) <0, allora
lim(f (x)g(x)) = —lim f x).
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V) Se f(x) ¢ divergente per x — ¢ e g(x) halimite minore di 0, per x — ¢, allora

lim(f(x)g(x)) =—lim f(x).

X—C X—C

VI) Se lim__, f(x)=0 e g ¢ limitata, allora

lim(f (x)g(x)) =0.

. J

Come nel caso delle successioni, questo teorema consente di calcolare il limite del pro-
dotto di due funzioni quando si conosce il limite di ciascuno dei due fattori, con I’esclusione
del caso in cui una delle funzioni diverge (positivamente o negativamente) e I’altra converge
a 0. In tal caso diciamo che si ha un limite in forma indeterminata.

3.3.23 Teorema (sul limite del reciproco)

Siano ACR, f:A—>R\{0} e cePL(A).

I) Se f(x) ¢ convergente per x — ¢ e lim,_, f(x)# 0, allora 1/f(x) ¢ conver-
gente per X — ¢ €

lim L _ !
e f(x)  lim | f(x)
II) Selim,_, f(x)=0¢, VYx€A\{c},siha f(x)>0,allora

. 1
lim =400

= f(x)
II) Se lim__, f(x)=0¢, VYx€A\{c},siha f(x)<O0, allora

. 1
lim

= f(x)
IV) Se f(x) ¢ divergente per x — ¢, allora

. 1
lim —— =0.

S f0)

. J

3.3.24 Esempio. Consideriamo una funzione razionale fratta r . Siano cioe

k m
p(x):Za]-xj, q(x):Zﬁjxf,
7=0 7=0

con k€N, meN*, ag,ap,..., 241,80 B1s--s By ER € ap,3,, € R* e poniamo
r(x) = p(x)/q(x) per gli x €R che non annullano il denominatore. Poiché un polinomio
ha al pitt un numero finito di radici, 7(x) ¢ definito per gli x reali, escluso al pit un numero
finito.
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Sia ¢ € R. Poiché p e g sono polinomi, siha lim,_, p(x)= p(c) e lim,_,, q(x) =¢g(c)
(v. esempio 3.3.4).
Se g(c) #0, per i teoremi sul limite del prodotto 3.3.22 e sul limite del reciproco 3.3.23,
si ha
I
) i 20 _ M p(5) _ )

x—c x—C q(x) hmx_,c Q(x) B Q(C)

Se g(c) =0, allora esistono un polinomio ¢, che non si annullain ¢, e p € N* tale

che g(x) =¢q,(x)(x —c)?, quindi

=7(c).

Risulta lim _, p(x)/q,(x)= p(c)/q,(c). Sappiamo che si ha Iimx_>6+(1/(x —c)) =400 e
lim, . (1/(x—c))=—o00 (v.esempio 3.3.17); quindi, per il teorema sul limite del prodot-
to 3.3.22, risulta limx_w(l/(x—c)fo) =+o00;se p ¢parisiha limx_)c,<1/(x — c)/o) =400
ese p ¢disparisiha lim, , (1/(x—c)f)=—oc0.

Se p(c)#0 si ha quindi

lim r(x)= sgn< p(e) >oo ,

Xt q,(c)
sgn< p(©) >oo ,  sepcpari,

1- _ ql(c)

Jim 7(x) = (c)
sen| — oo, se p ¢ dispari.
o ql<c>> peam

Se p(c)=0, la scomposizione

rix)= p .
B)= 00 o

cida un limite per x — ¢ in forma indeterminata. Per determinare il limite osserviamo che
esistono un polinomio p,,chenonsiannullain ¢, e o € N* tale che p(x) = p,(x)(x—c)’,

quindi risulta r(x) = ( pi(x)/ ql(x)>(x —¢)?~?. Ripetendo i ragionamenti precedenti si ha

0, seo>p,
pi(c) s 0 =p
lim 7(x) = { 4,(c)’ ’

c
sgn<p1(c)>oo, seoc <pep—o ¢pari,

o, se 0 < pep—o ¢dispari,

lim r(x):sgn<— P C)>c>o, se 0 < pep—o ¢dispari. |



3.3. Limiti di funzioni 135

3.3.25 Teorema (sul limite del valore assoluto)

Siano ACR, f:A—>R e cePL(A).

I) Se f(x) ¢ convergente per x — ¢, allora |f(x)| ¢ convergente per x —c e

lim| ()] = [lim f ()]
II) Se f(x) ¢ divergente per x — c, allora

lim|f (x)| = +o0.

X—C

) Se lim,_, |f(x)| =0, allora
lim f(x)=0.

. v

3.3.5 SimBoLI DI LANDAU

Introduciamo i simboli di Landau per le funzioni, riprendendo quanto fatto nella sot-
tosezione 2.2.6 per le successioni. Elenchiamo definizioni e teoremi analoghi a quelli visti
per le successioni in tale sottosezione. Le dimostrazioni sono del tutto analoghe.

I simboli di Landau sono strettamente collegati ai limiti. Per un limite di funzione
¢ necessario precisare a quale punto tende la variabile da cui dipende la funzione. Tale
precisazione ¢ indispensabile anche quando si utilizzano 1 simboli di Landau per le funzioni.

Definizione di funzione asintotica

Siano A C R, f,g:A—> R e ¢ € PL(A); supponiamo che, Yx € A\ {c}, sia
g(x)#0. Diciamo che f ¢ asintotica (o equivalente) a g, per x — ¢, quando esiste
lim__ f(x)/g(x)=1.In tal caso scriviamo f(x)~ g(x), per x —c.

3.3.26 Teorema

Siano ACR, f,g,h:A— R e c € PL(A); supponiamo che, Yx €A\ {c}, sia
f(x)#0, g(x)#0 e h(x)#0 Allora, per x —c:
D f(x)~f(x);
I flx)~g(x) = g(x)~f(x);
) (f(x)~g(x) A g(x)~h(x)) = f(x)~ h(x).

. v

’
\.

3.3.27 Teorema

Siano ACR, f,g:A—> R e ¢ € PL(A); supponiamo che, Yx €A\ {c}, sia
g(x)#0 e chesia f(x)~ g(x), per x = c. Per x — ¢ la funzione f(x) ¢ regolare
se e solo se g(x) ¢ regolare e in tal caso si ha

lim f(x) = lim g(x).

X—C X—C
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Siano ACR, f,g,h,k: A—R e c € PL(A); supponiamo che, Yx € A\ {c}, sia
h(x)#0 e /e ;éO
I) Se, per x —>c, f(x)~h(x)e g(x)~k(x),allora f(x)g(x)~ h(x)k(x).
IT) Se, per x —c, h(x)~k(x), allora 1/h(x) ~1/k(x).

. J

3.3.29 Esempio. Consideriamo un polinomio p di grado k£ € N*. Sia cioe

k
ple)=2 2%,
j=0
con g, qq,...,2,_1ER e o €R".
Si ha, Yx e R*,

k E oo k=1
p(x):Za]xf :akka—]xf k=g xk<Z—]x7_k+1>
=0 =0 %k =0 %k

Per j =0,1,...,k—1 siha j —k < 0, quindi x/* = (1/x)*7 — 0, per x — +o00
(v. esempio 3.3.1), pertanto

Quindi si ha p(x) ~ a,x* . <

3.3.30 Esempio. Consideriamo una funzione razionale fratta r . Siano cio¢

)=, g =38,
7=0

con k€N, meN*, ag,ap,..., 21,80 B1s--sBmy ER € ap,3,, € R* e poniamo
r(x) = p(x)/q(x) pergli x €R che non annullano il denominatore. Poiché un polinomio
ha al pitt un numero finito di radici, 7(x) ¢ definito per gli x reali, escluso al pit un numero
finito, quindi € definito in un insieme illimitato sia superiormente che inferiormente

Come visto nell’esempio 3.3.29, si ha, per x — fo00, p(x) ~ ayxf e g(x)~ 3,,x™
Pertanto, per il teorema 3.3.28, si ha

1 a
_ %k xk—m ) <

rix)= XL’\-’axk = —
B=P) i~ 5 T B,

Definizione di funzione trascurabile

Siano AC R, f,g:A— R e ¢ € PL(A); supponiamo che, Yx € A\ {c}, sia
g(x) # 0. Diciamo che f ¢ trascurabile rispetto a g, per x — ¢, quando esiste
lim__ f(x)/g(x)=0. In tal caso scriviamo f(x)= o(g(x)) , per x —c.
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3.3.31 Teorema

Siano AC R, f,g:A—> R e ¢ € PL(A); supponiamo che, Yx € A\ {c}, sia
g(x)#0. Per x — ¢ risulta f(x)~ g(x) se e solose f(x)= g(x)—l—o(g(x)).

3.3.32 Teorema (regole di calcolo per o piccolo)

Siano A C R, f,g,h,k:A > R, ¢ € PL(A) e m € R*; supponiamo che,
VxeA\{c},sia h(x)#0 e k(x)#0. Per x — ¢ vale quanto segue.

) Se f(x)=o(h(x)) e g(x)=0(h(x)), allora f(x)+ g(x)=o0(h(x)).
) Se f(x)=o(h(x)), allora mf(x)=o0(h(x)).

M) Se f(x)=o(h(x)), allora f(x)k(x)=o(h(x)k(x)).

(x)= o(h(x)) e g(x)= 0</e(x ), allora f(x)g(x)= o(b(x)/e(x)).
(x)=o0(h(x)) e h(x)=o(k(x)), allora f(x)=o(k(x)).
(x)=o0(h(x)) e h(x)~ k(x), allora f(x)=o(k(x)).

X

(0]

)
)=o(h(x) x)= )
)=o(h(x) x)~

Definizione di funzione controllata

Siano AC R, f,g:A— R e ¢ € PL(A); supponiamo che, Yx € A\ {c}, sia
g(x) # 0. Diciamo che f ¢ controllata da g, per x — ¢, quando esiste V € .4,
tale che la funzione x — f(x)/g(x) ¢ limitata in ANV \ {c}. In tal caso scriviamo

f(x)=0(g(x)), per x —>c.

3.3.33 Teorema
Siano ACR, f,g:A—> R e ¢ € PL(A); supponiamo che, Yx €A\ {c}, sia
g(x) #0.
I) Se, per x —c, f(x)~ g(x), allora f(x)=0(g(x)).
IT) Se, per x —c, f(x)=o0(g(x)), allora f(x)=0(g(x)).

’
\.

r
\

3.3.34 Teorema (regole di calcolo per o grande)

Siano A C R, f,g,h,k:A —> R, ¢ € PL(A) e m € R*; supponiamo che,
Vx €A\ {c},sia h(x)#0 e k(x)#0. Per x — ¢ vale quanto segue.

) Se f(x)=0(h(x)) e g(x)=0(h(x)), allora f(x)+ g(x)=O(h(x)).
) Se f(x)= O(h(x)) ,allora mf(x)= O(b(x)) .

II) Se f(x)=0O(h(x)),allora f(x)k(x)=O(h(x)k(x)).

IV) Se f(x)=0O(h(x)) e g(x)=O(k(x)), allora f(x)g(x)=O(h(x)k(x)).

X
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V) Se f(x)=0(h(x)) e h(x)=O(k(x)), allora f(x)=0O(k(x)).
VI) Se f(x)=0(h(x)) e h(x)~ k(x),allora f(x)=O(k(x)).

3.3.35 Teorema

Siano A C R, f,g,h,k:A - R, ¢ € PL(A) e m € R*; supponiamo che,
VxeA\{c}, sia /J(x) #0 e k(x)#0. Per x — ¢ vale quanto segue.
I) Se f(x)= o( x)) e g(x)= O(/J(x)) allora f(x)+ g(x ):O(b(x)).
) Se f(x)=o(h(x)) e g(x)=O(k(x)),allora f(x)g(x)=o0(h(x)k(x))
II) Se f(x)= o(b x)> e h(x)= O(/e(x)), allora f(x):o(/e(x)).
IV) Se f(x)= O(/J(x)) e h(x)= o(/e(x)),allora f(x):o(/e(x)).

3.4 CONDIZIONI PER LA REGOLARITA DI FUNZIONI

3.4.1 FuUNZIONI MONOTONE

Estendiamo alle funzioni il concetto di monotonia, gia definito per le successioni. Ri-

cordiamo che chiamiamo crescente una successione (a,,), oy tale che siha a, >4, , per

ogni 7 € N. Questa definizione ¢ motivata dal fatto che 741 ¢ il piu piccolo naturale mag-
giore di 7. In generale, se si considerano funzioni con dominio un arbitrario sottoinsieme
di R, non esiste un piu piccolo elemento del dominio maggiore di un elemento fissato,
quindi, per trasportare alle funzioni questo concetto, ¢ opportuno partire dalla condizione
(equivalente alla crescenza) Vm,n €N, m<n —> a,, <a,, .

Risultano quindi naturali le seguenti definizioni.

Definizione di funzione crescente, decrescente, monotona

Siano ACR e f:A—R.
Diciamo che f & crescente quando

Vx,y €A, x<y = f(x)<f().
Diciamo che f & strettamente crescente quando

Vx,yed, x<y = f(x)<f(y).
Diciamo che f ¢ decrescente quando

Vx,y €A, x<y = f(x)=>f().
Diciamo che f & strettamente decrescente quando

Vx,yed, x<y = f(x)>f(y).

Diciamo che f € monotona quando ¢ crescente o decrescente.
Diciamo che f ¢ strettamente monotona quando ¢ strettamente crescente o
strettamente decrescente.




3.4. Condizioni per la regolarita di funzioni 139

Ogni funzione strettamente crescente ¢ anche crescente e ogni funzione strettamente
decrescente ¢ anche decrescente. Inoltre una funzione costante ¢ sia crescente che decre-
scente.

In particolare se f ha come dominio I'insieme dei naturali, cio€ se f ¢ una successione,
queste definizioni sono equivalenti alle corrispondenti definizioni date per le successioni.

3.4.1 Teorema

Siano ACR, f:A—R.Se f & strettamente monotona, allora & iniettivae f !
¢ strettamente monotona.

DIMOSTRAZIONE. Supponiamo, ad esempio, f strettamente crescente.

Se x,y €A exF#y,allorao x <y, quindi f(x)< f(y),0 x>y, quindi f(x)> f(y);
in ogni caso f(x)# f(y), quindi f ¢ iniettiva.
Inoltre, siano z,w € f(A), con z < w. Non puo essere f~(z) > f~'(w), perché

sarebbe f(f7'(2)) > f(f ' (w)), cio¢ z>w. Pertanto f~!(z) < f~(w). u
3.4.2 Esempio. Consideriamo le seguenti funzioni:

hiR=R, fy(x)=x7,

S R=R, o fip(x) =[x],

1
R R, fy) =
A A
So S _ i
14t-- 1f-—r— 1t--
—1 | —1 | —1 |
T + T s T ¢
} 1 } 1 } 1
-4 1 — 1 -4 1
Figura 3.4.1

Le funzioni studiate nell’esempio 3.4.2.

La funzione f;; € strettamente crescente. Infatti se x,y €R, con x <y, risulta
fu0)—fux) =y = = (y —x)(x* +xy +5%).
St ha

1,3 1\ 3
x2+xy+y2=x2+xy+—y2+—y2=<x+—y> +=9°>0;
PR 2 4
Pertanto f,(y)—/;;(x) € prodotto di numeri non negativi, quindi ¢ non negativo, percio f,

¢ crescente. Inoltre (x + (1/2)y>2 +(3/4)y* =0 seesolose x+(1/2)y=0 e y =0, cioe
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x =y =0, ma cio ¢ impossibile, perché x < y. Pertanto f;,(y)— f;;(x) € prodotto di
numeri positivi, quindi ¢ positivo, percio f;; € strettamente crescente.

Se x,y € R, con x <y, allora [x] <x <y, quindi [x] € un numero intero minore
di y, pertanto € minore o uguale a [y]. Quindi f, € crescente.

La funzione non ¢ strettamente crescente, perché si ha, ad esempio, [1] =1 =[3/2],
pur essendo 1<3/2.

La funzione f;; non ¢ monotona. Infatti fj;(—1)=—1< 1= f;5(1), pertanto f;; non
¢ decrescente; inoltre f15(1)=1>1/2= f5(2), quindi f;; non ¢ crescente.

Sappiamo che, dati due numeri positivi x e y,se x <y, allora 1/x > 1/y, (v. teore-

ma 1.2.24). Pertanto f; |R+ ¢ strettamente decrescente.
Inoltre, se x,y <0 e x <y, allora —x >—y ¢ —x,—y >0, quindi —1/x < —1/y,
percio 1/x > 1/y . Pertanto f; | ¢ strettamente decrescente. <

Per il teorema sul limite delle successioni monotone 2.3.2 ogni successione monotona
¢ regolare. Per estendere alle funzioni tale teorema occorre tenere presente una differen-
za fondamentale: per una successione ha senso solo il limite per » — 400, mentre per
le funzioni si puo considerare il limite per x che tende a un qualunque punto limite del
dominio.

Osserviamo inoltre che dall’esempio precedente risulta che una funzione monotona
puo non avere limite per x che tende a un punto di accumulazione del dominio. Infatti la
funzione f},, cioe la funzione parte intera, ¢ crescente, ma non esiste lim,_[x]. Questo
perché se x € ]-1,0[, allora [x] =—1, pertanto lim__ , [x]=—1, mentrese x € ]0,1],
allora [x] =0, pertanto lim__ .[x]=0.

Per evitare questo problema occorre considerare solo i limiti unilateri. Rientrano tra
questi anche 1 limiti per x — 400 o per x — —o0, che coinvolgono i valori della funzione
solo “asinistra”, nel primo caso, o solo “a destra”, nel secondo caso, del punto a cui tende x .

Abbiamo quindi il teorema seguente.

3.4.3 Teorema (sul limite delle funzioni monotone)

Siano ACR, f:A—R e ce€R. Supponiamo f crescente.

I) Se A ¢ superiormente illimitato, allora esiste lim,_,, o f(x) esi ha

lim f(x)=supf.

xX—400

) Sec ED(A N ]c,—l—oo[) , allora esiste lim,_, , f(x) esi ha
lim f(x)=inf f(AN]c,+o0l).

x—ct

II) Se ce D(A N ]—oo, c[) , allora esiste lim _ _ f(x) esiha

lim f(x)= supf(Aﬂ ]—oo,c[).

X—C—

IV) Se A ¢ inferiormente illimitato, allora esiste lim__,__ f(x) esiha

lim f(x)=inff.

X—>—0Q
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DimosTRAZIONE. I)  Supponiamo sup f = +oo. Allora ogni M € R non ¢ un maggio-
rante di f(A), percio dx,; €A tale che f(x,,)> M. Poiché f ¢ crescente

x €AN ]y, 0o = f(x) = fxy)>M.

Per Iarbitrarieta di M ¢ verificata la definizione di lim,_,_  f(x)=+o0.

Supponiamo ora supf = ¢ € R. Qualunque sia ¢ € Rt, { —¢ non ¢ un mag-
giorante di f(A), quindi esiste x. € A tale che f(x.) > { —¢. Poiché f ¢ crescen-
te, se x EAN]x,,+oo[, allora si ha f(x) > f(x.) > { —e. Inoltre, Vx € A, si ha
f(x)<{l</{+e,pertanto

x€AN]x,,+oo] = l—c< f(x)<l+e¢.

Percio lim,_,, o f(x)="¢.

II) Supponiamo inf /(AN Jc,400[) =—oco . Poiché ogni M €R non ¢ un minorante di
f(ANTe,+00[), esiste x) € ANJe,+o00[ tale che f(x;) <M ; poiché f ¢ crescente

x€AN]e,xy[ = f(x)< flxy)<M;

percio lim,_, . f(x)=—o0.
Supponiamo inf /(AN Je,+00[)={ €R. Qualunque sia ¢ €R*, £ +¢ non ¢ un mi-
norante di f(Aﬂ]c, —I—oo[) , quindi esiste x, € AN]c,+oo[ taleche f(x.) < {+-e. Poiché f

¢ crescente, se x € AN Je,x.[, allora f(x) < f(x,) <{+¢. Inoltre se x € AN]c,4o0,
allora f(x)>{¢>/{¢—¢, quindi

x€AN]e,x.[ = {—e<f(x)<l+¢;

percio lim ., f(x)=/.
III) La dimostrazione si ottiene con ovvie modifiche da quella dell’affermazione 1II.
IV) Ladimostrazione si ottiene con ovvie modifiche da quella dell’affermazione I. [

Un teorema analogo vale per funzioni decrescentt, I’'unica differenza ¢ che nell’enunciato
gli estremi superiori e gli estremi inferiori vanno scambiati tra loro.

3.4.4 Esempio. Consideriamo la funzione

fiR=R, o fip(x)=[x],
gia studiata nell’esempio 3.4.2, dove abbiamo dimostrato che ¢ crescente.
Sia n € Z. Per il teorema sul limite delle funzioni monotone 3.4.3 si ha

lim [x]=sup{[x]|x € ]—oo,n[} =sup{k|k€Z, k<n}=n—1,

X—n—

lim [x]=inf{[x]|x € Jn,+oo[} =inf{k |k €Z, k> n}=n.

x—nt

Ci0 puo essere verificato anche osservando che in ]z —1,n[ siha [x] =n—1 e in
Jn,n+1[ siha [x]=n. <
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3.4.2 ConbizioNE DI CAUCHY

Una successione converge se e solo se ¢ di Cauchy; un fatto analogo vale per le funzioni.

Definizione di condizione di Cauchy per una funzione

Siano ACR, f:A—R e c € PL(A). Diciamo che f soddisfa la condizione di
Cauchy per x che tende a ¢ quando

VeeRY, IV, €.4,: Vx,y€A\{c}, x,yeV, = |f(x)—f(y)|<e.

3.4.5 Teorema

Siano ACR, f:A— R e c€PL(A). La funzione f ¢ convergente per x — ¢
se e solo se soddisfa la condizione di Cauchy per x — .

\. J

DIMOSTRAZIONE. Supponiamo che esista lim, . f(x) = € R e dimostriamo che f sod-
disfa la condizione di Cauchy per x — c.

Si ha
VeeR*, V. e 4.: VxeA\{c}, xeV.= |f(x)—{|<e.
Quindi, fissato ¢ € R™, se x e y appartengono ad ANV, \{c} si ha:
0= f )| = [(£6) =)+ (L= ) < |F ()= €]+ £ = F )] < 26

pertanto ¢ verificata la condizione di Cauchy.

Viceversa supponiamo che f(x) soddisfi la condizione di Cauchy per x — ¢ e dimo-
striamo che € convergente.

Poiché ¢ € PL(A), per il teorema 3.1.21 esiste una (a,,) successione in A\ {c}, tale

neN»
che a, — ¢. Dimostriamo che (f/(a, )>n€N ¢ di Cauchy. Per la condizione di Cauchy si ha

VeeRY,IV. €4 Vx,y €A\ {c}, x,yeV. = |f(x)—f(y)|<¢e;
mentre, per la definizione di 2, — ¢, si ha
YWe g ,dnyeN: VneN, n>ny = a,eW.
Fissato ¢ € R*, scelto W =V_,si ha
n,m>ny = a,a, €V,

- |f(ﬂn)_f(ﬂm)| <e,

quindi (f (a, )>n€N ¢ di Cauchy, pertanto, per il teorema 2.3.15, ha limite reale. Sia ¢ tale
limite.

Si ha lim_ f(x) = ¢. Infatti, fissato ¢ € RT, se x € ANV, \ {c}, allora, scelto
n>ny ,siha a, €V, pertanto si ha

)~ =|(F ()= f (@) + (Fla,) = O)| < [f ()~ f ()] +|f(a,)— ] <2c. m
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3.4.3 MASSIMO LIMITE E MINIMO LIMITE

Come abbiamo fatto per le successioni, definiamo massimo limite e minimo limite di
funzioni; questi concetti sono utili per avere informazioni sulle funzioni per cui non esiste
il limite per x che tende a un particolare punto limite del dominio.

Per definire il massimo limite di una successione (a,,),oy si considera sup{a,, |m > n}
e si fa tendere 7 a 4+oo. Corrispondentemente, se f: A — R e ¢ € D(A) possiamo
considerare sup{f(x) |xeANJe—r,c+7[\ {c}} ,con r € RT, e fare tendere r a 0.
Occorre trattare a parte il caso in cui, YVr € RT, Pestremo superiore ¢ 400, cio¢ [ ¢
superiormente illimitata in ogni intorno di c; in tal caso st ha maxlim__, f(x)=+o0.

Se A ¢ superiormente illimitato possiamo fare considerazioni analoghe per definire
maxlim,_,,  f(x); al posto di Jc —7,c+ r[, consideriamo gli intorni di 400 del tipo
]r,4+o0o[, con r €R, e facciamo tendere r a +00.

Ovvie modifiche per definire maxlim__,_ f(x).

Questo modo di procedere ha il difetto di richiedere di dare definizioni distinte per
ciascuno dei casi ¢ € R, ¢ = 400, ¢ = —oo e di dovere ulteriormente distinguere a
seconda che f sia o meno superiormente illimitata in ogni intorno di ¢. Cerchiamo di
dare la definizione evitando di distinguere 1 vari casi. Osserviamo anzitutto che 'insieme
Je —r,c+ r[ cresce al crescere di 7, quindi anche supf(A N]ec—ryc+7r[\ {c}) cresce al
crescere di 7, pertanto
lim sup f(ANJe—r,c+r[\{c})= riGrﬁ{fﬁupf(Aﬂ]c—r,c-l— r[\{c}),

r—0t

lim supf(Aﬂ]c—r,c+r[\{c}):inf{supf(AﬂU\{c})‘ Ueﬂc}.

r—0t+
Se f ¢illimitata in ogni intorno di ¢, si ha, YU € .4, , sup f(ANU \ {c}) =+o0, quindi,
nel senso dei sottoinsiemi di R, risulta inf, . supf(A Nc—ryc+7r[\ {c}> —400.

cioe

Percio risultano naturali le seguenti definizioni.

Definizione di massimo limite e di minimo limite

Siano ACR, f:A—>R e cePL(A).
Chiamiamo massimo limite (o anche limite superiore) di f(x) per x che tende
a ¢ il numero reale esteso

miilcimf(x) :inf{supf(Aﬂ U\{c}) | U Gﬂc}.

Chiamiamo minimo limite (o anche limite inferiore) di f(x) per x che tende
a ¢ il numero reale esteso

minlim f (x) = sup{inf (AN U\ {c}) ‘ Ues,}.

\ J

Come gia osservato, gli insiemi di cui si considerano gli estremi inferiore e superiore
sono, in generale, sottoinsiemi di R.
Quando si usano i termini “limite superiore” e “limite inferiore” si usano le notazioni

limsup, _ f(x) e liminf,_ f(x).
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3.4.6 Esempio. Consideriamo la funzione

it R" >R, fzt(x)zi’

gia studiata nell’esempio 3.3.1.
In tale esempio abbiamo stabilito che la funzione non ha limite per x — 0, perché
¢ sia superiormente che inferiormente illimitata in ogni intorno di 0. Cio significa che,

YUe€.9 ,siha

inff(U\{O}):—oo, supf(U\{O}):—i—oo,
quindi
e 1 .1
minlim — =—o0, maxlim — =+4o00. <
x—0 x x—0 X
3.4.7 Esempio. Studiamo massimo limite e minimo limite per x — 400 della funzione
coseno.
Sia U € ¥, . Poiché, Yx € R, siha —1 < cosx <1, risulta inf{cosx|x € U} >—1
e sup{cosx|x € U} < 1;inoltre U contiene punti del tipo 2k ¢ 2k + 7, con k€ Z,
quindi inf{cosx|x € U} < cos(2km+ ) =—1 e sup{cosx|x € U} > cos(2km)=1. Per-

tanto risulta inf{cosx|x € U} =—1 e sup{cosx|x € U} =1, percio si ha
minlimcosx =—1, maxlimcosx =1.
x—+00 xX—+00
In modo analogo si prova cheminlim,_,  cosx =—1 e maxlim,_,_cosx=1. <

Per studiare le proprieta di massimo e minimo limite, risulta talvolta utile vederli come
limite di successioni, come affermato dal seguente teorema.

3.4.8 Teorema

Siano ACR, f:A—>R e c€PL(A). Poniamo, Yn €N,

1 1
]c— + [, se ceR,

,C
n+1 n+1
7\ Jn,4oo[, se ¢ =+00,
J—00,—n[, se ¢ =—00.

Allora:
I) minlim_,_f(x)= sup{inff(A NU,\{c}) ‘ ne N} ;
f(x)#—o0, allora si ha

II) seinoltre minlim

i /()= Ji it £(AN 0, (1))

II) maxlim_, f(x)= inf{supf(A nU,\ {c}) | ne N} ;
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f(x)#+00, allora si ha

IV) se inoltre maxlim,_,,

m;;tc)ilcimf(x) = nETwsupf(Aﬂ U,\ {c})

DmvosTtrAZIONE. I) Poiché, Yz €N, siha U, € .4, risulta

inf£(ANU, \ {c}) < sup{inff(ANU\{e})| U € 2},
quindi

sup{inff(A NU,\{c}) ‘ ne N} < sup{inff(Aﬂ U\ {c}) ‘ Ue JC} .
Viceversa, se U € .4, allora esiste 7 €N tale che U, C U, quindi

inf f(ANU\ {c}) <inff(AN U, \ {c}),

pertanto
inf f(ANU\ {c}) <sup{inf /(AN T, \ {c}) ] nen}.
Quindi si ha

sup{inff(Aﬂ U\{c})‘ U eﬂc} < sup{inff(Aﬂ Un\{c}> ‘ n GN}.

Pertanto risulta

sup{inff(A NU,\{c}) ‘ ne N} = sup{inff(A NU\{c}) ‘ Ue ﬂc} = minlim f(x).
II) Per n €N risulta U, , C U,, quindi inff(A Ny, \ {c}) < inff(A NU, .4\ {c}); se
minlim, _, f(x) # —o0, allora, non pud essere inf /(AN U, \ {c}) = —oco per ogni 7,

quindi definitivamente inf f (A nuU,\ {C}) € R. Poiché, al crescere di 7, inf (A nU,\ {c})

cresce, si ha

lim inff(ANU,\{c})=sup{inff(ANT,\{c}) ( n €N} =minlim /(x).

n——+400 —C

III) Ladimostrazione ¢ analoga a quella dell’affermazione 1.

IV) Ladimostrazione ¢ analoga a quella dell’affermazione II. [

Studiamo le proprieta del massimo limite e del minimo limite.

3.4.9 Teorema

Siano ACR, f:A—R e ce PL(A). Allora

minlim /(x) < maxlim f(x).
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DimosTrRAZIONE. Siano U,V e€.4..Stha UNV e 4., UNVCU e UNV CU, quindi
inf f(ANU\{c}) <inf f(ANUNV \{c})<sup f(ANUNV \{c}) <sup f(ANV \{c}).

Pertanto, YV € .4 ,si ha
minlim £ (x) = sup{inf /(AN U \ {c}) ‘ Ue.g}<supf(ANV\{c}),
da cui segue

minlim f(x) < inf{inff(A NV \{c}) ‘ Ve ﬂc} = mixlimf(x). [

X—C —C

3.4.10 Teorema

Siano ACR, f:A— R, c € PL(A) e (a,),y una successione in A\ {c} che
tende a ¢. Allora

min_gimf(an) > minlim f(x), max_'_limf(an) < maxlim f(x).

. J

DimosTrRAZIONE. Dimostriamo la disuguaglianza relativa al massimo limite, quella relativa
al minimo limite si prova in modo analogo.
Sia U € 4, . Poiché a,, — ¢, esiste 7 €N tale che, per n>%,siha a, € U, pertanto

sup{f(an)|n€N,n Zﬁ}gsupf(Aﬂ U\{c})

Da cio, sia nel caso maxlim,_,  f(a,) =+oo che nel caso maxlim,_,,, f(a,) < +oo,
segue

maxlim f(a,) < supf(A N U\{c})

n—400

Poicheé cio vale YU € £, si ha

maxlim f(a,) < inf{supf(A NU\ {C}) ‘ Ue ﬂc} = mixlimf(x). u

n—-+00 —c

3.4.11 Teorema

Siano ACR, f:A — R e ¢ € PL(A). Allora esistono (a,),cy ¢ (b,)
successioni in A \ {c} che tendono a ¢ tali che

lim f(an):mirilcimf(x), lim f(bn):m%)ilcimf(x).

n—-+00 n——+00

neN»

. v

DimosTrRAZIONE. Dimostriamo P'affermazione relativa al massimo limite, quella relativa al
minimo limite si dimostra in modo analogo.
Per n € N, indichiamo con U, l'intorno di ¢ definito nell’enunciato del teorema 3.4.8.
Consideriamo anzitutto il caso maxlim__ f(x) = +oo. Allora, YU € .£., si ha
supf(A NU\ {c}) = 400} in particolare, Y € N, risulta supf(A nU,\ {c}) = +o00,
pertanto esiste b, e ANU, \ {c} tale che f(5,)>n. Quindi (b,),oy € una successione in
A\{c} chetende a ¢ etale che f(b,) - +00 =maxlim___f(x).
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Consideriamo il caso maxlim, _, f(x) = —oco. Per n € N sia b, € ANU, \ {c}.
Allora b, —c e f(b,) < supf(A NnU,\ {C}) . Per il teorema 3.4.8, affermazione IV, si ha
lim, ,,  sup f(ANU,\ {c}) = maxlim,_,, f(x)=—o0, pertanto, per il teorema 2.2.15,
affermazione II, f(b,) ——oo.

Infine sia maxlim _, f(x) =¢ € R. Definitivamente si ha supf(A nU,\ {c}) < 400,
per tali 7 sia b, € ANU, \ {c} tale che f(b,) > supf(ANU,\{c})—1/(n+1); se
sup f (A nU,\ {c}) =+o00 sia b, un arbitrario elemento di ANU,\ {c}. Definitivamente
st ha

sup f(ANU,\{e}) = —= < f(b,) <sup /(AN U, \ {c)

e, per il teorema 3.4.8, affermazione IV,

lim <supf(Aﬂ Un\{c})_L>: lim sup /(AN U, \ {c}) =

n——+o00 n+1 n—-+o0
Pertanto, per il teorema dei due carabinieri 2.2.11, lim,_,_  f(b,)={. [
3.4.12 Osservazione. Per i teoremi 3.4.10 ¢ 3.4.11 minlim __ f(x) = —oo se e solo se

esiste (a,,),cn » successione in A\ {c} che tende a ¢, tale che < f(a, ))neN diverge a —oo e

maxlim _, a, =400 se e solo seesiste (a,),qy » successione in A\ {c} che tende a ¢, tale

che (f(a, )>n€N diverge a +o00. <

3.4.13 Teorema

Siano ACR, f:A—R e c € PL(A). Le seguenti affermazioni sono equivalenti:
I) f(x) eregolare per x — c;
II) minlim__ f(x)=maxlim_,_ f(x).

Se tali affermazioni sono vere risulta

lim £ (x) = minlim f(x) = maxlim f(x).

\. J

DmvosTRAZIONE. I = II) Per il teorema 3.4.11 esiste una successione (a,,),cy in A\ {c}
che tende a ¢ e tale che lim, o f(a,) = maxlim,_ f(x); per il teorema di relazione
tra limite di funzione e limite di successione 3.3.2, si ha lim,_, . f(a,) = lim _,_f(x).
Pertanto maxlim,_ f(x)=lim___f(x).

Per motivi analoghi anche minlim___ f(x)=1lim__  f(x).
II = I) Poniamo ¢ =minlim___f(x)=maxlim_ f(x).

Sia (a,),cy una successione in A\ {c} che tende a c. Per il teorema 3.4.10 si ha

¢ <minlim f(a,) < maxlim f(a,) < {,
quindi
minlim f(a,) = maxlim f (a,) = ¢ ;
n——+00 n——+00

pertanto, per il teorema 2.3.24 siha lim,,_,,  f(a,) ={. Allora, per il teorema di relazione
tra limite di funzione e limite di successione 3.3.2, st ha lim __ f(x)=/¢. u
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3.4.14 Osservazione. Se minlim, _ f(x)=4o0, allora, per il teorema 3.4.9, si ha anche
maxlim__  f(x) =400, quindi, per il teorema precedente, lim__ f(x)=+o0.
Analogamente, se maxlim__,_f(x)=—o0,allora lim, _, f(x)=—oc0. <

Studiamo il comportamento di massimo limite e minimo limite rispetto all’addizione e
alla moltiplicazione per uno scalare.

3.4.15 Teorema
Siano ACR, f,g:A—>RecePL(A).
I) Se minlim,_, f(x)€eR e minlim _, g(x)€R, allora

min lim(f (x)+ g(x)) > m;rilclmf(x) + minlim g(x).

X—C X—C

II) Se minlim_, f(x)=4o0 e minlim__ g(x)>—o0, allora

min lim(f (x)+ g(x)) = +oo.

X—C

II) Se maxlim_, f(x)€R e maxlim_, g(x)€R,allora

maxlim(f(x) + g(x)) < m:;)ilcimf(x) +m:;16)ilcim g(x).

X—C

IV) Se maxlim__  f(x)=—0c0 e maxlim _, g(x)<+oo,allora

miyilcim<f(x) +g(x))=—0c0.

\. J

DivosTRAZIONE. I) Per il teorema 3.4.11 esiste (a,,),,cy » successione in A\ {c} che tende
a ¢, tale che limn_)+oo(f(an) + g(an)> = min limx_)c(f(x) + g(x)) . Per il teorema 2.3.26,
affermazione I, risulta

lim (f(a,)+g(a,))> minlimf(an) + min}im g(a,)

n——+00

quindi, per il teorema 3.4.10, st ha

minlim(f(x) + g(x)) > minlimf(dn) + min+lim g(a,) > minlim f(x) 4+ minlim g(x).

X—C X—C

II) Per il teorema 3.4.11 esiste (a,,),cy > successione in A\ {c} che tende a ¢, tale che
lim, ., o (f(an) + g(an)> =minlim__,_ (f(x) + g(x)) . Per il teorema 3.4.10 risulta

minlim f(4,) > minlim f (x) = +o00,
n—+00 xX—C
quindi minlim,__  f(a,)=400,¢
minlim g(a,)> minlim g(x)>—o0.
Pertanto, per il teorema 2.3.26, affermazione 11, si ha limn_)+oo(f(an) + g(a, )) = 4o00.

III) La dimostrazione ¢ analoga a quella dell’affermazione I.

IV) Ladimostrazione ¢ analoga a quella dell’affermazione II. [



3.4. Condizioni per la regolarita di funzioni 149

3.4.16 Teorema
Siano ACR, f:A—R, cePL(A) e AeR*.
I) Supponiamo minlim,__ f(x)ER.Se A>0, allora

minlim(Af(x)) = Aminlim f(x);
se A<0, allora
max lim(Af(x)) = Aminlim f(x).

X—C

II) Supponiamo minlim,_,_ f(x) € {—o0,+00}.Se A>0, allora

X—C

minlim(Af(x)) = minlim f (x);
se A<0, allora
max lim(Af(x)) = —minlim f (x).

X—C X—C

IIl) Supponiamo maxlim,_ f(x)ER.Se A>0, allora

max lim(A/ (x)) = )miﬁilcimf(x);

se A<0, allora o
min lim(Af (x)) = Amaxlim f (x).

X—C X—C

IV) Supponiamo maxlim,_,_ f(x)€ {—o0,+00}.Se A >0, allora

X—C

max lim()f(x)) = mi)ilcimf(x);

X—C

se A<0, allora
min lim(Af (x)) = —maxlim f (x).

X—C

\

DimosTtrAZIONE. Nella dimostrazione utilizziamo ripetutamente il teorema 3.4.11.

I) Poniamo ¢ = minlim,_,_f(x). Sia (a,),cy una successione in A\ {c} che tende a ¢

tale che f(a,)—¢.

Sia A > 0. Siha Af(a,) > A¢, quindi A > minlimx_w(/{f(x)). Inoltre esiste
(b,) e successione in A\{c} chetendea c tale che Af(b,) — minlim,_, (Af(x)); poiché
lim, . f(b,)>{,siha

minlim(Af(x)) = nkr—Poo</1f(b”)> =A lim f(b,)>AL.

X—cC n—-+00

Quindi risulta min limx_,c</1f(x)) =M.
Sia A < 0. Si ha Af(a,) —» Al, quindi A/ < maxlimx_)c(/lf(x». Inoltre esiste

(¢,)pen successione in A\{c} chetendea ¢ tale che Af(c,) — max limx_,c(/lf(x)) ; poiché
lim, . f(c,)>¢,siha

maxlim(Af(x)) = lim (Af(c,))=A lim f(c,) <AL,

X—C n——00 n——+00

Quindi risulta max limx_,c(/lf(x» =A.
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II) Supponiamo minlim _ f(x) = —oo; allora esiste (,,),cy, successione in A\ {c}
che tende a ¢, tale che f(a,) - —oc0. Se A > 0, allora Af(a,) — —oo, quindi risul-

ta minlimx_)c(/lf(x» = —o0; se invece A < 0, allora Af(a,) — 400, pertanto risulta
maxlim,_, (Af(x))=+oc.

Supponiamo ora minlim__, f(x) = 400 risulta lim __ f(x) = +oo (v. osservazio-
ne 3.4.14). Se A> 0, allora Af(x) — 400, percio minlim,_, (A/( ) +00; se invece
A<0,allora Af(x) ——o0, quindi risulta maxlim,_, (A (x))=—

IIT) La dimostrazione ¢ analoga a quella dell’affermazione 1.

IV) Ladimostrazione ¢ analoga a quella dell’affermazione II. [

3.5 FUNZIONI CONTINUE

3.5.1 DEFINIZIONI E PROPRIETA FONDAMENTALI

Studiamo le funzioni che si comportano “bene” rispetto ai limiti. Chiediamo che, in un
punto del dominio, che sia anche di accumulazione, esista il limite della funzione e questo
coincida col valore della funzione in tale punto. Pertanto, se f: A — R e ¢ € D(A),
chiediamo che sia

VU € Sy, IVye g VxeA\{c}, xeVy = f(x)eU.

Poich¢, YU € Iy, siha f(c)€ U, ¢ equivalente chiedere che sia x € V; = f(x)€ U
per x €A\ {c} oper x €A. Pertanto la definizione equivale a

VUE€ S, IVyed:Vxed, xeVy, = f(x)eU

Questa condizione ha senso anche se ¢ ¢ un punto isolato di A in tal caso ¢ evidentemente

verificata, ¢ sufficiente scegliere come V; un qualunque intorno di ¢ la cui intersezione
con A ¢ {c}.

Definizione di funzione continua in un punto

Siano ACR, f:A—>R e c€A. Diciamo che f ¢ continuain ¢ quando

VUE S, IVyed: YxeAd, xeVy = f(x)eU.

La definizione di continuita riguarda un punto del dominio, ma solitamente una fun-
zione € continua in piu punti; quindi ¢ naturale definire la continuita in un insieme.
Definizione di funzione continua in un insieme

Stano ACR,BCAe f:A—>R.
Diciamo che f & continua in B quando € continua in ogni punto di B.

Diciamo che f & continua quando ¢ continua in A.
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E evidente che / & continua in ¢ se e solo se
VeeR", 38, eR*: Vx€A, xe€le—38.,c+8[ = |f(x)—f(c)|<e.

Dai discorsi introduttivi risulta evidente che vale il seguente teorema.

3.5.1 Teorema

Siano ACR, f:A—ReceA.
I) Se ¢ ¢un punto isolato per A, allora f ¢ continuain c.
I) Se ceD(A), f ¢continuain ¢ seesolose lim __ f(x)=f(c).

3.5.2 Esempio. Utilizziamo questo teorema per stabilire la continuita di alcune funzioni.
Sia p un polinomio. Nell’esempio 3.3.4 abbiamo provato che, qualunque sia ¢ € R,
risulta lim _ p(x) = p(c). Pertanto la funzione x — p(x) ¢ continua.
Sia 7 una funzione razionale fratta. Nell’esempio 3.3.24 abbiamo provato che, qualun-
que sia ¢ € R, che non annulla il denominatore di 7, risulta lim_,_ 7(x) = r(c). Pertanto
la funzione x — r(x) ¢ continua. <

3.5.3 Esempio. Consideriamo la funzione

foiR=R, o fiy(x) =[x].

Nell’esempio 3.4.4 abbiamo provato che, Yn € Z, si ha

lim[x]=n—1#n= lim [x].
x—n~ x—nt
Poiché limite destro e limite sinistro sono differenti tra loro, non esiste il limite. Pertanto f,,
¢ discontinua in ciascun punto di Z.
Se ¢ € R\ Z esiste un intorno di ¢ incui f, € costante, da cio segue facilmente che in
tali punti f}, € continua. <

Visto lo stretto collegamento tra limite e continuita, vale un teorema analogo al teorema
di relazione tra limite di funzione e limite di successione 3.3.2.

3.5.4 Teorema (caratterizzazione della continuita)

Siano ACR, f:A— R e c € A. Le seguenti affermazioni sono equivalenti:
I) lafunzione f ¢ continuain c;

II) perogni (,),cy successione in A convergentea ¢ siha lim,_,  f(a,)=f(c).

DivosTtrAZIONE. I = II) Supponiamo che f sia continua in ¢ e consideriamo una
successione (a,,),oy in A tale che a, —¢.

Per la definizione di continuita si ha

VUE Iy, IVyed: VxeA, xeVy = f(x)eU,
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mentre per la definizione di convergenza si ha
YWed,dny, eN: VneN, n>ny = a,eW.

Scelto U € .9, , poniamo W = V. Se n €N ¢ tale che n > ny allorasihaa, eV, NA,

quindi f(a,)€ U . Percio
n>ny, — f(a,)€U,

quindi ¢ verificata la definizione di f(a,) — ¢ e vale I'affermazione II.

II = I) Dimostriamo che se ’affermazione I ¢ falsa, allora ¢ falsa anche la II; cioé pro-
viamo che, se f/ non ¢ continua in ¢, allora esiste una successione (a,,),oy in A tale che
a,—c,manonsi ha f(a,)— f(c).

Se f non ¢ continua in ¢, allora si ha

Hveﬂﬂc): VVes , IxcA: xeV A f(x)¢U.

Per ogni n» € N, st ha Jc —1/(n +1),c +1/(n + 1)[ € .., pertanto esiste un elemen-

todi ANJe—1/(n+1),c+1/(n+1)[, che indichiamo con 4, , tale che f(a,)¢ U. La
successione (a,,),cy cosi costruita ha termini in A; inoltre, Y7 €N, risulta

c— <a,<c+

n+1 n+1’

quindi, per il teorema dei due carabinieri 2.2.11, st ha a,, — ¢. D’altra parte, V7 €N, si ha
f(a,) ¢ U, quindi la successione (f(a,)), ey non ha limite f(c). Percid I'affermazione II

non ¢ verificata. [

I teoremi sul limite della somma 3.3.21, sul limite del prodotto 3.3.22 e sul limite del
reciproco 3.3.23 possono essere applicati alle funzioni continue, ottenendo il teorema se-
guente.

3.5.5 Teorema

Siano ACR, f:A—>R, g:A—>R e c€A. Supponiamo f e g continuein c.
Allora:

I) lafunzione f + g ¢ continuain c;

II) lafunzione fg ¢ continuain c;

III) seinoltre, Yx €A, si ha g(x)#0, allora la funzione f/g ¢ continuain c.

3.5.6 Teorema (sulla continuita della composizione)

Siano A,LBC R, f:tA—> B, g:B—>Rec€A. Se f ¢continuain c e g ¢
continua in f(c), allora gof ¢ continuain c.

\ J

DIMOSTRAZIONE. Se (a,,),cy € una successione in A convergente a ¢, allora, per il teo-
rema 3.5.4, f(a,) — f(c), quindi, nuovamente per tale teorema, g(f(an)) — g(f(c))
Percio gof e continuain c. [



3.5. Funzioni continue 153

3.5.7 Esempio. E evidente che ogni funzione costante ¢ continua.

La funzione idg, cioe la funzione da R a R tale che x — x, ¢ continua. Infatti se
ceR e ceRT, allora, VxeR,se x€Jc—e,c+¢[ stha idg(x)E]c—e,c+¢[.

Il teorema 3.5.5 consente di provare la continuita delle funzioni polinomiali e raziona-
li fratte, gia dimostrata nell’esempio 3.5.2. Infatti tali funzioni sono somma, prodotto e
quoziente di funzioni costanti e di idg . <

3.5.2 FuUNZIONI CONTINUE NEL DOMINIO

Studiamo alcune proprieta di cui godono le funzioni che sono continue in tutto il
dominio.

3.5.8 Teorema (di Weierstrass®)

Siano KCR e f:K—R.Se f ¢continuae K ¢ compatto, allora f ¢ limitata
ed esistono massimo e minimo di f .

DimosTRAZIONE. Dimostriamo anzitutto che f* ¢ superiormente limitata, successivamente
dimostriamo che ha massimo. In modo analogo si prova che f ¢ inferiormente limitata e
che ha minimo.

Per dimostrare che se f ¢ continua, allora ¢ superiormente limitata, dimostriamo che,
viceversa, se sup / = +00, allora esiste un punto di K in cui f non ¢ continua.

Se sup f = 400, allora ogni #» €N non ¢ maggiorante di f(K), percio esiste un ele-
mento di K, che indichiamo con 4, , tale che f(a,) > n. Poiché¢ K ¢ compatto, esiste

una sottosuccessione (ak )neN convergente a un elemento ¢ di K. Poiché, ¥n €N, si ha
f(ay )>k,>n,risulta f(a;, )—+o0# f(c); quindi / non ¢ continua in c.

Dimostriamo ora che, posto M =sup f, risulta M € f(K). Per la caratterizzazione
dell’estremo superiore 1.2.42, qualunque sia 7 €N esiste un elemento di K , che indichiamo
con a,, tale che f(a,)>M—1/(n+1). Poiché¢ K ¢ compatto, esiste una sottosuccessione
(akn )nEN convergente aun elemento ¢ di K. Poiché f ¢ continuain ¢ siha f (akn> — f(c),

d’altra parte, Y7 € N, si ha
M—(1/k,) < f(a, ) <M,
quindi f(akn> — M ; pertanto M = f(c) € f(K). u

3.5.9 Esempio. Osserviamo che una funzione continua in un insieme non compatto puo
essere illimitata o, pur essendo limitata, non avere massimo o non avere minimo.

Le funzioni f;, f, e f;, introdotte nell’esempio 3.2.1 sono polinomiali o razionali

fratte, quindi continue per I’esempio 3.5.7. Il dominio di £, e f, ¢ R che non ¢ limitato

» g p 1 2 )

quindi non € compatto; il dominio di f; ¢ ]—1, 1] che non e chiuso, quindi non € compatto.

Le funzioni f; e f; non sono limitate, f, ¢ limitata, ma non ha minimo. <

1 3 s J2 5

811 teorema prende il nome dal gia citato Karl Weierstrass (v. nota 6) che lo espose nelle sue lezioni tenute a
Berlino nel 1861.
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3.5.10 Teorema (di Bolzano’ o degli zeri)

Sia f:[a,b]—>R.Se f(a)f(b)<0 e f & continua, allora esiste ¢ € Ja, b[ tale
che f(c)=0.

DimosTtrAZIONE. Consideriamo il caso f(a) <0< f(b), il caso f(b) <0< f(a) si tratta
in modo analogo.

Poniamo ay =a, by="5 e ¢y = (a+ b)/2, cioe ¢, ¢ il punto medio dell’intervallo
[4,b]. Se f(cy) =0, la tesi e verificata. Se f(c,) > O poniamo a; = a, € b, = ¢, se
invece f(cy) <O poniamo a, =c¢, ¢ b; = b,. In entrambi i casi risulta f(a,) <0< f(b,),
ag<a;<b <byeb —a =(by—ay))2.

Poniamo poi ¢; = (a; + b,)/2, cio¢ ¢, ¢ il punto medio dell’intervallo [a4,5,]. Pro-
cedendo come prima, se f(c;) = 0 la tesi ¢ verificata. Se f(c;) > 0 poniamo a, = 4,
e by = ¢y, se invece f(c;) <0 poniamo a, = ¢, ¢ b, = b;. In entrambi i casi risulta
[(a) <0< f(by), a; <ay<by< by e by—ay=(b;—ay)[2=(by—a;)/2.

Ripetiamo successivamente questa procedura. Se dopo un numero finito di passi la
funzione st annulla nel punto medio dell’intervallo la tesi € verificata; altrimenti si prosegue
costruendo due successioni (a,,),cy € (b,),en tali che:

1. VneN,sithaa,<a,<b, < by;

2. la successione (a,,),oy € crescente e la successione (5,,), oy ¢ decrescente;
3. YneN,siha b,—a,=(by—a,)/2";

4. VneN,siha f(a,) <0< f(b,).

: . : . AP :
La successione (a,,),cy € crescente e superiormente limitata, per?he by ¢ un suo maggio-
rante; pertanto, per il teorema sul limite delle successioni monotone 2.3.2, € convergente.

Sia ¢ il suo limite che, per il teorema del confronto per le successioni 2.2.5, appartiene ad
[a,b]. St ha inoltre

lim b,= lim <an+b_d>zc.

n——+00 n——+00 on

Poiché f ¢ continua in c, per il teorema del confronto 2.2.5, si ha

fl©)= lim f(a,)<0,  f(c)= lim f(b,)>0.

n—-+00 n—-+00
Pertanto f(c)=0. u

Il teorema di Bolzano assicura che una funzione continua in un intervallo chiuso e li-
mitato, se assume valore maggiore di O in un estremo dell’intervallo e valore minore di 0
nell’altro estremo, allora assume valore 0 in almeno un punto. Ovviamente la conclusione
vale anche se 1 punti il punto in cui f ¢ maggiore di 0 e quello in cui ¢ minore di 0 non
sono gli estremi dell’intervallo. Inoltre il risultato vale anche se si considera un qualunque
numero reale d al posto di 0. Queste osservazioni portano al teorema seguente.

%11 teorema prende il nome dal gia citato Bernard Bolzano (v. nota 6) che lo dimostro nel 1817.
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3.5.11 Teorema (dei valori intermedi)

Siano ICR e f:I —>R.Se I ¢unintervallo e f ¢ continua, allora f() ¢ un
intervallo, eventualmente degenere.

DiMOSTRAZIONE. Proviamo che, se 4,5 € I sono tali che f(a) < f(b), allora qualunque
sia d € |f(a),f(b)[ risulta d € f(I). Consideriamo il caso a < b, I’altro caso ¢ analogo.

Sia g:[a,b]— R tale che g(x)= f(x)—d . Poiché f ¢ continua anche g ¢ continua;
inoltre g(a)= f(a)—d <0, mentre g(b)=f(b)—d >0. Pertanto, per il teorema degli
zeri, esiste ¢ € Ja, b[ tale che g(c)=0, cioe f(c)=d, quindi d Ef(]a, b[) Cf()y. m

3.5.12 Esempio. Utilizziamo il teorema dei valori intermedi per dimostrare nuovamente,
in modo piu semplice, il teorema sull’esistenza della radice 7 -sima 1.4.6.
Sia n € N\ {0,1}. Consideriamo la funzione

fiai [0, 400 =R,  fi(x)=x".

Siha f,(0)=0 e, Vx €[0,400[, risulta f;,(x)>0, quindi 0 =minIm(f,,). Inoltre si ha
lim,_,, ,x” = +oo, quindi, per il teorema 3.3.12, affermazione II, f,, ¢ superiormente
illimitata. Poiché f, ¢ continua e il suo dominio ¢ un intervallo, per il teorema dei valori
intermedi 3.5.11, 'immagine di f;, ¢ un intervallo. Poiché I'immagine ha minimo 0 ed ¢
superiormente illimitata, si ha Im(f,,) = [0,+00[ . Pertanto, qualunque sia a € [0,+o0[,

st ha a € Im(f,), quindi esiste x € [0,400[ tale che f,(x)=a,cioe x" =a. <

Per le funzioni monotone vale un teorema che, in un certo senso, € I'inverso di quello
dei valori intermedi.

3.5.13 Teorema

Siano ACR e f:A—R. Se f ¢ monotona e f(A) ¢ un intervallo, allora f ¢
continua.

DimosTRAZIONE. Sia f: A — R crescente e dimostriamo che se / non ¢ continua, allo-
ra f(A) non ¢ un intervallo. Se f ¢ decrescente la dimostrazione ¢ analoga.

Sia ¢ € A tale che f non ¢ continua in ¢ . Poiché una funzione € continua nei punti iso-
lati del dominio, si ha ¢ € D(A), quindi ¢ € D(AN ]—o0,c[) oppure ¢ € D(AN]c,+0o[).
Per il teorema sul limite delle funzioni monotone 3.4.3, nel primo caso esiste lim,_, - f(x)
e nel secondo caso esiste lim_, , f(x); poiché f non ¢ continua in ¢, almeno uno di tali
limiti ¢ diverso da f(c).

Supponiamo ad esempio che sia ¢ € D(AN]—o0,c[) e lim,_,. f(x)# f(c). Poiché f
¢ crescente, Yx € AN J—oo,c[ siha f(x) < f(c), quindi sup f(AN]—o0,c[) < f(c).
D’altra parte, per il teorema sul limite delle funzioni monotone 3.4.3, affermazione I1I, si
ha supf(A N ]—oo,c[) =lim,_, . f(x)# f(c), quindi supf(A N ]—oo,c[) < f(c).

Qualunquessia x € A, se x < ¢, allora f(x) < supf(Aﬂ]—oo, c[) , seinvece x > ¢, allo-
ra f(x)> f(c), pertanto se y € compreso tra supf(Aﬂ]—oo,c[) e f(c),allora y ¢ f(A).
Scelto x € AN J—o0,¢[, tali y sono compresi tra f(x) e f(c), percido f(A) non ¢ un
intervallo. u
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Studiamo la continuita dell’inversa di una funzione iniettiva. Come mostra il seguente
esempio, in generale funzione iniettiva continua puo avere inversa discontinua.

3.5.14 Esempio. Sia

X, se x €[0,1],

fi5:[0,1]U2,3] = R, fls(x)={x_1 se x€2,3].

i by

| Figura 3.5.1

| | La funzione f, studiata
i 11 nell’esempio 3.5.14 (a sini-
1 ) stra) e la sua inversa (a de-
stra).

Studiamo la continuita e la monotonia di f5 .
Ogni punto di [0,1] ha un intorno che non interseca ]2,3], pertanto per stabilire la
continuita di f;5 nei punti di [0,1] ¢ sufficiente studiare la continuita di f15|[0 . Tale

funzione ¢ polinomiale, quindi ¢ continua, percid fs ¢ continua in [0,1]. Analogamente

ogni punto di ]2,3] ha un intorno che non interseca [0,1], fi5 |]2 . ¢ polinomiale e quindi

continua; percio f;s € continua anche in ]2,3]. Quindi f;5 ¢ continua.
Siano x,y € [0,1]U ]2,3], con x < y. Evidentemente se x,y € [0,1] o x,y € ]2,3]
st ha fi5(x) < fi5(y). Se x €[0,1] e y € 12,3], allora f;5(x) <1< fi5(y). Percio f5 &

strettamente crescente, quindi, per il teorema 3.4.1, ¢ iniettiva.
Si verifica facilmente che Im(f;5) =[0,2] e che

{x, se x €[0,1],

—1 —1
:10,2] - R, xX)=
fis :10,2] fis (x) x+1, sexe]1,2].

Pertanto risulta lim,_, fi;'(x) =lim ;- x =1 e lim,_, f7'(x) = lim,_ . (x + 1) =2,
quindi /5! non ¢ continuain 1. <

Si puo provare la continuita di una funzione inversa utilizzando il teorema 3.5.13.
Questo richiede la monotonia di una funzione, a tal fine risultano utili i seguenti teoremi.

3.5.15 Teorema

Siano I C R intervallo, f: I — R continua e iniettiva, a,b,c €1 .
I) Sea<b,a<ce fla)<f(b),allora f(a)< f(c).
I) Sea<b,c<bef(a)<f(b),allora f(c)< f(]).
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Questo teorema ha una semplice interpretazione geometrica. Consideriamo una fun-
zione f definita in un intervallo, continua e iniettiva. Se esiste un punto del grafico di f

che si trova a destra e in alto rispetto al punto (4, f(a)), allora tutta la parte di grafico a
destra di (a, f (a)) si trova piu in alto. Analogamente, se esiste un punto del grafico di f
che si trova a sinistra e in basso rispetto al punto (&, (b)), allora tutta la parte di grafico
asinistra di (b, /(b)) si trova pit in basso.

Il teorema rimane valido se si scambia alto con basso.

DimosTrAZIONE. I) Dimostriamo il teorema per assurdo.

Supponiamo quindi che sia f(c) < f(a). Poiché f & iniettiva, si ha f(c) # f(a),
quindi f(c) < f(a). Poiché f(c)< f(a)< f(b), per il teorema dei valori intermedi f(a)
appartiene all’immagine della restrizione di f all’intervallo di estremi ¢ e &, cioe esiste d
appartenente a tale intervallo tale che f(d)= f(a); poiché a non appartiene all’intervallo
di estremi ¢ e b,siha a#d. Cio ¢ assurdo perché f ¢ iniettiva.

Pertanto f(c)> f(a).

II) Ladimostrazione ¢ analoga a quella dell’affermazione 1. [

Per il teorema 3.4.1, ogni funzione strettamente monotona ¢ iniettiva. 1l viceversa e
Vero sotto 1potesi aggiuntive.

3.5.16 Teorema

Siano I CR e f: I —>R.Se I ¢unintervalloe f ¢ continua e iniettiva, allora f
¢ strettamente monotona.

DimosTRAZIONE. Dimostriamo che se f non e strettamente decrescente, allora ¢ stretta-
mente crescente.

Se f non ¢ strettamente decrescente, esistono , S €/ taliche a < B e f(a) < f(B);
poiché f ¢ iniettiva non puo valere 'uguaglianza, quindi f(a) < f(3).

Siano x,y €1, taliche x < y.

Se y > a si puo applicare il teorema 3.5.15, affermazione ,con a=a, b= e c =y,
pertanto f(a) < f(y); successivamente si puo applicare il teorema 3.5.15, affermazione II,
cona=a, b=y e c=x quindi f(x)<f(y).

Se invece y < a, allora si ha x < @, quindi si puo applicare il teorema 3.5.15, affer-
mazione II, con a = a, b =8 e ¢ = x, pertanto f(x) < f(B); successivamente si pud
applicare il teorema 3.5.15, affermazioneI,cona =x, b = e c =y, quindi f(x)< f(y).

|

Pertanto f ¢ strettamente crescente.

3.5.17 Teorema (sulla continuita della funzione inversa)

Siano / CR intervalloe f: 1 - R.
I) Se f ¢&strettamente monotona, allora f~! ¢& continua.

II) Se f ¢ continua e iniettiva, allora f~! ¢& continua.
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DimOSTRAZIONE. I)  Per il teorema 3.4.1, f ¢ iniettiva e /! & strettamente monotona.
Limmagine di ! & uguale al dominio di f, cio¢ a I, che & un intervallo. Quindi il
teorema 3.5.13 assicura che f~! & continua.

II) Per il teorema3.5.16 f & strettamente monotona, quindi, per I’affermazione I, f~! &
continua. |

3.5.18 Esempio. Sia n € N\ {0,1}. Consideriamo la funzione

f14:[0,+00[ = R, fralx)=x",

gia studiata nell’esempio 3.5.12. Questa funzione ¢ strettamente monotona e il suo domi-
nio ¢ un intervallo. Pertanto, per il teorema 3.5.17, affermazione I, flzl ¢ continua. La

funzione flzl ¢ la funzione radice 7 -sima. |

3.5.3 FUNZIONI UNIFORMEMENTE CONTINUE

Introduciamo ora un concetto piu restrittivo della continuita, che sara utile per lo studio
di alcune proprieta delle funzioni reali di variabile reale.
Se una funzione f: A — R ¢ continua, allora, Yc €A, si ha

VeeR", 38, eR": Vx €A, |x—c|<d, = |f(x)—f(0)|<e,

quindi se x ¢ “vicino” a ¢, allora f(x) € “vicino” a f(c), ma &,, la soglia che stabilisce
quando x € “vicino” a ¢, dipende dalla scelta di ¢ . Si ottiene una condizione piu restrittiva
chiedendo che &8, non dipenda da ¢, cioe che la scelta di &, sia “uniforme”.

Questa richiesta porta alla seguente definizione.

Definizione di funzione uniformemente continua

Siano ACR e f:A— R. Diciamo che f ¢ uniformemente continua quando

VeeR*, 38, eR*: Vx,y €4, |x—y|<8, = |f(x)—f()|<e.

La relazione tra continuita e uniforme continuita ¢ stabilita dal teorema seguente.

3.5.19 Teorema

Siano ACR e f: A—R. Se f ¢ uniformemente continua, allora ¢ continua.

DiMosTRAZIONE. Per definizione di uniforme continuita si ha
VeeRY, 38, eR": Vx,p€d, [x—y|<8, = |f(x)—f()|<e.
Per ogni ¢ € A, ponendo y = ¢, da qui segue
VeeR", 38, eR": Vx €A, |x—c|<d8, = |f(x)—f(c)|<e.

percio f € continuain c. [
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Come la continuita, anche la uniforme continuita puo essere caratterizzata tramite i
limiti di successioni.

3.5.20 Teorema

Siano ACR e f:A—R. Le seguenti affermazioni sono equivalenti:
I) f ¢uniformemente continua;

II) qualunque siano (a,,),cy € (8,,),cn successioniin A tali che 4, — b, — 0 risulta

. J

DimvosTRAZIONE. I = II) Per definizione di uniforme continuita si ha
VeeRY, 38, eR": Vx,p€d, [x—y|<8, = |f(x)—f()|<e;
siano (a,),cy € (b,),ey successioni in A tali che a, — b, — 0, cioé tali che
VneR™, In, eN: VneN, n>n, = |a,—b,|<7.

Fissato ¢ € R*, se n>ng ,allora |2, —b,| < &, , quindi |f(a,)—f(b,)| < ¢. Pertanto
I = I) Dimostriamo che se / non € uniformemente continua, allora esistono due suc-

cessioniin A, (a,),cy € (8,),en » taliche a,—b, — 0, ma f(a,)—f(b,) non convergea 0.

Se f non ¢ uniformemente continua, allora
JeeR™: V& eRY, Ixg,y5 €A: |xs—y5|< S A |f(x3)—f(y3)| >z.

In particolare, scegliendo & = 1/(n + 1), esistono due elementi di A, che indichiamo con
a, e b,,tliche [a,—b,|<1/(n+1) ¢ |f(a,)—f(b,)| > 7. Pertanto a, —b, — 0, ma
nonsi ha f(a,)—f(b,)—0. |

3.5.21 Esempio. Utilizziamo il teorema 3.5.20 per studiare la uniforme continuita delle
funzioni introdotte nell’esempio 3.1.4.

Tali funzioni sono polinomiali o razionali fratte, quindi, per ’esempio 3.5.7, esse sono
continue.

Consideriamo la funzione
fi:R->R, fi(x)=x*—1.

Posto, VneN*, a,=n+(1/n), b,=n,risulta a,— b, =1/n—0 e

R N B R I )

Quindi f(a,)— f,(b,) non tende a 0, percio, per il teorema 3.5.20, f; non ¢ uniforme-
mente continua.
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Consideriamo la funzione

1

H:R->R, fz(x):xz_i_l.

Siano (a,,),cy € (b,),en successioni in R tali che a, — b, — 0. St ha
1 1 a2 — b2 la,— b ||a,+ b, |
—£(b )| = _ — n n _
[alen) = £ilb,) a5 +1 la,%+1‘ (@ +1)b2+1) (an+1)(b2+1) -

6, — b,)(Ja,|+15,) ol 18,
< <la, —b L ).
< <l )

Poiché
0< (Ja,| =1V = a, —2Ja,| +1=a2 —2Ja,|+1,

risulta 2|, | <a? + 1 e una disuguaglianza analoga vale per &, . Quindi si ha

e = F(8)| < oy =yl 2 ) <o, =81 (5 45 ) =l

b2 +1 2

Poiché a,— b, — 0, da questa disuguaglianza segue che f,(a,)— f,(b,) — 0. Pertanto f,

¢ uniformemente continua.

Consideriamo la funzione

][3:]—1,1[—>R, f(x)_

1—x2

Posto, Vn eN*, a, =1—(1/2n), b,=1—(1/n), risulta a,— b, =1/(2n) >0 e
1—(1/2n)  1-—(1/n) _

1—(1—(1/2n))"  1—(1—(1/n))’

_1=@2n)  1=Q/n) _4n*=2n n’—n _
C2/2n)—(1)2n?2  (2/n)—(1/n)?  4n—1 2n—1

:(n+o(n))—<%n+o(n)>:%n+o(n)—>+oo.

Pertanto f; non ¢ uniformemente continua. |

3.5.22 Teorema

Siano ACR, f:A— R e (a,),oy successione in A. Se f ¢ uniformemente
continua e (a,,),cy € convergente, allora (f(a,)), _ ¢ convergente.

Osserviamo che nell’enunciato del teorema viene richiesto che (a,,),, o sia convergente,
senza precisare che il limite appartenga al dominio. Quindi la semplice continuita della

funzione non assicura che (f(a,)) _ sia convergente.

neN
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DimosTRAZIONE. Per il teorema 2.3.12, una successione ¢ convergente se e solo se ¢ di Cau-

chy, pertanto ¢ sufficiente dimostrare che se (a,,),cy ¢ di Cauchy, allora (f(a, )>n€N e di

Cauchy.
Se f ¢ uniformemente continua si ha
VeeR*, 38, eR": Vx,p €A, |x—y|<8, = |f(x)—f()|<e,
mentre se (a,),cy € una successione di Cauchy, allora si ha

VYneR", Hn,JEN: Vn,meN, n,m>n, = la, —a,,|<n.

Fissato ¢ € R, se n,m € N sono tali che n,m > ng , allora |a, —a,| < &, , pertanto

|f(a,)—f(a,,)| < ¢ . Quindi la successione < f (an)>n€N ¢ di Cauchy. u

Come mostra I’esempio 3.5.21, dalla continuita di una funzione non segue necessaria-
mente la uniforme continuita; cio risulta vero per domini particolari.

3.5.23 Teorema (di Heine-Cantor')

Siano K C R e f:K — R. Se f & continua e K ¢ compatto, allora f &
uniformemente continua.

DimosTrAZIONE. Dimostriamo che se f non ¢ uniformemente continua, allora esiste ¢ €
K tale che f non ¢ continuain c.
Supponiamo quindi f non uniformemente continua, cioe

ZeR": VO eRT, Ixg,ys €K: |xs—ys| <8 A |f(xs)—f(s)| >7.

In particolare, ¥n € N, scegliendo & = 1/(n + 1), esistono due elementi di K, che in-
dichiamo con 4, ¢ b, , tali che |2, —b,| <1/(n+1) ¢ |f(a, (b,)|>%. Poiché K ¢
compatto, esiste una sottosuccessione <“/€n )neN , convergente a un elemento ¢ di K. Inoltre
st ha
|a, — b, | < ki -0,
n

quindi @, —b, — 0, pertanto si ha anche 5, — c. Le successioni (ﬂk )n eN e < %

< f <bkn >>n€N non possono avere lo stesso limite; pertanto, per il teorema 3.5.4, f non ¢&

)neN
sono convergenti a ¢, ma, Yz € N, si ha |f(dkn> —f(bk)

continua in c. [ ]

107] teorema prende il nome da Heinrich Eduard Heine (Berlino, 1821 - Halle, Germania, 1881) e da Georg
Cantor (San Pietroburgo 1845 - Halle, Germania, 1918). Heine enuncio e dimostrd il teorema in un articolo del
1872; nell’articolo Heine riconosce che Cantor aveva ispirato il suo lavoro. Il teorema era gid stato enunciato,
senza una dimostrazione valida, da Bolzano (vedi nota 6) negli anni 30 del XIX secolo e dimostrato da Johann
Lejeune Dirichlet (Diiren, Germania 1805 - Géttingen, Germania, 1859) nel 1854.

Heine ha studiato varie questioni di analisi (tra cui la compattezza di insiemi) e ha dato la definizione di
continuita uniforme.

Cantor ¢ stato il fondatore della teoria degli insiemi e dello studio della loro cardinalita.
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Le funzioni uniformemente continue possono essere prolungate in modo naturale a una
funzione uniformemente continua definita nella chiusura del dominio.

3.5.24 Teorema (sulla prolungabilita delle funzioni uniformemente continue)

Siano ACR e f: A—R. Se f ¢uniformemente continua, allora esiste g: A — R
uniformemente continua e tale che g |, = f.

DIMOSTRAZIONE. Se ¢ € A, per il teorema 3.1.7, affermazione I, esiste (a,,),cy Successione
in A convergente a ¢ ; per il teorema 3.5.22, (f (a, )>n€N ¢ convergente. Se (b,), oy € un’al-
tra successione in A convergente a ¢, allora a, — b, — 0, quindi, per il teorema 3.5.20,
f(a,)—f(b,) — 0, cioe lim,_, f(b,)=lim, . f(a,). Quindi lim,_ _  f(a,) di-
pende da ¢ e non dalla successione (a,,),cy convergente a ¢ scelta. Indichiamo con g(c)
tale limite.

Abbiamo cosi definito una funzione g: A — R. Se ¢ € A, allora possiamo definire
g(c) mediante la successione che vale costantemente ¢ e si ha

gle)= lim f(c)=f(c);

quindi 8|, =f.

Dimostriamo che g ¢ uniformemente continua. Si ha
VeeR*, 38, eR": Vx,p €A, [x—y|<8, = |f(x)—f()|<e.

Sia ¢ € R*. Fissati x,y € A tali che [x —y| < &8,/3, esistono (a,),cy ¢ (b,),en suc-
cessioni in A convergenti, rispettivamente, 2 x e a y. Quindi, per la definizione di g,
st ha f(a,)— g(x) e f(b,)— g(y); pertanto, definitivamente, risulta |z, — x| < 8./3,

b, —y|<8./3, |f(a,)—g(x)|<e e |f(b,)—g(y)| <e.Dacio segue

o R )

quindi, per la uniforme continuita di /', si ha |f(a,)—f(b,)| < ¢ ; pertanto, scegliendo 7
in modo opportuno,

|g(x)—g)| < |g(x)—=f(a,)| +|f(a,) = f(&,)| +|f(b,)—gW)] <e+e+e=3e.

Percio g ¢ uniformemente continua. u
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CALCOLO DIFFERENZIALE
PER FUNZIONI REALI
DI VARIABILE REALE

4.1 DERIVATE

4.1.1 DEFINIZIONI E PROPRIETA FONDAMENTALTI

In questo capitolo definiamo e studiamo la derivata di una funzione. Si tratta di un
concetto fondamentale che ha numerosissime applicazioni.

Vogliamo studiare la rapiditd di variazione di una funzione vicino a un punto del suo
dominio. Un’informazione su quanto rapidamente varia una funzione f & fornita dal rap-
porto tra la variazione di f quando si incrementa di una certa quantita il punto in cui
essa viene calcolata e 'incremento stesso. Se consideriamo un punto ¢ e un incremento 5

positivo, tale rapporto ¢ (f(c+h)— f(c))/h . Ponendo d =c+h, il rapporto diventa

f(d)—f(c)
d—c

Osserviamo che, scambiando traloro ¢ e d, il rapporto non cambia; ¢ quindi indifferente
considerare d > ¢ (come si ottiene se d = c+h con h > 0) oppure d < ¢. Chiamiamo
rapporto incrementale questo rapporto.

Il rapporto incrementale ha un semplice significato geometrico. Determiniamo I’equa-
zione di una retta del piano cartesiano che interseca il grafico di f in due punti di ascissa ¢
e d, rispettivamente. Una retta passante per (c, f (c)) ha equazione y — f(¢) = m(x —¢),
dove m € R ¢ il suo coefficiente angolare. Tale retta passa anche per (d, f(d)) se risulta
fd)=f(c)=m(d—c), ciot m=(f(d)—f(c))/(d—c). Quindi il rapporto incrementale
¢ il coeficiente angolare della retta che interseca il grafico di f nei due punti scelti.

Il rapporto incrementale ha anche un significato fisico. Se f ¢ la legge del moto di un
punto materiale che si muove su una retta, il rapporto incrementale ¢ il rapporto tra uno
spostamento del punto e il tempo impiegato per effettuare tale spostamento; si ha quindi
la velocita media del punto nell’intervallo di tempo considerato. Precisiamo che si tratta
della velocita media con segno: ¢ positiva se il punto si sposta nella direzione delle ascisse
crescentl, negativa in caso contrario.
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Figura 4.1.1
Il rapporto incrementale di f tra c e d ¢
il coefhiciente angolare della retta passante

per i due punti (c,f(c)) e (d,f(d)).

Formalizziamo questo concetto nella seguente definizione.

Definizione di rapporto incrementale di una funzione

Siano ACR, f:A—> R e c,d €A tali che ¢ #d. Chiamiamo rapporto
incrementale di / tra ¢ e d il numero reale

d—

\ J

Ry, = LS

Evidentemente scambiando ¢ e d il rapporto incrementale non cambia, cioé risulta

Ri(d,c)=Ry(c,d).

Riprendiamo il significato geometrico del rapporto incrementale. Se la funzione f non
ha brusche variazioni, possiamo aspettarci che, quando d ¢ vicino a ¢, la retta passante per
(c,f(c)) e (d,f(d)) sia “vicina” alla porzione del grafico di f compresa tra tali punti.
Questo suggerisce di considerare punti d sempre piu vicini a ¢, contando sul fatto che
la retta sia sempre piu “vicina” al grafico della funzione. Poiché la retta ¢ individuata dal
suo coefliciente angolare, che ¢ il rapporto incrementale di f tra ¢ e d, risulta naturale
considerare il limite del rapporto incrementale per d che tende a ¢. Supponendo che
tale limite esista e sia reale, indichiamolo con ¢. Allora la retta passante per (c, f (c)) e

(d,f(d)) “tende” alla retta passante per (c,f(c)) di coefficiente angolare £ . Tale retta ¢

quella che approssima meglio il grafico di f* vicino a (c, f(c)), cio¢ ¢ la retta tangente al
grafico in tale punto.

Consideriamo invece il significato fisico del rapporto incrementale. Se f ¢ la legge del
moto di un punto materiale che si muove su una retta, sappiamo che il rapporto incremen-
tale tra ¢ e d ¢ la velocita media del punto nell’intervallo di tempo individuato da ¢ e d.
Se il punto non si muove a scatti, la velocita media in un intervallo di tempo piccolo € una
buona approssimazione della velocita effettiva del punto. Risulta naturale considerare il
limite della velocita media quando la durata dell’intervallo tende a 0, cioe per d che tende
a ¢. Questo limite, se esiste, ¢ la velocita all’istante c.

Formalizziamo questo concetto nella seguente definizione.
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Figura 4.1.2
Il limite del rapporto incrementale di f &
il coefficiente angolare della retta tangente

al grafico di f nel punto (c, f(c)).

Definizione di funzione derivabile in un punto e di derivata

Siano ACR, f:A—> R e c € AND(A). Diciamo che f ¢ derivabile in ¢
quando esiste ed ¢ reale
O£
im ——————= .

x—c  x—c

In tal caso chiamiamo derivata di f in ¢ tale limite e lo indichiamo con f(c).

Per indicare la derivata di f in ¢ si usano anche le notazioni

pfo, ZLE L

X=C X=C

Notiamo che la derivatain ¢ diunafunzioneda A a R ¢ definita quando c € AND(A).
Infatti, per definire il rapporto incrementale, occorre che ¢ sia un punto del dominio;
affinché sia definito il limite del rapporto incrementale, occorre che ¢ sia un punto di
accumulazione per il dominio.

Talvolta ¢ utile definire la derivata esplicitando I'incremento della variabile da cui dipen-
de la funzione, anziché il punto in cui essa viene calcolata; indicando con 5 I'incremento,
stha x =c+ 5, quindi

c+h)—fl(c
f®=m&wM@ﬂgﬂ+ZfU'

Osserviamo che il limite di una funzione dipende solo dai valori che essa assume in un
intorno del punto a cui tende la variabile (v. teorema 3.3.8). Pertanto anche la derivata
di una funzione in un punto dipende solo dai valori che essa assume in un intorno di tale
punto.

Come la continuita, anche la derivabilita di una funzione riguarda un punto del domi-
nio, ma solitamente una funzione ¢ derivabile in piu punti; quindi € naturale definire la
derivabilita in un insieme.
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Definizione di funzione derivabile in un insieme

Siano ACR, f:A—R e BCAND(A).

Diciamo che f ¢ derivabile in B quando Yc € B, f ¢ derivabile in c.
Nel caso che sia A C D(A) diciamo che f ¢ derivabile quando ¢ derivabile in A.

La condizione A C D(A) ¢ verificata, ad esempio, quando A ¢ un intervallo oppure

quando A ¢ aperto.

Se f ¢ derivabile risulta definita una funzione da A a R che a ogni x € A fa corrispon-
dere f’(x). Naturalmente indichiamo tale funzione con f”.

4.1.1 Esempio. Siano { €R e k€ N\ {0,1}. Consideriamo le funzioni:

f1:R->R, filx)=1¢,
H:R->R, Hx)=x,
i R->R, fi(x)=xF,
f1:[0,+00[ =R, ﬂ(x):ﬁ,
fs:R—-R, fs(x)=1x|
\ \
/i f /s
1
: 1+ e
1 1
\ \
fi Js
i 1+
. Figura 4.1.3
1 Le funzioni studiate nell’e-
sempio 4.1.1.
Per /i € { = 1; per f; ¢
k=2 (inrosso)e k=3 (in
blu).
Sia ceR; VxeR\{c},stha
Rfl(x,c)zg_g =0—0.
x—c x—e

Pertanto f; ¢ derivabile e, Ve € R, si ha f/(c)=0.
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Sia ceR; YxeR\{c},stha

X—cC

=1—>1.
X—c x—c¢

Pertanto f, ¢ derivabile e, Ve € R, siha f)(c)=1.
Sia c € R; Yx € R\ {c}, utilizzando il teorema 1.3.19, si ha

k_ .k (x—c)Z:/‘?_1 xI k== ket k—1
x®—c =0 b ki -
Rg(x,c)= = ! = E x/ ek 1: Eoc]c/e I = fock!,
] =

Rg(x,c)=

X —cC X —cC —0

Pertanto f; ¢ derivabile e, Ve € R, si ha f(c)= kck1,
Sia ceR; Vx €[0,400[ \ {c}, st ha

_ﬁ—ﬁ_<\/§_ﬁ><ﬁ+ﬁ>_ x—c B
Ry(x,c)= = = =

x—c (x=c)(Wx+ve)  (x—c)(vx+e)

400, sec=0,

=R | . +oo]
x—=c | ——, sece [0,400|.
A 2./c

Pertanto f, ¢ derivabile in ]0,+00[ e, Yc €]0,+00[,siha f/(c)=1/(24/c), mentre non
¢ derivabile in 0.

Sia ceR; Yx R\ {c}, st ha

x| —=le]
Re(x,c)= .

X —C

ec , allora esiste un intorno di ¢ incluso in ; 1n tale intorno |x| = x , pertanto
Se c e RT,all t t d | R*;in tale int tant

) . ox—c .
limR/(x,c)=lim =lim1=1.
f
x—c X—=C X —(C  X—¢C
Se ¢ € R, allora esiste un intorno di ¢ incluso in R™; in tale intorno |x| = —x,
pertanto
. . —x+c .
lim Ry (x,c)=lim =lim(—1)=—1.
x—c /5 xX—c X —C x—c
Se ¢ =0 si ha

R 0 |x| —1, se x<0,
f5(x’ )_7_ 1, se x>0.

Quindi, per x — 0, il limite sinistro del rapporto incrementale ¢ —1, mentre il limite destro
¢ 1; quindiil limite non esiste. Pertanto f; ¢ derivabile in R*, mentre non ¢ derivabile in 0.
Definiamo la funzione segno:

—1, se xeR™,
sgn: R - R, sgn(x)=10, sex=0,

1, sexeRT.
Siha, Vx € R*, d|x|/dx =sgn(x). <
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\ \
/i f <3'
2 ‘
1 |
T |
. .
1 1
7 £
4 5
! L Lr——
2
1 ) Figura 4.1.4
| Derivate delle funzioni stu-
diate nell’esempio 4.1.1.
Per f; € k=2 (in rosso) e

E=3 (in blu).

Introduciamo ora una caratterizzazione della derivabilita che risulta estremamente utile
per provare le proprieta della derivata.

4.1.2 Teorema (caratterizzazione della derivabilita)

Siano ACR, f:A—>R e c€ AND(A). Le seguenti affermazioni sono equiva-
lenti:

I) f ederivabilein c;
II) esiste £ €R tale che
Fx)=f(c)+{(x—c)+o(x—c), per x —¢;

IIT) esiste p: A— R continua in ¢ e tale che, Yx €A, si ha

f(x)=f(e)+ p(x)(x—c).

Se tali affermazioni sono vere risulta f'(c)=¢ = ¢(c).

. J

Ricordiamo che la notazione g(x)= o(h(x)) , per x — ¢, indica che g(x)/h(x) — 0,
per x — ¢. Quindi 'uguaglianza f(x)=f(c)+{(x —c)+ o(x —c), che puo essere scritta
nella forma f(x)— f(c)—¥¢(x —c¢) = o(x —c), significa che si ha

L @)= fO) =)

X—C X —C

=0.
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DimostrAZIONE. I = III) Supponiamo f derivabile in ¢. Sia ¢: A — R tale che

{M, se x €A\ {c},

X —cC

£'(c), se x =c.

p(x)=

Per la definizione di derivata ¢ ¢ continuain c¢. Se x €A\ {c} si ha

f(x)—f(e)

X —C

f)+o(x)(x—c)=f(c)+ (x—c)=f(e)+f(x)=f()=/(x),

mentre se x =c¢ si ha

f(e)+ox)x—c)=f(e)+ f(e)c—c)=f(e);
quindi, Yx €A, si ha
fx)=F()+o(x)(x—c).
Pertanto ¢ verificata I'affermazione III con ¢(c) = f/(c).

Il => II) Supponiamo che esista ¢: A — R continua in ¢ e tale che, Yx € A, si ha
f(x)=f(c)+p(x)(x—c). Allora

f(x)=fe)+p(e)x—c)+(p(x)—p(c))(x—c) = f(c)+p(c)(x—c)+o(x—c), per x—c,

perché lim,_, (¢(x)—g¢(c)) =0.

Pertanto ¢ verificata I’affermazione Il con £ = ¢(c).

I = I) Supponiamo chesia f(x)=f(c)+{¢(x—c)+o(x—c), per x — c. Allorasi ha

f)=flo) _ flo+llx—c)tolx—c)=flc) _, olx=c)

X —C X —C X—C Xx—¢

Pertanto ¢ verificata I'affermazione I con f/(c)=/¢. u

Per ’affermazione II, se f ¢ derivabile in ¢, allora esiste un polinomio p, di grado al
piu 1, tale che la differenza f(x)— p(x) ¢ “piccola”, nel senso che ¢ o(x —c), per x — c.
Tale polinomio ¢ p(x) = f(c)+ f'(c)(x—c). Questo ¢ I'unico polinomio di grado al piu 1
che ha questa proprieta. Infatti se la differenza tra un polinomio e f ¢ o(x—c), per x — ¢,
allora la differenza si annulla in ¢, quindi il polinomio vale f(¢) in ¢, pertanto ¢ del tipo
f(c)+£(x—c). Per I'affermazione II deve essere £ = f'(c).

Il grafico di tale polinomio ¢ la retta di equazione y = f(c)+/f'(c)(x—c). Per i motivi gia
esposti, questa retta ¢ quella che approssima meglio il grafico di /* vicino al punto (¢, f(c)).

Se f ¢ derivabile in ¢, chiamiamo retta tangente al grafico di f nel punto (¢, f(c))
la retta di equazione

y=f(e)+f(e)x—c).
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4.1.3 Teorema (sulla continuita delle funzioni derivabili)

Siano ACR, f:A—>ReceAND(A). Se f e derivabile in ¢, allora f ¢
continua in c.

DIiMOSTRAZIONE. Per la caratterizzazione della derivabilita 4.1.2, esiste ¢: A — R continua
in ¢ etaleche, Yx €A, siha f(x)=f(c)+p(x)(x—c); percio f ¢somma di una funzione
costante con una funzione continua in ¢, quindi ¢ continua in c. [

4.1.4 Osservazione. Non vale il viceversa di questo teorema: esistono funzioni continue
non derivabili.

Nell’esempio 4.1.1 abbiamo visto che le funzioni valore assoluto e radice quadrata, che
sono continue, non sono derivabili in 0. |

4.1.2 OPERAZIONI SULLE DERIVATE

Studiamo le regole per il calcolo della derivata di una funzione ottenuta da funzioni piu
semplici mediante operazioni algebriche.

4.1.5 Teorema (sull’algebra delle derivate)

Siano ACR, f,g:A—>R, meR e ce€AND(A). Supponiamo f e g
derivabili in ¢. Allora:

I) f+g ederivabile in ¢ esi ha
(f+8)(e)=rf(c)+8(c);
II) mf ¢derivabilein ¢ esiha
(mf)(c)=mf'(c);
IIT) fg ¢derivabilein ¢ esiha
(F8)(c)=1"(c)g(c)+ f(c)g(c)-

Se inoltre Yx €A, si ha g(x)#0, allora:
IV) 1/g ¢ derivabile in ¢ esi ha

V) f/g éderivabile in ¢ esi ha

(]_‘ )’@ _ 98— f0)g'e)
g (g(0))’
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DimosTrAZIONE. Utilizziamo la caratterizzazione della derivabilita 4.1.2, che garantisce
che esistono ¢,¢: A— R continue in ¢ e tali che, Yx € A, risulta

fx)=f(e)+p(x )( —c>,
g(x)=g(c)+¢(x)

esiha p(O)= /) ¢ $(e)=g/(0).
I) Per x€A siha

f(x)+g(x)

f(@)+g(x)(x —c) + g(c) + (x)(x —c)
£+ g(0)+(px +¢ 0)(x—c)
la funzione ¢ + ¢ ¢ continua in ¢, perché somma di funzioni continue in ¢, percio &

verificata I’affermazione III del teorema 4.1.2, quindi f + g e derivabile in c e la derivata
¢ il valore della funzione ¢+ ¢ in ¢, cioe (f +g)(c )+ ¢(c) o)+ g'(c).

I) Per x €A siha
mf(x)=m(f(c)+p(x)x—c))=mf(c)+mp(x)(x—c);

la funzione m¢ ¢ continua in ¢, perché prodotto di una funzione continua in ¢ per una
costante, percio ¢ verificata 'affermazione III del teorema 4.1.2, quindi mf ¢ derivabile
in ¢ e laderivata ¢ il valore della funzione m¢ in ¢, cioe (mf)(c)=mep(c)=mf'(c).

II) Per x €A siha
f(x)g(x)=(f(c)+ (x)(x—C))(g(f)+¢(x)(x—f)) =
= f(0)g(c)+ p(x)(x —c)g(c) + f(e)(x)(x — )+ p(x)dh(x)(x —c)’ =
= f(e)g(e) +(p(x)g(e) + f(e)(x) + p(x)(x)(x — ) )(x —¢);
)&

la funzione x — go( (c )—l—f( )(ﬁ( )+o(x)¢(x)(x —c) & continuain ¢, perché somma di
funzioni continue in ¢, percio ¢ verificata 'affermazione III del teorema 4.1.2, quindi f'g
¢ derivabile in ¢ e la derivata ¢ il valore in ¢ della funzione

x = p(x)g(c)+ f () (x) + p(x)d(x)(x —c),

(fg)(c)=g(c)g(c)+ f(e)d(c) + ple)d(c)(c —c) = f'(c)g(c) + f(e)g (c).
IV) Per x €A siha
1 1 1 1
g(x) (C)+¢(x)(x—c)_g(C)+g(C)+¢(x)(x—C)_g(C)_
1 +g(c — (8O +¢x)x—c)) 1 ¢(x)
(€ (gl +dx)x—c)gle)  glc) (gle)+dx)x—c))g(c)

la funzione
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¢ continua in ¢, perché quoziente di funzioni continue in ¢, percio ¢ verificata I’afferma-
zione IIT del teorema 4.1.2, quindi 1/g ¢ derivabile in ¢ e la derivata ¢ il valore in ¢ della
funzione

¢(x)

(g(e)+ dx)(x —c))g(c)

X — —

b

pertanto
/

g (g@)+dle)c—e)gle)  (g(e))

V) Poiché f/g = f(1/g), la funzione f/g ¢ prodotto di una funzione derivabile in ¢
per la reciproca di una funzione derivabile in ¢, quindi, per le affermazioni III e IV, &
derivabile in ¢ e st ha

/

oo ey ol Moo e L ey £1©) _ S8~ (')
(L)@=ro—s+10(z)0=ro= fOZ e

J=0

con a5, ay,...,2, 1 € R e o, € R*. Nell’esempio 4.1.1 abbiamo provato che le funzioni
costanti e le funzioni potenza a esponente intero positivo sono derivabili. Per il teorema sul-
I'algebra delle derivate 4.1.5, affermazione II, ognuno degli addendi x — @;x/ ¢ derivabile,

pertanto, per 'affermazione I, p ¢ derivabile e, Yx € R, st ha

k dx] k
F0 =3 =30, G =S

]: :O

da x/

Osserviamo che I’addendo che si ottiene per 7 =0 ¢ una funzione costante, che ha derivata
nulla. <

4.1.7 Esempio. Sia k € N*. Nell’esempio 4.1.1 abbiamo stabilito che la funzione

f1:R->R, fi(x )—x ,

¢ derivabile e, Yx € R, siha f(x)= kx*~! (intendendo che se £ =1 abbiamo la funzione
costante 1). Per il teorema sull’algebra delle derivate 4.1.5, affermazione 1V, applicato a

1 |R , la funzione x — x~* & derivabile e, Yx € R*, si ha

dx_k: £ (x) :/exk_1
dx (f}(x»z x2k

Possiamo unificare questo risultato con cio che si ¢ stabilito nell’esempio 4.1.1 relativa-

— —bx !

mente alla funzione f£; , affermando che, per k € Z*, la funzione x — x* & derivabile con

derivata kx*~', per ogni x appartenente al dominio. <
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4.1.3 DERIVATA DI FUNZIONE COMPOSTA E DI FUNZIONE INVERSA

Studiamo ora la derivabilita della composizione di funzioni derivabili e dell’inversa di
una funzione derivabile.

4.1.8 Teorema (sulla derivata della composizione)

Siano A, BCR, f:A—>R, g:B—>R e ceAND(A). Supponiamo che sia
f(A)CB e f(c)eD(B). Se [ ¢derivabilein ¢ e g ¢derivabilein f(c), allora gof

¢ derivabile in ¢ e
(gof)(c)=¢'(f(©)f (c).

.

DiMOsTRAZIONE. Per la caratterizzazione della derivabilita 4.1.2, esistono ¢:A—R e
¢: B — R, continue rispettivamente in ¢ ein f(c), tali che

VxeA, f(x)=Ff(c)+ep(x)x—c),
VyeB, g)=g(f()+¢)(y—r(e));
inoltre risulta p(c) = £(c) e ¢(f(c))=g'(f(c)). Si ha, Yx €4,
g(f(x)=g(f )+ d(f()(f(x)=f(e) = g(f(e)) + ¢(f (x))p(x)(x —¢);

la funzione f e derivabile in ¢, quindi € continua in ¢ (v. teorema 4.1.3), pertanto la
funzione x — gb( f (x))ga(x) ¢ prodotto di funzioni continue in ¢, percio € continua in ¢,
inoltre, per x = ¢, tale funzione vale g’ < f (c)) //(c). Dalla caratterizzazione della deriva-
bilita 4.1.2 segue che g o/ ¢ derivabile in ¢ con derivata g(f(c))f(c). [

4.1.9 Teorema (sulla derivata della funzione inversa)

Siano / C R intervallo, f: 7 — R continua e iniettivae ¢ €. Se f ¢ derivabile

in c e f'(c)#0,allora /" ¢ derivabile in f(c) e

)= 75

. J

DiMOsSTRAZIONE. Per la caratterizzazione della derivabilita 4.1.2, esiste ¢: I — R, continua
in c, tale che, Yx €17,st ha

fx)=F()+ox)(x—c),
erisulta g(c)=f(c). Se y € f(I)=2(f "), allora si ha

=70 =fO+e(fTONT0)—0),
y=f@=o(f/TO)T ) —c)-

Se v # f(c), allora il primo membro ¢ diverso da 0, quindi ciascuno dei due fattori a

quindi

secondo membro ¢ diverso da 0, in particolare ¢(f~'(y)) #0; se invece y = f(c), allora

o(f7 ) =0(f7(f(©)) = plc)=F/(c) #0.



174 Capitolo 4. Calcolo differenziale

Percio Yy € f(I) si ha gp(f_l(y» #0. Quindi risulta

cioe

Poiché f ¢ continua in un intervallo ed ¢ iniettiva, per il teorema 3.5.17, affermazio-

ne II, /= ¢ continua, inoltre ¢ ¢ continua in ¢, quindi la funzione y — 1/g0<f_1(y)> &
continua in f(c). Per la caratterizzazione della derivabilita 4.1.2, f~! ¢ derivabile in f(c)

con derivata

La formula di derivazione di funzione inversa enunciata sopra puo essere scritta in un’al-
tra forma, pit adatta a calcolare la derivata. Se d € f(I) e f/(f~!(d)) # 0, ponendo
c=f"!d) siha

4.1.10 Osservazione. Per ogni x €A, siha (f~'o f)(x) = x, pertanto, se f ¢ derivabile
in ¢ e f7' ¢ derivabile in f(c), per il teorema sulla derivata della composizione 4.1.8, si
ha (f_l)’(f(c))f’(c) =1, quindi deve essere f’(c)#0 e risulta (f_l)’<f(c)) =1/f"(c).

Segue da qui che, se f/(c)=0, allora f~! non ¢ derivabile in f(c).

Percio la formula di derivazione della funzione inversa ¢ conseguenza della formu-
la di derivazione della composizione, ma per dedurre questo occorre prima provare la
derivabilita della funzione inversa.

La formula di derivazione della funzione inversa puo essere ottenuta anche con conside-
razioni geometriche. Se f ¢ derivabile in ¢, allora la retta ¢/, tangente al grafico di /' nel
punto (¢, f(c)), ha coefficiente angolare f”(c). Il grafico di /=" si ottiene dal grafico di f
scambiando ascisse con ordinate, il punto (¢, f(c)) diventa (f(c),c) e,se f~! & derivabile
in f(c), la retta tangente al suo grafico in tale punto si ottiene dalla retta ¢, scambiando
ascisse con ordinate e ha coefficiente angolare (f~')'(f(c)). Poiché questa retta non ¢ pa-
rallela all’asse delle ordinate, ¢, non puo essere parallela all’asse delle ascisse, quindi deve

essere f'(c) # 0. Inoltre scambiando ascisse con ordinate il coefficiente angolare di una

retta diventa il reciproco, quindi (f_l)/<f(c)> =1/f"(c). <

4.1.11 Esempio. Sia k€ N\ {0,1}. La funzione radice k-sima ¢ I'inversa della funzione
fo:[0,+00[ = R, fi(x)=x*.

Nell’esempio 4.1.1 abbiamo stabilito che la funzione potenza di esponente k ¢ deriva-

bile con derivata la funzione x — kx*—!. La funzione f, ¢ una restrizione della funzione
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!

\ Figura 4.1.5
i Il grafico di f~' ¢ il simmetrico rispet-
| to alla retta y = x (in nero) del grafico
. di f. La retta tangente al grafico di !
f(c) in < f(c), c) ¢ la simmetrica della retta tan-

gente al grafico di /" in (c, f(c)).

potenza, quindi ¢ anch’essa derivabile con la stessa derivata, che ¢ diversa da 0 in tutti i

punti del dominio escluso 0. Per il teorema sulla derivata della funzione inversa, f,' ¢
derivabile in tutti i punti d del dominio tali che d # f,(0)=0 e, Yd €]0,+00[, si ha

1 1 1 1 - 1
—I(d) = - - — (V)= = gkt
O e e 2T

Per I’osservazione 4.1.10, fé_1 non ¢ derivabile in 0.
Sia q € Qt*\Z, g=7j/k,con j eN* e k€ N\{0,1}. Consideriamo la funzione
potenza di esponente ¢ , cioe

f:[0,+00[ = R, f(x)=x17.

Tale funzione ¢ composizione della funzione x — /x con la funzione y — 3/ . Come
stabilito sopra, la prima funzione ¢ derivabile in R*, la seconda in tutto il dominio (vedi
esempio 4.1.1). Pertanto, per il teorema sulla derivata della composizione 4.1.8, la funzione
x — x9 ¢ derivabile in R* e, Yx € R™, st ha

k) .
f(x)= d<dﬂ =j(vx)™ % xRt — éxo’/k)—l — gxi !,
X

Studiamo la derivabilita in 0. Il rapporto incrementale e

x4 —04 » {—}-oo, se 0<g<1,

=x7" —
x—0 x—0 (0, se g>1.

Pertanto f, ¢ derivabile in O se e solo se ¢ > 1 e in tal caso si ha f;(0)=0.
SiageQ \Z,g=j/k,con j€Z\N e ke N\{0,1}. Consideriamo la funzione

potenza di esponente ¢ , cioe

fi: RY SR, fo(x)=x9.



176 Capitolo 4. Calcolo differenziale

Tale funzione ¢ composizione della funzione x — 4/x ristretta a R* con la funzione

y — 9/ ; queste funzioni sono derivabili. Pertanto, per il teorema sulla derivata della compo-
sizione 4.1.8, la funzione x — x7 ¢ derivabile e, con gli stessi calcoli fatti per f,, Vx € R,

sitha f{(x)=¢gx77".

Considerando anche cio che si ¢ stabilito negli esempi 4.1.1 e 4.1.7, possiamo concludere
che la funzione x — x7, dove g € Q*, ¢ derivabile in tutto il dominio se g ¢ 10, 1[ , mentre
¢ derivabile nel dominio escluso 0 se ¢ € ]0,1[ . In tutti i casi la derivata in x, appartenente
all'insieme di derivabilita, & uguale a gx7~. <

4.1.4 DERIVATE DI ORDINE SUPERIORE

Se una funzione ¢ derivabile, risulta in maniera naturale definita la funzione derivata,
che a ogni punto x del dominio di f fa corrispondere f’(x). La funzione f’ puo a sua
volta essere derivabile. Risulta quindi naturale la seguente definizione.

Definizione di funzione derivabile 2 volte e di derivata seconda

Siano A CR tale che ACD(A), f:A— R derivabilee c €A.

Diciamo che f ¢ derivabile 2 volte in ¢ quando f” ¢ derivabile in ¢. In tal
caso chiamiamo derivata seconda di f in ¢ la derivatadi f” in ¢ e la indichiamo
con f”(c).

Diciamo che f ¢ derivabile 2 volte quando ¢ derivabile 2 volte in ogni pun-
todi A.

Per indicare la derivata seconda di f in ¢ si usano anche le notazioni

oy, E L

X=C X=C

Poiché il concetto di derivata ¢ locale, per definire la derivata seconda ¢ sufficiente che f
sia derivabile in un intorno di ¢

Se f ¢ derivabile 2 volte si puo ripetere il procedimento definendo la derivata terza
e successivamente la derivata quarta ecc. In generale possiamo definire, per induzione, la
derivata di ordine qualunque come segue.

Definizione di funzione derivabile n volte e di derivata n-sima

Siano A CR taleche ACD(A), f:A—R, c€A e neN*. Supponiamo che f
sia derivabile 7 volte.

Diciamo che f ¢ derivabile #+1 volte in ¢ quando la funzione che a ogni punto
di A fa corrispondere la derivata 7 -simadi f € derivabile in ¢ . In tal caso chiamiamo
derivata 7+ 1-simadi f in ¢ tale derivata e la indichiamo con f+1(c).

Diciamo che f ¢ derivabile 7z + 1 volte quando ¢ derivabile 7+ 1 volte in ogni
puntodi A.
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La derivata 7-sima della funzione f nel punto ¢ si indica con f)(c) o anche con

o,

X=cC X=C

Si utilizza anche la scrittura £© per indicare la funzione f .
Notiamo che ’affermazione che una funzione ¢ derivabile 7 volte non esclude che essa
possa essere derivabile anche piu di 7 volte.

Definizione di funzione indefinitamente derivabile

Siano A CR tale che AC D(A) e f: A— R. Diciamo che f ¢ indefinitamente
derivabile quando, V7n € N*, f ¢ derivabile 7 volte.

Se una funzione f:I — R, con [ intervallo di R, ¢ derivabile 7 volte, con derivate
continue, diciamo che f ¢ una funzione di classe C”. Se ¢ indefinitamente derivabile,
diciamo che f ¢ una funzione di classe C*°.

Osserviamo che, per il teorema sulla continuita delle funzioni derivabili 4.1.3, se una
funzione ¢ derivabile 7 volte, allora tutte le derivate di ordine minore di 7 sono continue.
Se una funzione ¢ indefinitamente derivabile, le derivate di qualunque ordine sono continue.

Indichiamo con C”(I,R) linsieme delle funzioni di classe C” da un intervallo /
a R; analogamente indichiamo con C*°(/,R) I'insieme delle funzioni di classe C* da
un intervallo 7 a R.

4.1.12 Esempio. Sia k € N*. Nell’esempio 4.1.1 abbiamo provato che la funzione
LiR-R,  fix)=xF,

¢ derivabile, con derivata f}(x) = kx*~!, ¥x € R. Tale funzione ¢ a sua volta derivabile,
perché prodotto di una costante per una funzione derivabile. Se £ =1, allora f; ¢ costante,
quindi ha derivata nulla, pertanto f;” ¢ la funzione identicamente nulla. Se & > 1, allora,
VxR, siha f/(x)=k(k—1)x*2.

Evidentemente f;” ¢ a sua volta derivabile, quindi f; ¢ derivabile 3 volte. Se =1,
allora f;” ¢ la funzione nulla, quindi anche £ ¢ la funzione nulla. Se & =2, allora f;”

vale costantemente 2, pertanto f;” ¢ la funzione nulla. Se &> 2, allora, Vx € R, si ha

7 (x) = k(k—1)(k—2)x*7 .

Ripetendo il ragionamento si prova che f; ¢ indefinitamente derivabile; se 7 <k risul-
ta, Yx €RR, si ha 3(n)(x) =k(k—1)...(k—n+1)x*" mentre, se n >k, allora f;n) ¢
identicamente nulla.

Sia k € Z\ N. Nell’esempio 4.1.7 abbiamo provato che la funzione x — x*, di do-

minio R*, ¢ derivabile e la funzione derivata & x — kx*~'. Da questo segue facilmente
che tale funzione ¢ indefinitamente derivabile e la derivata 7 -sima in x € R* ¢ uguale a

k(k—1)...(k—n+1)xk".
Sia ¢ € QT \ Z. Nell’esempio 4.1.11 abbiamo provato che la funzione

f:10+00[ =R, fi(x)=x1,
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¢ derivabile se g ¢ ]0,1[, mentre ¢ derivabile nel dominio escluso 0 se ¢ € ]0,1[. Nei
punti di derivabilita si ha f;/(x) = gx?~"'. Tale funzione ¢ derivabile se g —1¢ 10,1[, cio¢
q ¢ 11,2[ , mentre ¢ derivabile in RT, ma non in 0, se ¢ € ]1,2[. Quindi, se g ¢ 10,2,
allora f, ¢ derivabile 2 volte, mentre, se ¢ € ]0,2[, allora f, ¢ derivabile 2 volte in R*.
In ogni caso, nei punti di derivabilita si ha £(x) = g(qg —1)x772.

Ripetendo il ragionamento si prova che £, € indefinitamente derivabile in R™; per x
in tale insieme risulta f7(n)(x) =k(k—1)...(k—n+1)x*7" Inoltre se n < g, allora f, ¢
derivabile 7 voltein 0. Sesiha n < g <n+1, allora f7(")(x) =q(qg—1)...(gq—n+1)x77"
non ¢ derivabile in 0, perché ¢ —7 < 1. Pertanto £, non ¢ derivabile 7 + 1 volte in 0.
Osserviamo che la condizione 7 < g <n+1 equivale a n =[g].

Sia g € Q7 \ Z. Nell’esempio 4.1.11 abbiamo provato che la funzione
foRT >R,  fi(x)=x17,

¢ derivabile e la funzione derivata & x — gx9~!. Da cid segue facilmente che tale funzione
¢ indefinitamente derivabile e, Yx € R*, si ha fg(n)(x) —k(k—1)...(k—n+1)xF". <

Il calcolo delle derivate di ordine superiore si effettua applicando ripetutamente le regole
di derivazione. Poiché la derivata di una somma ¢ la somma delle derivate, risulta immediato
provare che la derivata 7 -sima della somma ¢ la somma delle derivate 7 -sime. Analogamen-
te per la derivata del prodotto di una costante per una funzione. Per il prodotto la situazione
¢ pit complessa, perché la derivata di un prodotto non ¢ il prodotto delle derivate.

4.1.13 Teorema (sull’algebra delle derivate 7 -sime)

Siano A C R tale che A C D(A), f,g:A—> R, meR, ne N e ceA.
Supponiamo f e g derivabili in 7 volte in ¢. Allora:

I) f+g éderivabile 7 volte in ¢ esi ha

(f +8)"(e) = f™Ae)+g"(c);

I) mf e derivabile n volte in ¢ e si ha

(mf)" )= mf™c);
III) fg éderivabile 7 voltein ¢ esi ha

n

M) () = N r=R) () o R ()
810 =3( )t

\. J

DimostrAZIONE. I) Dimostriamo il teorema applicando il principio di induzione 1.3.4 al-
la proposizione & (n): se f e g sonoderivabiliin 7 voltein ¢, allora f+g ¢ derivabile n
volte in ¢ esi ha

(f +8)" ()= f"e)+g"(c).

La proposizione Z2(1) ¢ Paffermazione I del teorema sull’algebra delle derivate 4.1.5,
che ¢ vera.



4.1. Derivate 179

Supponiamo vera & (n). Siano f e g derivabili n+1 volte in ¢. Per ipotesi induttiva
la funzione (f+g)™ ¢ somma delle derivate 7 -simedi f e g, tali funzioni sono derivabili
in ¢, quindi (f 4 g)" ¢ derivabile in ¢, pertanto f 4+ g ¢ derivabile 7z +1 volte in c.

Si ha

(f + )" ) =D((f + )" )e)=D(f +g")(e) = " (e) + g+ e).

Quindi Z(n+1) ¢ vera.

II) Dimostriamo il teorema applicando il principio di induzione 1.3.4 alla proposizione
P (n): se f ¢derivabile in 7 volte in ¢, allora mf ¢ derivabile 7 volte in ¢ e si ha

(mf)"e)=mf"(c).

La proposizione (1) ¢ I'affermazione II del teorema sull’algebra delle derivate 4.1.5,
che ¢ vera.

Supponiamo vera Z?(n). Sia f derivabile 7z + 1 volte in c¢. Per ipotesi induttiva la
funzione (mf)" ¢ prodotto di una costante per la derivata 7 -sima di £, tale funzione &
derivabile in ¢, quindi (7)™ ¢ derivabile in ¢, pertanto mf ¢& derivabile 7 +1 volte
in c.

Si ha

(m )" D(e)=D((mf)™)(c)=D(mf")(c) = mf"+(c).
Quindi Z(n+1) ¢ vera.
III) Dimostriamo il teorema applicando il principio di induzione 1.3.4 alla proposizione
P(n): se f e g sono derivabili in 7 volte in ¢, allora fg ¢ derivabile n volte in ¢ e

si ha
(Fo)(c)= Z( >f<" (©)g®(c).

k=0
La proposizione Z?(1) ¢ I’affermazione III del teorema sull’algebra delle derivate 4.1.5,
che ¢ vera.
Supponiamo vera & (n). Siano f e g derivabili n+1 volte in ¢. Per ipotesi induttiva
la funzione (fg)™ ¢ somma di prodotti delle derivate fino all’ordine # di f e g, tali

funzioni sono derivabili in ¢, quindi (fg)" & derivabile in ¢, pertanto fg & derivabile
n+1 voltein c.
Utilizzando le proprieta dei coefhicienti binomiali (v. teorema 1.3.15), si ha

o 0=D((7))er=D( X} )b o =2, )t ye -

k=0 k=0

=32} )t e+ et e) =

&
:§<Z>f(”‘k“>(6)g‘k>(c)+ g<}.f1>f(”‘f+1)(c)g(f>(6)=

= <g>f(n+1>(c)g(6) + §<<Z> + </€ i 1>>f(ﬂ—k+1)(c)g(/€>(c) n <Z>f(c)g(n+1>(c) _
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=("3 e S ("F e o+ (01 e =

n+1

=S (")t

Quindi Z(n+1) ¢ vera. u

4.2 FUNZIONI DERIVABILI IN UN INTERVALLO

Studiamo alcune proprieta delle funzioni che sono derivabili in tutti i punti di un
intervallo, esclusi eventualmente gli estremi.

4.2.1 Teorema (di Rolle!!)

Sia f:[a,b]—>R.Se f ¢continuain [a,b], derivabile in Ja,b[ e f(a)=f(b),
allora esiste ¢ € Ja, b[ tale che f’(c)=0.

i Figura 4.2.1

i Per il teorema di Rolle, se f assume gli
l stessi valoriin @ e in b, allora vi ¢ alme-
b no un punto del grafico che ha tangente pa-
rallela all’asse delle ascisse.

I
I
I
I
I
I
I
I
I
I
I
I
I

a

DimosTrAZIONE. La funzione f € continua in un intervallo chiuso e limitato, che, per il
teorema 3.1.16 ¢ compatto, quindi, per il teorema di Weierstrass 3.5.8, esistono massimo e
minimo di f; li indichiamo, rispettivamente, con M e m. Poiché m < f(a)= f(b)< M,
¢ verificata almeno una tra le seguenti condizioni:
a) M>f(a)=f(b),
b) m<fla)=1(b),
o) M=m=f(a)=/(b).

Nel caso che sia verificata la a), esiste ¢ € [a,b] tale che f(c) =M ; poiché M # f(a)
e M#f(b),sihac#aec#b,quindi c € Ja,b[. Qualunque sia x € [a,5] si ha

7] teorema prende il nome da Michel Rolle (Ambert, Francia, 1652 - Parigi, 1719). Oltre al libro in cui compare
questo teorema, pubblicato ne 1691, pubblico un trattato di algebra.
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f(x)< f(c). Alloraper x €[a,c[ siha f(x)—f(c)<0 e x—c<0,quindi Ry(x,c)>0;
pertanto, per il teorema del confronto 3.3.9, st ha lim,_, - R/(x,c) >0, quindi

f/<c) = lime(x,c) = lim Rf(x,c) >0

X—C X—Cc— -

D’altra parte, Vx € Jc, b], risulta f(x)—f(c) <0 e x—c >0, quindi Ry(x,c) <0, dacui,
analogamente, segue f”(c) <0. Poiché si hasia f/(c) >0 che f’(c) <0 risulta f/(c)=0.
Nel caso che sia verificata la b), esiste ¢ € [, 5] tale che f(c)= m, procedendo come
nel caso a) si ottiene che ¢ € Ja,b[ e f/(c)=0.
Nel caso che sia verificata la ¢), massimo e minimo di f sono uguali tra di loro, quindi f
¢ costante, pertanto ha derivata nulla in ogni punto del dominio. u

4.2.2 Osservazione. Le tre ipotesi del teorema di Rolle:
a) f econtinuain [a,b],

b) f ederivabile in ]Ja, 5[,

) fla)=/(b),

sono essenziali. Se una delle tre non ¢ verificata pud non esistere un punto in cui f” si
annulla.

Consideriamo le funzioni

x, sexe[—1L1[,

-k ge={5 STET

for [FLI]=R, fio(x) =1x],
S L1 =R, fii(x)=x.

,,,,,,

Js fo |1 Ju
1

Figura 4.2.2

Le funzioni per cui non ¢ verificata la tesi del teorema di Rolle studiate nell’osservazio-
ne 4.2.2.

Si verifica facilmente quanto segue.
La funzione f; ¢ continua in [—1,1[, ma non ¢ continua in 1, ¢ derivabile in ]—1,1]

esiha fo(—1)=—1=f,(1).
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La funzione f|, € continua in [—1,1], ¢ derivabile in ]—1,1[\ {0}, ma non ¢ derivabile

in 0,estha f(—1)=1=f,,(1)

La funzione f; ¢ continua in [—1,1], € derivabile in ]—1,1[ e risulta f;;(—1)=-—1,
fu(1)=1, quindi f;;(—1)# f;;(1).

E evidente che la derivata di ciascuna delle funzioni, dove ¢ definita, ¢ diversada 0. <«

4.2.3 Teorema (di Cauchy'?)

Siano f,g:[a,b]—R.Se f e g sono continue in [a,b] e derivabili in ]Ja, 5[,
allora esiste ¢ € Ja, b[ tale che

(f(B)—f(a))g(c)=(8(b)—g(a))f(c).

. J

DivmosTtrAZIONE. Poniamo
h:la,b]—=R,  h(x)=(f(b)—f(a)g(x)—(g(b)—g(a))f (x).

Lafunzione b ¢continuain [a,b] ederivabile in Ja, 5[, perché f e g godono delle stesse
proprieta. Inoltre si ha

ha)=(f(b)—f(a))g(a)—(g(b)—g(a))f (@)= f (b)g(a)— g(b)f (),
h(b)=(f(b)—f(a))g(b)—(8(b)—g(a))f (b)=—[(a)g(b) + g(a)f (),

quindi h(a) = h(b). Pertanto b soddisfa le ipotesi del teorema di Rolle 4.2.1, percio esiste
¢ € Ja, b[ tale che h’'(c)=0. Poiché

W (e)=(f(b)—f(a)g'(c)—(g(b)—g(a))f (c),

(f(B)—f(a))g'(c)=(g(b)—g(a))f (c). N

Se g’ non si annulla, allora risulta g(a) # g(%). Infatti, se fosse g(a)=g(), per il
teorema di Rolle 4.2.1 dovrebbe esistere un punto in cui la derivata si annulla. In questo
caso la tesi del teorema di Cauchy puo essere scritta nella forma

f(B)—f@) _ f10)
gb)—gla) g'(c)

4.2.4 Osservazione. Il teorema di Cauchy ha una interpretazione fisica. Consideriamo un

st ha

unto materiale che si sposta nel piano, sia t t)) la sua posizione all’istante ¢ .
P p p ; g\r), P

Al tempo ¢ la componente della velocita lungo ’asse delle ascisse ¢ g’(¢) e la compo-
nente lungo I’asse delle ordinate ¢ f/(t). Pertanto la velocita vettoriale ¢ ( g'(e), f (t)) .

Se la posizione del punto nell’istante iniziale 4 coincide con quella nell’istante finale 4,
cio¢ f(b)—f(a)=0 e g(b)—g(a)=0, allora per qualunque ¢ € Ja, b[ ¢ verificata la tesi
del teorema di Cauchy.

Se esiste ¢ € Ja, b[ tale che f’(c) = g’(c) = 0, cio¢ c’¢ un istante in cui il punto ha
velocita nulla, allora la tesi del teorema di Cauchy e verificata per tale c.

121l teorema prende il nome dal gia citato Augustin-Louis Cauchy (v. nota 7), che lo pubblico in un trattato del
1823.



4.2. Funzioni derivabili in un intervallo 183

Supponiamo ora che la posizione finale sia diversa da quella iniziale e che la velocita
non sia mai nulla. Se g(a) # g(b), allora <f(b) —f(d))/(g(b) — g(a)) ¢ il coefficiente
angolare della retta passante per la p03121one iniziale e la posizione finale del punto, mentre
f'(c)/g'(c) ¢ il coefficiente angolare della retta che contiene il vettore velocita; pertanto
le due rette sono parallele. Quindi esiste un istante in cui la velocita ¢ parallela allo spo-
stamento del punto tra Iistante a e I'istante & . Un risultato analogo si ottiene anche se
g(a)=g(b), mentre f(a)# f(b)

La velocita del punto materlale ¢ tangente alla traiettoria. Quindi, se il punto cambia
posizione tra il tempo a e il tempo & e non ha mai velocita nulla, per il teorema di Cauchy
c’¢ un punto della traiettoria in cui la retta tangente ¢ parallela alla retta passante per la
posizione iniziale e la posizione finale del punto. <

4.2.5 Esempio. Siano
fo:i[—1L,1]-R, flz(x):xz—i-x,
g [—L1]-R, 812(x):x2—x-

Le funzioni f}, e g, sono polinomiali, quindi derivabili. Cerchiamo ¢ € ]—1,1[ che
verifichi la tesi del teorema di Cauchy.

Siha fi,(1) = fia(=1) = 2, (1) —gp(—1) =2 ¢, Vx € [-1,1], fiy(x)=2x+1,
g/,(x)=2x—1. Quindi ¢ deve verificare 'equazione 2(2c —1) = —2(2c + 1), cio¢ 4c =
—4c, pertanto ¢ =0.

<f12 )s 812(— )) <f13 )s 813(— ))

(][12(1), 812(1)> ( 13(1)’813(1»

Figura 4.2.3

Le curve costruite come nell’osservazione 4.2.4 relative alle funzioni studiate nell’esem-
pio 4.2.5.

A sinistra: ¢’¢ un punto in cui la tangente alla curva ¢ parallela alla retta passante per la
posizione iniziale e quella finale del punto.

A destra: ¢’¢ un punto in cui si annullano sia f; che g/;. Tale punto ¢ “angoloso” per la
curva, cioe non esiste retta tangente.
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Siano

Szt [-1L1] >R, fis(x) =x"+x°,

g [~L1]-R,  gy(x)=x"—x".

Le funzioni fi; e g;; sono polinomiali, quindi derivabili. Cerchiamo ¢ € ]—1,1[ che
verifichi la tesi del teorema di Cauchy.

Siha fi3(1)—fi3(=1)=2, g(1)—g(=1)==2 ¢, Vx€[-1,1], fi3(x) =2x +3x?,
g15(x) =2x—3x?. Quindi ¢ deve verificare I'equazione 2(2c —3c?) =—2(2c + 3¢?), cio¢
4c =—4c, pertanto ¢ =0. In tale punto f; e g{; si annullano. <

Risulta estremamente utile il seguente caso particolare del teorema di Cauchy.

4.2.6 Teorema (di Lagrange® o del valor medio)

Sia f:[a,b]—R. Se f ¢ continua in [a,b] e derivabile in Ja, b[, allora esiste

¢ € Ja, b[ tale che
f(b)—f(a)=(b—a)f'(c).

DIMOSTRAZIONE. Sia g:[a,b] — R tale che g(x) = x. Tale funzione ¢ derivabile, con
derivata che vale costantemente 1. Il teorema di Cauchy 4.2.3 applicato alle funzioni f

e g assicura che esiste ¢ € Ja, b[ tale che f(b)— f(a)=(b—a)f'(c). u
()) — ‘
i Figura 4.2.4
| Per il teorema di Lagrange, vi ¢ almeno
HORS i | un punto del grafico di f che ha tangen-
a b te parallela alla retta passante per 1 punti

(ﬂ’f(d» ¢ (b’f(b)>

4.2.7 Osservazione. La tesi del teorema di Lagrange puo anche essere scritta come

Fio=10-1@

Abbiamo cosi una relazione tra derivata e rapporto incrementale che, diversamente dalla
definizione, non coinvolge passaggi al limite. Cio saro utile per provare numerosi teoremi.

B1l teorema prende il nome da Giuseppe Luigi Lagrange (Torino, 1736 - Parigi, 1813), che lo pubblico in un
trattato del 1797. Lagrange ¢ stato tra i fondatori della meccanica analitica e ha dato grandi contributi allo sviluppo
di vari settori dell’analisi. Ottenne anche importanti risultati in astronomia, teoria dei numeri, algebra e geometria
analitica.
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Geometricamente abbiamo una uguaglianza tra il coefficiente angolare di una tangente
al grafico di f e il coefficiente angolare della retta passante per (a,f(a)) e (b,f(b)). Per-

tanto esiste un punto del grafico che ha retta tangente parallela alla retta passante per gli
estremi di tale grafico. <

Vediamo alcune conseguenze del teorema di Lagrange.

4.2.8 Teorema (sulle funzioni a derivata nulla)

Siano 7 C R intervallo e f: 1 — R derivabile. Se, Yx € I, st ha f/(x) =0,
allora f e costante.

DIMOSTRAZIONE. Siano x,y €I con x # y; possiamo per esempio supporre x <y . Poi-
ché I eunintervallosi ha [x,y] C I, quindi possiamo applicare il teorema di Lagrange 4.2.6

a f|[x,y] . Percio esiste & € Jx,y[ tale che f(y)— f(x)=f"(&)(y —x); poiché f'(£)=0,
stha f(y)—f(x)=0,cioe f(y)=F(x).

Quindi in tutti i punti del dominio f assume lo stesso valore, cioe ¢ costante. u

Il teorema seguente permette, in alcuni casi, di semplificare lo studio della derivabilita
di una funzione.

4.2.9 Teorema (sul limite della derivata)

Siano / C R intervallo, c€/ e f: I — R continua in / e derivabile in 7\ {c}.
Seesiste lim,_,. f'(x), allora esiste lim,_, R/(x,c)=lim,_, f'(x).

DimosTRAZIONE. Poniamo ¢ =lim___ f/(x). Abbiamo
YUe 4,3V ,ed: Vxel\{c}, xeV, = f'(x)eU.

Scelto U € .9, ,sta x e INV,; \{c}. Latfunzione f ¢ continua nell’intervallo chiuso di
estremi ¢ e x ed ¢ derivabile in tale intervallo escluso il punto ¢. Quindi sono verificate
le ipotesi del teorema di Lagrange 4.2.6, percio esiste ¢ appartenente all’intervallo aperto
di estremi ¢ e x tale che R/(x,c)=f"(£). Poiché ¢,x € V}; e V;; ¢ un intervallo, si ha

anche & € Vy;, quindi f'(§)€ U, cioe Ry(x,c) € U. Pertanto Yx € 1N Vy\ {c} si ha
R/(x,c)€ U, quindi f'(c)=lim,_, R/(x,c)="¢. ]

Questo teorema assicura che, se esiste reale il limite di f” in c, allora la funzione ¢
derivabile, con derivata uguale a tale limite. Se invece f’(x) ¢ divergente per x — c,

allora f non ¢ derivabile in ¢. E evidente che il teorema vale anche per 1 limiti unilateri;
pertanto se f’ ha limite sinistro e destro in ¢ diversi tra di loro, allora f non ¢ derivabile.

4.2.10 Esempio. Consideriamo la funzione
S R=R, o fiy(x) = x|x],

che € prodotto delle funzioni f; e f; (vedi esempio 4.1.1) di dominio R, tali che f,(x) =x
e f5(x) =|x|; la prima ¢ derivabile in R, la seconda ¢ derivabile in R* e non ¢ derivabile
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in 0. Quindi, per il teorema sull’algebra delle derivate 4.1.5, f,, ¢ derivabile in R* e,
Vx € R*, st ha

fisx) = [ (0)fs(x) + () f5 (x) = x| + x sgn(x) = |x] + x| = 2]x]

Risulta lim,_, f/,(x) = lim,_,,2|x| = 0. Pertanto, per il teorema sul limite della deriva-
ta 4.2.9, fi, ¢derivabile in 0, con f/,(0)=0. <

f14 f15

,,,,,,

/

|
|
|
|
.
1 1

,,,,,, _1 Figura 4.2.5
Le funzioni studiate negli
esempi 4.2.10 ¢ 4.2.11.

4.2.11 Esempio. Consideriamo la funzione

fist R=R, fis(x) =(x—=Dlx],

che ¢ prodotto di una funzione polinomiale per la funzione valore assoluto. La prima ¢
derivabile in R, la seconda ¢ derivabile in R* e non derivabile in 0. Quindi, per il teorema
sull’algebra delle derivate 4.1.5, f|s ¢ derivabile in R* e, Yx € R*, si ha

Fs(x) =|x|+ (x — 1)sgn(x) = x sgn(x) + (x — 1)sgn(x) = (2x — 1) sgn(x).

Risulta lim,_,o fi5(x) =lim, o (—2x+1)=1 e lim _ 4 f5(x) =lim,_ 0. (2x —1)=—
quindi, per il teorema sul limite della derivata 4.2.9, lim,_o R, (x,c) #lim . R, (x, )

quindi f;5 non ¢ derivabile in 0. |

4.3 APPLICAZIONI DEL CALCOLO DIFFERENZIALE

4.3.1 1 TEOREMI DI DE L’HOPITAL

Studiamo ora alcuni teoremi che, utilizzando il calcolo differenziale, forniscono stru-
menti utili per il calcolo dei limiti.
Siano f e g funzioni reali di variabile reale, definite in un intervallo 7 contenente il

Ruﬁlto ¢ etaliche f(c)=g(c)=0, mentre g(x ;éO per x € I\{c}. Allora, Yx € I'\{c},
£0)_ (= f@)x—0) _ Rymo)
80 (g0 —g@)/(i—c)  Ryx0)

)—
)—
Se f e g sono derivabili in ¢, con g'(c) # 0, allora esiste reale il limite, per x — ¢,

dell’'ultimo membro ed ¢ uguale a f’(c)/g’(c), quindi hmx_)c<f( x)/g(x )) =f'(c)/g'(c).

X

~
—

=
N—"

[l

~
—

=
N—

I

(
(

X

oQ
—~
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~
oQ
—~
=
~
|
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Osserviamo che, avendo supposto f e g derivabili in ¢, per il teorema di continuita
delle funzioni derivabili 4.1.3, risulta lim__ f(x)= f(c)=0 e lim _  g(x) = g(c) =0,
pertanto il limite si presenta in forma indeterminata 0/0. Se inoltre le funzioni f e g
sono derivabili in 7 e f/ e g’ hanno limite per x — ¢, allora, per il teorema sul limite
della derivata 4.2.9, risulta lim__ f"(x)=f"(c) e lim,_,, g'(x) = g’(c), quindi

i £ £

=lim——=.

e g(x) vt g/(x)

Questa osservazione puo essere generalizzata nel seguente teorema.

4.3.1 Teorema (de I'Hépital'*, forma 0/0, x — a)

Siano f,g: Ja,b[ = R. Se si ha:
a) f e g sono derivabili,
b) fim, . f(x)=lim, .. g(x) =0,
c) Vx€la,b[,siha g'(x)#0,
d) esiste lim,_, . lim,_, . (f'(x)/g'(x)),

allora esiste

lim f(x) = lim f’(x)
x—at g(x)  x—at gl(x)

\ J

Il teorema ¢ enunciato per il limite destro, perché questo rende piu semplice la dimo-
strazione. Ovviamente un teorema del del tutto analogo vale nel caso del limite sinistro,
quindi anche nel caso di limite per x che tende a un punto interno di un intervallo in cui
siano definite le due funzioni f e g.

DimosTtrAZIONE. Prolunghiamo f e g all’intervallo [4,5[ ponendo f(a) = g(a) =0.
Poicheé lim,_ . f(x)=lim . g(x)=0 le funzioni f e g sono continue anche in a.

Poiché Vx € Ja, b, siha g'(x) #0, risulta g(x) #0, se x #a . Infatti se, per assurdo,
fosse g(x)=0, allora si potrebbe applicare il teorema di Rolle 4.2.1 alla restrizione di g
all’intervallo [a,x], pertanto esisterebbe un punto in cui g’ si annulla.

Poniamo ¢ =lim__ . ( f(x)/ g/(x)> . Allora, per la definizione di limite, si ha

/(%)
g'(x)

Fissato U € .9, ,se x € Ja,b[N]a,a+ [, allora, per il teorema di Cauchy 4.2.3 applicato
alle restrizioni di f e g all'intervallo [a,x], esiste &, € Ja,x[ tale che

(f)—fla)g' (&)= (8(x)—g(a)[(&)-

4 Questo teorema e i seguenti prendono il nome da Guillaume de 'Hopital (Parigi, 1661 - Parigi, 1704), che li
pubblico in un trattato di analisi del 1696.

Tali teoremi erano gia stati trovati da Johann Bernoulli (Basilea, 1667 - Basilea, 1748, fratello del gia citato Jakob,
v. nota 1), che diede importanti contributi allo studio dell’analisi e dell’ottica.

YU€.$,38,eRT: Vxela, b, x€la,a+Sy[ = eU.
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poiché f(a)=g(a)=0¢e & € Ja,x[ C Ja,a+ Sy[, da qui segue
fx) _ f'E)

=———=¢cU.

gx)  g(&)

Abbiamo cosi dimostrato che, se x € Ja,a+ 8 [, allora f(x)/g(x) € U ; pertanto esiste

f@_,

lim
x—at g(x)

4.3.2 Esempio. Calcoliamo
. ox—4/x
lim ,
x—=1 x—1

gia studiato nell’esempio 3.3.1. Il limite ¢ nella forma indeterminata 0/0. Numerato-
re e denominatore sono derivabili in un intorno di 1, la derivata del denominatore vale
costantemente 1, quindi non si annulla. Il quoziente delle derivate e

1—1/(2y/x) 1 1
A il 0 PR SN

1 2 /x =1 2
Pertanto, per il teorema di de ’'Hopital 4.3.1,

.ox—4/x 1
lim =—.
=1 x—1 2

4.3.3 Teorema (de ’Hopital, forma 0/0, x — +o00)

Siano f,g: Ja,+oo[ > R. Sessi ha:

<

a) f e g sono derivabili,

b) lim,_, . f(x)=lim, . g(x)=0,
¢) Vx€la,+oo[,siha g'(x)#0,

d) esiste lim,_,,  lim . (f"(x)/g'(x)),

allora esiste

lim M: lim fx)

x+oo g(x)  xteo g/(x)

. J

DimosTRAZIONE. Poniamo b =1/a se a>0e b =1 se a <0. In ogni caso, se y € 0, 5[,
allora 1/y € Ja,+o0[, quindi possiamo definire le funzioni

710,60 - R, 7<y>=f(§>,

TR, T0)=e(5)

Verifichiamo che f e g soddisfano le condizioni del teorema di de ’'Hopital 4.3.1 per
y — 07 . Esse sono derivabili, perché composizione di funzioni derivabili e, Yy €10, 5],
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si ha
- 1 1 — 1 1
f’(y)=——2f’<—>, g’(y)=——g’<—>-
y Y
Poiché g’ non si annulla, anche g’ non si annulla. Inoltre

1m17@>=1mnf(§>= lim f(x)=0;

y—0t y—0t X—+00

analogamente, lim, . g(y) =0. Infine esiste

po L0) Gy Sy e )

y0 Tl y)  9mor (—1/y2)g/(1]y) 1m0+ g/(1fy)  x=teo gl(x)’

Allora, per il teorema di de I'Hopital 4.3.1, esiste

lim ]M = lim 7/(y)

=0 g(y) =0t gl(y)’

quindi esiste

PSR € DR ) NS A1) B A(C)

xotoo g(x) =0t g(y)  y-0r gly)  xoteo gl(x)’

Ovviamente un teorema analogo vale per il limite per x - —o0.

4.3.4 Teorema (de I’Hopital, forma ¢ /oo, x — a)

Siano f,g: Ja,b[ = R. Se si ha:
a) f e g sono derivabili,
b) g(x) e divergente per x —a™,
c) Vx€la,b[,siha g'(x)#£0,
d) esiste lim,_, . lim,_, . (f'(x)/g'(x)),
allora esiste
im L8 _ ppy )
lim = lim —.
ot g(x) et gl(x)

. J

DimosTrAZIONE. Poiché g ¢ divergente esiste un intorno di 0 in cui essa non si annulla;
si puod supporre, eventualmente restringendo il dominio delle funzioni, che non si annulli
in tutto 'intervallo Ja, b[ .

Siano x,y € |a,b[ con x <y ; per il teorema di Cauchy 4.2.3, applicato alle restrizioni
di f e g allintervallo [x,y], esiste £, , € Jx,y[ tale che

(fO)—f(0)g' (&) = (80— g(x))f ()

Pertanto si ha, successivamente,
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) f1E,,)
f(x)=f()+(g(x)—2g()) TE.)
fx) _f0)  FEy)  g0) F1Ey)
gx) glx) g, gx) g,,)

Consideriamo il caso lim,_, . (f"(x)/g'(x))={ €R.
Per semplificare le notazioni nel seguito, nella definizione di limite scegliamo &, pic-
colo, in modo che risulti Ja,b[N]a,a+8.[ = Ja,a+ 8.[; st ha quindi

VeeR",38,€10,b—a[: Vx € la,a+ S [, ‘]%—4<
g'(x

Scelto ¢ € 10,1[, fissiamo y € Ja,a + 8,[. Poiché g(x) ¢ divergente per x — a*, si ha
lim, . f(y)/g(x) =0 e lim__ . g(y)/g(x) = 0, quindi esiste 7, € Rt (che possiamo
supporre minore di &) tale che, se x € Ja,a+7_[, allora

‘ 10)

s0)] .
<
y[ € la,a+8.[, quindi
y)

Se x € Ja,a+7.[, allora risulta £, € ]x,
(

/&,

—l|<
g'(y) |
pertanto
FEN |FEL) F1E,,)
2| = 2l 4l 2+l < e+ |l /],
G| |eE,) T |S R MR
percio
f(x)_é f(y> f/(fxy)_g(y)f/(fxy)_é
‘g(x) ’ ’g(x)*g/(fx,ﬁ 5(x) g C.,) ’S
fo)] . |/y) )|/,
—{ el |———|<e+ec+e¢ N=¢ /).
S’gm TIYE,) +‘g(x) ) (1+1€)=(3+ 1)

Possiamo quindi concludere che lim, . (f"(x)/g'(x))=¢.
Consideriamo ora il caso lim,_, . (f/(x)/g/(x)> +00. Si ha

VM eR,38,€10,b—a[: Vx€la,a+ Sy, é(x) >M.

Scelto M € ]1,4+00[ fissiamo y € Ja,a + &, . Poiché g(x) ¢ divergente per x — a™, si
ha lim__ . f( )/g(x)=0¢e¢lim _, . g(y)/g(x)=0, quindi esiste 7,, € R* (che possiamo
supporre minore di &, ) tale che se, x € Ja,a +n,,[ , allora

‘@ 1 ‘g(y) 1

/1_4 .

g(x)
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Se x € la,a+n,[,allorasi ha

f&) _f0), FEy) g0) /)
glx) glx) g, gk g(E,.,)

fO L, LG (L 18)
>0 +gf<£x,y><1_ ( >>>_ﬂ7+M<1_A7>ZM_2'

Possiamo quindi concludere che limx_m( '(x)/g’ (x)) =+4o00.

%

gx

Nel caso che sia lim_, . ( f(x)/ g/(x)> = —oo la dimostrazione ¢ analoga. u

4.3.5 Teorema (de I’'Hopital, forma ¢ /oo, x — +00)

Siano f,g: Ja,+oo[ = R. Sessi ha:
a) f e g sono derivabili,
b) g(x) e divergente per x — +o0,
¢) Vx€la,+oo[,siha g'(x)#0,
d) esiste lim,_,,  lim . (f"(x)/g'(x)),

allora esiste

lim M: lim fx)

o gx) oo g/(x)

. J

La dimostrazione si ottiene dal corrispondente teorema di de ’'Hopital per x che tende
a un valore reale in modo analogo a quanto fatto nel caso della forma 0/0.
Ovviamente un teorema analogo vale per il limite per x - —o0.

4.3.6 Esempio. Calcoliamo
. Vx2+2
lim .
x—=+00 (/2 11

Il limite ¢ in forma indeterminata oo/oco, ma puo essere facilmente calcolato come
segue:

Neas BNV (RG0S wuGyre)

- = 1
Vx2+1 \/x2<1+(1/x2)> \/1+(1/x2) x—+00

Si puo anche cercare di calcolare il limite utilizzando il teorema di de ’'Hbpital 4.3.5.
Infatti la funzione di cui cerchiamo il limite ¢ quoziente delle funzioni

fie: R>R, fie(x) =V x2+2,
81" R—R, ge(x) =V x2+1.

Per x — +o00 si ha fj(x) > +00 e g, (x) = +oo. Inoltre f,, e g, sono derivabili e,
Vx €R,siha

X

/
m b g16

X

flé(x): \/xz:_'_l .

(x)=



192 Capitolo 4. Calcolo differenziale

Risulta g/,(x)#0, per x eR". Si ha

fo®) _x/Vx2+2 V1
ge(x)  x/V/x2+1 Ve

pertanto per applicare il teorema di de 'Hopital occorre determinare

. VxZ+1
lim .
x—400 x2 + 2

Questo limite ¢ del tutto analogo a quello che stiamo studiando, pertanto il teorema di de
I’Hopital non agevola il calcolo del limite. <

4.3.2 LA FORMULA DI TAYLOR

Sappiamo che il grafico di una funzione ha una retta tangente in ogni punto di derivabi-
lita; da un altro punto di vista, una funzione derivabile puo essere approssimata da un po-
linomio di primo grado. Cerchiamo di migliorare I"approssimazione utilizzando polinomi
di grado maggiore.

4.3.7 Esempio. Sia

][17:]_0051[_)Ra f17(x):1ix.

Per il teorema 1.3.19, Yn € N*, se x € |—o0,1[ si ha

n

n
1—x"t = (l—x)Zxkl”_l€ = (l—x)lee .
Pertanto

1:(1—x)Zxk+x”+1,
k=0

da cui segue
xn—l—l

1—x 1—x

1 n
= Zxk +
k=0

Poiché 1/(1—x) — 1, per x — 0, esiste un intorno di 0 in cui tale funzione ¢ limitata;
pertanto I'ultimo addendo ¢ O(x"*!). Quindi

1 S}
= E x® 4+ O(x"), er x —0.
1 X k=0 ( ) p

Abbiamo cosi determinato un polinomio che approssima f;, vicino a 0. Poiché, se n < m,
allora x™ ¢ trascurabile rispetto a x”, per x — 0, al crescere del grado del polinomio
I’approssimazione migliora. <

Studiamo il problema dell’approssimazione di una funzione con polinomi di grado su-
periore al primo nel caso generale. Iniziamo con 1 polinomi di secondo grado, facendo
considerazioni geometriche simili a quelle fatte per individuare la retta tangente.
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Sia f una funzione derivabile in un intervallo contenente il punto ¢. Consideriamo
una parabola di equazione y = g(x) con

glx)=a(x—c) + Bx—c)+y,

con a, 3,y € R. Consideriamo un qualunque polinomio di grado al piu 2, percio non chie-
diamo che sia o # 0, quindi la parabola pu6 degenerare in una retta. Il polinomio ¢ espresso
mediante potenze di x—c , perché questo semplifica lo studio del suo comportamento per x
vicino a c.

Imponiamo che la parabola passi per (c, f (c)) e che in questo punto abbia retta tangente
coincidente con la retta tangente al grafico di /. La parabola passa per (¢, f(c)) se e solo se

g(c)=f(c) ein tal caso le rette tangenti sono comuni se e solo se g’(c) = f’(c); pertanto

deve essere ¥ = f(c) e B = f'(c). Quindi la parabola ha equazione
y=a(x—cf+f'(c)(x—c)+f(c).

Imponiamo che la parabola abbia in comune con il grafico di f anche un altro punto
(d,f(d)); cio ¢ verificato se risulta

fld)=a(d—c)+f(c)(d—c)+f(c),

cioe /
L Sd)—fe)=fc)(d—c)
(d—c)
\
()
d
e Figura 4.3.1
La parabola p interseca il grafico di f in
due punti di ascissa ¢ e d; nel primo di
tali punti il grafico e la parabola hanno la

stessa retta tangente.

Al variare di d varia il coefliciente @ del termine di secondo grado dell’equazione della
parabola; studiamo come cambia la parabola per d — ¢, cioe studiamo il limite di a per
d — c. Il limite ¢ quoziente di funzioni infinitesime, quindi ¢ in forma indeterminata.

Consideriamo la funzione h = f — g, dove ¢ g la funzione il cui grafico ¢ la parabola
individuata sopra. Poiché f ¢ derivabile, anche 5 lo ¢; inoltre, » siannullain ¢ ein d . Per
il teorema di Rolle 4.2.1 esiste un punto d, , appartenente all’intervallo aperto di estremi ¢
e d ,tale che »'(d;)=0. Supponiamo f derivabile 2 volte; allora anche 4 lo ¢, quindi A’
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¢ derivabile; inoltre 5’(c) =0 perché f” e g’ coincidono in ¢ . Percid possiamo applicare
il teorema di Rolle 4.2.1 alla funzione 5’ nell’intervallo di estremi ¢ e d,; quindi esiste d,
in tale intervallo tale che 5”(d,)=0. Poiché d, ¢ compreso tra ¢ e d; e d, ¢ compreso
tra ¢ e d,anche d, ¢ compresotra ¢ e d. Si ha

0="5"(d,)=f"(d,)—g"(d,)) = f"(d,)—2a,
percid a = f”(d,)/2. Quando d tende a ¢, anche d, tende a ¢; quindi, se /" ¢ continua
in ¢, allora @ tendea f”(c)/2. Percio la parabola si “avvicina” alla parabola di equazione

PO ey 4 rie) =04 £0),

quando d si avvicina a ¢. Questa e detta parabola osculatrice al grafico di / nel pun-

to (c,f(c)).

Figura 4.3.2
La parabola p ¢ la parabola osculatrice al
grafico di f nel punto di ascissa c.

Precisiamo la relazione tra grafico di funzione e parabola osculatrice in termini di pro-
prieta di funzioni. Abbiamo visto che se f ¢ derivabile 2 volte nell’intervallo 7, allora
Vc,d €1 esiste d,, compreso tra ¢ e d, tale che il coefficiente a del termine di secondo

grado della parabola osculatrice ¢ uguale a f”(d,)/2; si ha quindi

),
2 (d—C) s
fd)=f©)+ flod—e)+ ey BT e,

se f” ¢ continua in ¢, 'ultimo termine ¢ o((d —¢)?) per d — ¢ Percio

fd)=f()+f () d—c)+

cioe

1/
¢
F@d)=f O+ £ =)+ T3 —ep wo(@—e),  per d .
Sotto opportune ipotesi di derivabilita, abbiamo cosi stabilito che f si puo approssi-
mare, in un intorno di ¢, con un polinomio di secondo grado il cui grafico ¢ la parabola
osculatrice. Lerrore che si commette sostituendo il polinomio alla funzione ¢ trascurabile
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rispetto (x—c)? ; questa approssimazione ¢ migliore di quella col polinomio di primo grado
avente come grafico la retta tangente, in tal caso I’errore ¢ trascurabile rispettoa x —c.

Estendiamo questi ragionamenti ai polinomi di grado qualunque.

Definizione polinomio di Taylor!

Siano 7 CR intervallo, f: I =R, c€l e n € N*. Supponiamo f derivabile 7
volte in ¢. Chiamiamo polinomio di Taylor di / di punto iniziale ¢ e ordine 7 il
polinomio

n (k) c
o0 =3 O o
k=0 .

\ J

Utilizziamo questa notazione anche nel caso » =0: T, denota la funzione che vale

costantemente f(c).

4.3.8 Esempio. Consideriamo la funzione

Sy ool =R, fyle)=——

:(1—x)_1,

gia studiata nell’esempio 4.3.7.
Determiniamo 1 polinomi di Taylor di punto iniziale 0 di f;,. La funzione € razionale
fratta, quindi indefinitamente derivabile; Vx € ]—o0, 1], st ha

Fox) = (=11 —x)" " (=) =(1—x)2,
) =(=)(1—x) 2 (=) =2(1—x)7,
) = 2A=3)(1—x) T (1) =320 —x)

E quindi evidente che, come si pud dimostrare per induzione, Yx € J—o0,1[, Y7 €N, si
ha £7(x) = ni(1—x)""1; pertanto £3”(0)=n!. Quindi

Ty, (x) = Z UT x* = Zxk
k=0 : k=0

Questo polinomio coincide con il polinomio che approssima f;, vicino a 0 trovato nell’e-
sempio 4.3.7. <

Chiamiamo formula di Taylor di punto iniziale ¢ e ordine n per la funzione f
'uguaglianza
f) =T, (x)+ R, ,(x);

il termine R, , = f —T,, ¢ detto resto della formula di Taylor di punto iniziale ¢ e
ordine 7 per la funzione f .

B1l polinomio prende il nome da Brook Taylor (Edmonton, Inghilterra, 1685 - Londra, 1731), che lo introdusse
in un libro pubblicato nel 1715. Questo polinomio era gia stato trovato in precedenza, il primo a scriverlo ¢ stato
James Gregory (Drumoak, Scozia, 1638 - Edimburgo, 1675), che lo citd in una lettera a un collega nel 1671.

Taylor ha dato contributi, oltre che al calcolo differenziale, alla geometria e alla meccanica.

Gregory ¢ stato uno dei precursori del calcolo differenziale, sviluppd la teoria delle serie per studiare questioni
geometriche; ha dato anche contributi allo studio dell’ottica.
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Questa formula ha interesse se abbiamo informazioni sul resto, che ci consentono di
sapere in che senso il polinomio 7, approssima f . Per ottenere queste informazioni ¢

necessario il seguente teorema.

4.3.9 Teorema

Siano I CR intervallo, f: I >R, c€l e n € N*. Supponiamo f derivabile 7
volte in ¢. Allora, per j =0,1,...,7, risulta

T)(c) = f9Ae).

\ J

DimosTRAZIONE. Evidentemente T, ,(c)=f(c).
Siano k€N e j €eN*. Se j <k, si ha (v. esempio 4.1.12)

J(x—c)k :
PEZS k1), (b + 1) — )t
dx’
quindi
d/(x—c)*
: =0,
dx/ x=c
Se j >k
d/(x —c)k
, =0.
dx
Infine
df(x—c)F
——— —k!
dx* ’

Pertanto, per j =1,2,...,n st ha

d’ Tc,n(x)
dxi

_H QA= )
—é - o _ j! ].—f () |

X=cC

Enunciamo alcuni teoremi che serviranno per ottenere informazioni sul resto.

4.3.10 Teorema

Siano I C R intervallo, f: ] — R derivabile, c €1 e a €[0,+00[. Se f(c)=0
e f/(x)=o(|x—c|*), per x —>c,allora f(x)=o(|x—c|*™"), per x —>c.

DimosTrAZIONE. Sia x €I\ {c}. Per il teorema di Lagrange 4.2.6, applicato alla restrizione
di f all’intervallo di estremi x e c, esiste &, interno a tale intervallo, tale che si ha

F(x)—f(c)=f"(E)(x—c); per ipotesi f(c)=0, pertanto risulta f(x)= f'(& )(x—c).

Poiché |&, —c| < |x —c|, da qui segue

f) | _FEIE=a] _ [FEN _ DN E—cl® _ [f(E)]

el et el G el x—clr T~
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Poiché lim,_,, f'(x)/|x —c|* =0, si ha
f'(x)

|x —c|®

YVeeR", 38, eR": Vxel\{c}, x€lc—3.,c+S8.[ =

Fissato e €RT,se x€IU]c—3,,c+38.[\{c},stha { €IU]c—3.,c+3.[\{c} quindi
risulta | |
f(x) f1(&)
< .
et = jg—c =

Percio lim___ f(x)/|x —c|**' =0. u

4.3.11 Teorema

Siano 7 CR intervallo, f: I >R, c €l e n €N*. Supponiamo f derivabile 7
volte in ¢. Se fU)(c)=0 per j =0,1,...,n, allora f(x)= o((x—c)”), per x —c.

DimosTrRAZIONE. Dimostriamo il teorema applicando il principio di induzione 1.3.4 alla
proposizione 22 (n): qualunque sia f: I — R derivabile 7 volte in ¢, tale che fU)(c)=0,
per 1 =0,1,...,7n,si ha f(x):o((x—c)”),per X —c.
Consideriamo il caso n=1. Se f(c)=f"(c)=0, allora
@) f 1)

m—— =Ilim
X—cx—c x—oC¢  xX—C

=f"(e)=0,
percio 22 (1) e vera.
Supponiamo ora che 2 (n) si verificata. Sia f: I — R derivabile 7+ 1 volte in ¢ tale

che
flO=fe)=-=f"(e)=f"(c)=0.
Allora f” ¢ derivabile in ¢ e si ha
fl)=(fYe)==(f")"e)=0,

da cui, per ipotesi induttiva, f’(x) = o((x —¢)"), per x — ¢. Poiché f(c) =0, per il
teorema 4.3.10si ha f(x) =o((x —c)"*"), per x — ¢, quindi 2 (n+1) ¢ verificata. ~ M

4.3.12 Teorema (formula di Taylor con resto nella forma di Peano'®)

Siano / CR intervallo, f: I >R, c €I e n €N*. Supponiamo [ derivabile »
volte in ¢. Allora

f)=T,,(x)+o((x—c)"),  per x—c;

inoltre 7, , € l'unico polinomio di grado minore o uguale a 7 che ha questa proprieta.

. J

16Questa forma del resto prende il nome da Giuseppe Peano (Cuneo, 1858 - Torino, 1932), che la pubblico in un
trattato sul calcolo differenziale del 1884. Peano ottenne importanti risultati in logica matematica, algebra lineare
e in vari settori dell’analisi tra cui le equazioni differenziali. Fu anche studioso di filosofia.
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DiMOSTRAZIONE. Per il teorema 4.3.9 la funzione f—T7,, siannulla insieme a tutte le deri-
vate fino all’'ordine 7 in c; per il teorema 4.3.11si ha quindi f(x)—T, ,(x) = o((x —¢)"),
per x — ¢, pertanto f(x)=T_,(x)+ 0((x —c)”) .

Sia Q un polinomio di grado minore o uguale a 7 tale che

f(x)=Q(x)+o((x—c)"), per x —c.
Dobbiamo dimostrare che Q =T, ,, cioe che Q—T,_, ¢ il polinomio nullo.
Per quanto gia dimostrato si ha

Q) =T ,(x) <Q(x)—f(x) f(x)—Tc,n(x)>

li =1
xlig (x_c)n xlirg (x_c)n (x_c)n

quindi, ponendo x —c =1y,

I Q(y+c)_Tc,n(y +C)
m =0
y—0 yn

La funzione y — Q(y +¢)—T,,(y +¢) ¢ polinomiale di grado minore o uguale a 7.
Per concludere la dimostrazione ¢ sufficiente provare che se R ¢ un polinomio di grado
minore o uguale a 7 e lim_,R(y)/y” =0, allora R ¢ identicamente nullo. Proviamo
I'implicazione contrapposta: se R ¢ un polinomio di grado minore o uguale a 7 non

identicamente nullo, allora non ¢ vero che lim _,R(y)/y" =0.

Sia quindi R un polinomio di grado minore o uguale a #» non identicamente nullo;
indicato con m il piu piccolo esponente tale che il coefficiente di y” € non nullo, risulta

R(y)=37_ a.y* con a, #0.Siha

Ry) " < I o
= >y T =y Y eyt
y y k=m k=m

Per y — 0 il secondo fattore ha limite 4,, , mentre il primo ha limite 1, se m =n, e limite
destro +00,se m < n. In ciascuno dei due casi il limite del prodotto non puo essere 0. H

4.3.13 Osservazione. Per la formula di Taylor con resto nella forma di Peano, sappiamo
che ogni funzione derivabile 7 volte in ¢ pud essere scritta come somma di un polinomio
di grado al piu 7 con una funzione trascurabile rispetto a (x—c)” . Se n =1 € conseguenza
immediata della caratterizzazione della derivabilita 4.1.2 che vale il viceversa, cio¢ se una
funzione f ¢ somma di un polinomio di grado al pit 1 con una funzione trascurabile
rispetto a x —c, per x — ¢, allora f ¢ derivabile in ¢. Cio non ¢ verose n > 1.

Per n € N\ {0,1} sia

x”“sin(x_n), se x € R,
IR Ra X)=
f18 - f18< ) {O, se x=0.
St ha
n+1 o3 —-n
S| | sinGT) ey < x| —0,
xn x" o

pertanto fj4(x) = o(x"), cioe fi4 € somma del polinomio identicamente nullo con una
funzione trascurabile rispetto a x”, per x — 0.
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La funzione fi4 ¢ evidentemente derivabile in R*, con derivata
Fa(x) = (n 4+ D)x" sin(x™") + x" " cos(x ™" )(—n)x "' = (n + 1)x" sin(x ") —ncos(x ).

Inoltre

_ 0 n+1l o3 —n
lim 780 =/ _ o ¥ e in(e ) =0,
x—0 X — O x—0 X x—0

Quindi fg ¢ derivabile in 0 e f3(0) = 0. Poiché non esiste lim,_,;cos(x™"), non esi-
ste neppure lim,_, fj5(x), pertanto f;; non ¢ continua in 0, quindi non ¢ derivabile;
percio fig non ¢ derivabile 2 volte in 0. <

Vediamo ora una differente forma del resto, che non coinvolge limiti per x che tende
al punto iniziale del polinomio.
Il teorema di Lagrange 4.2.6 puo essere interpretato come una formula di Taylor per

n = 0. Infatti per tale teorema, sotto opportune ipotesi, se ¢ e x sono due punti distinti
del dominio di £, allora esiste & compreso tra ¢ e x tale che f(x)=f(c)+f'(§)(x—c).

Poiché il polinomio di Taylor di ordine O ¢ la costante f(c), possiamo scrivere
f) =T o(x)+f(E)x—0).

Per provare questa generalizzazione ¢ utile il seguente teorema, che generalizza il teore-

ma di Cauchy 4.2.3.

4.3.14 Teorema

Siano f,g:[a,b]— R e n € N. Supponiamo f derivabile n voltein [4,5], con
derivata 7 -sima continua, e 7+ 1 volte in Ja,b[ e g continua in [a,b] e derivabile
in Ja, b[ . Indichiamo con T, , il polinomio di Taylor di punto iniziale 4 ¢ ordine 7

di f. Allora esiste ¢ € Ja, b[ tale che

(f(b)— Ta,n(b))g/(C) _ <g([7)— g(d))f<n+1)(c) (b ;!C>n |

. J

Il teorema di Cauchy ¢ il caso particolare » = 0. Infatti, per tale 7, T, vale costante-
mente f(a).

DimosTRAZIONE. Poniamo

n L)y
h:la,b]—R, b(x)zzw(b—x)k,

!
= k!
Poiché tutte le derivate fino all’ordine 7 di f sono continue in [4,5] e derivabili in

Ja,b[, b € continua in [a,b] ed ¢ derivabile in ]a,5[. Allora, per il teorema di Cau-
chy 4.2.3, esiste & € Ja, b[ tale che

(h(b)—h(a))g'(c)=(g(b)—g(a))h'(c). (4.3.1)
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Si ha

= R o
pry=3 LG 4,y = s,
— k!
n_ fk+1)(c n_ £k
h/(C): f k'( )(b—C)k—Zf k'( )/e(b C)/e—l —
k=0 : k=1 :
n_ £k+1)( nl £G4+ (¢ (n+1) (¢
— f k'()(b_c)k_Zf]]'()(b_ )]_f n'()(b C)n
pa— ! = ! !

Pertanto I'uguaglianza (4.3.1) diventa

B oy (o oy L)
(f(0)=T,,(0))g"(c) = (&(b) = g(a)) ——— (b —¢)" =0,

da cui segue immediatamente la tesi. [

4.3.15 Teorema (formula di Taylor con resto nella forma di Lagrange'!”)

Siano I CR intervallo, f: I - R, c€l e n €N. Supponiamo f derivabile 7
volte in I, con derivata 7 -sima continua, e #+1 voltein 7\{c}. Allora, Yx € I'\{c},
esiste £ compreso tra ¢ e x tale che

_ f(n+1)(£) _\nt+l
f(.X')— Tc,n(x>+ (7Z+1>' (X C) .

DimosTrAZIONE. Applichiamo il teorema 4.3.14 nell’intervallo di estremi ¢ e x, con g

tale che g(y) = (x—y)" ™. Poiché g’(y) = —(n+1)(x—y)", esiste &, compresotra ¢ e x
tale che

(x—&)"

~(f () =T, (x))(n + 1)(x = &) = (0—(x =)™ ) f"*(E) o

(FO) =T )+ 1) = (e F0 )

da cui segue la tesi. u

Utilizzando altre funzioni g, dal teorema 4.3.14 si ottengono altre forme del resto.

7Questa forma del resto prende il nome dal gia citato Giuseppe Luigi Lagrange (v. nota 13) che la pubblico in
un trattato del 1797.
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4.3.16 Teorema (formula di Taylor con resto nella forma di Cauchy'®)

Siano I CR intervallo, f: I >R, c €l e n €N. Supponiamo [ derivabile 7
volte in I, con derivata 7 -sima continua, e n+1 voltein I'\{c}. Allora, Yx € I'\{c},
esiste £ compreso tra ¢ e x tale che

(n+1)
=T+ oy gy

\ J

DimostrAZIONE. Applichiamo il teorema 4.3.14 nell’intervallo di estremi ¢ e x, con g
tale che g(y)=x—y. Poiché g’(y) =—1, esiste £, compreso tra ¢ e x tale che

(F) =T () = (0— (e — ) Fre0E) =2

n!

)= T (x) = (e — ) pe) =)

n!

cioe

da cui segue la tes. [

Vediamo una forma piu generale del resto, che comprende come casi particolari sia il
resto nella forma di Lagrange che quello nella forma di Cauchy.

4.3.17 Teorema (formula di Taylor con resto nella forma di Schlémilch')

Siano I C R intervallo, f: I - R, c €I, n € N e k € N*. Supponiamo f
derivabile 7 volte in 7, con derivata 7 -sima continua, ¢ 7+ 1 volte in I\ {c}.
Allora, Yx €\ {c}, esiste £ compreso tra ¢ e x tale che

(n+1)
P =T+ T (e e gyt

\ J

Osserviamo che nel caso particolare £ =1 si ottiene il resto secondo Cauchy, mentre
nel caso & =n+1 si ottiene il resto secondo Lagrange.

DimostrAzIONE. Applichiamo il teorema 4.3.14 nell’intervallo di estremi ¢ e x, con g ta-
le che g(y)=(x—y)*. Poiché g'(y)=—k(x—y)*~!, esiste &, compresotra ¢ e x tale che

_<f(X)— Tc,n(x)>k(x _é’)k—l — <O—(x _C)/e>f(n+1)(§) M ,

n!
cioe
(x _ 5)n+1—k

n!

b

() =T, () = (x =) 1 fEUE)

da cui segue la tesi. u

8Questa forma del resto prende il nome dal gia citato Augustin Louis Cauchy (v. nota 7) che la pubblico nelle

lezioni tenute all’Ecole royale polytecnique di Parigi nel 1823.

YQuesta forma del resto prende il nome da Oscar Schlomilch (Weimar, Germania, 1823 - Dresden, Germania,
1901) che la pubblico in un manuale di calcolo differenziale nel 1847. Schlémilch diede importanti contributi allo
sviluppo dell’analisi matematica.
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Utilizziamo la formula di Taylor con resto nella forma di Peano per stabilire una for-
mula per le derivate successive della composizione di due funzioni.

4.3.18 Teorema (sulla derivata 7 -sima della composizione, formula di Faa di

Bruno®)

Siano /,] CR intervalli, f: I >R, g:J >R, cel e n€N\{0,1}. Supponia-
mo chesia f(I)CJ. Se f ederivabile n voltein ¢ e g ¢ derivabile n volte in f(c),
allora g o f ¢ derivabile 7 volte in ¢ e

(gof)(c)=
=Spe) 3 (B (CY (L)

S PP P | |
k=1 Grofpreafn)elyy 1171277 I 7

dove, per k=1,2,...,7, sl pone

In,k = {(].1’]'2’ ceesfn) EN?

Z]} =k, Ziji = ”}
1=1 1=1

DiMOSTRAZIONE. Proviamo anzitutto, per induzione, che go f ¢ derivabile 7 volte in c.
Per il teorema sulla derivata della composizione 4.1.8, se f ¢ derivabile in ¢ e g ¢&

derivabile in f(c), allora gof & derivabile in ¢. Quindi per » =1 I'affermazione ¢ vera.
Supponiamo che ’affermazione sia vera per 7. Se f ¢ derivabile 741 voltein c e g ¢

derivabile 741 voltein f(c), allora f” ¢ derivabile 7 voltein ¢, e g’ ¢ derivabile 7 volte

in f(c).Siha (gof) =(g'of)f’, peripotesi induttiva g’o f ¢ derivabile n volte in ¢,

quindi anche (gof) ¢ derivabile 7 volte in ¢, quindi gof ¢ derivabile 741 voltein c.
Per la formula di Taylor con resto nella forma di Peano 4.3.12 si ha

n £ |
f(x):Z%(x—c)]—l—o((x—c)"), per x —c,
J=0 ’
n (k) c
g(y)=2#(y —£©) +o((y—f(©))"), pery — f(c),
k=0 :

pertanto, per x — ¢, si ha

g(f(x)= (43.2)

n_ o F(C)) /e £ | ¢ .
8§ VY)) g( )> <]Zf—( )(x—c)]-l—o((x—c)n)—f(C)) -|—o<(f(x)—f(6)> >:

-0 J!

k=0

La formula prende il nome da Francesco Faa di Bruno (Alessandria, 1825 - Torino, 1888), che la pubblicd in un
articolo del 1855. La formula, sotto varie forme, era gia stata enunciata in precedenza da altri matematici, il primo
¢ stato Louis Frangois Antoine Arbogast (Mutzig, Francia, 1759 - Strasbourg, Francia, 1803), che la pubblico in
un trattato sul calcolo differenziale nel 1800.

Faa di Bruno ¢ stato studioso di analisi, meccanica, astronomia.

Arbogast diede vari contributi allo sviluppo del calcolo differenziale e del calcolo integrale.
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_Z g(k) <Z f(] -I—o((x—c)”))le +0<<f(x)—f(c)>n>.

Poiché f ¢ derivabile in ¢, per x — ¢, risulta f(x)— f(c) = O(x —c), pertanto si ha
(f(x)=f())" =O((x—c)"), quindi o((f(x)—f(c))") = o((x —c)"). Se b & una qua-

lunque funzione da 7 a R, continua in ¢, e k> 1, allora, per il teorema sulla potenza di
un binomio 1.3.16 risulta, per x — ¢,

(h(x)+o((x—c)))’ :i<§>(h(x))k_€ o((x—c)) =

)+ 35 () —er =
= (h(x)) +o<<x—c>”>;::<§><b< ) o —oy)

Poiché

pertanto
Lo ket ¢ k
SV ofte—r) = o)+ of(x=er).

Quindi dall’equazione (4.3.2) segue

g(f(x))=Z <Zf (x—c) ]>k+o<(x—c)”>.

k=0

2 con una funzione

Pertanto (g o f)(x) € somma di un polinomio P, di grado al piu »
trascurabile rispetto a (x—c)” . Siano @g,a4,...,@,, € R tali che P(x) = ZZZZO a,(x—c)*.

Gli addendi con esponente maggiore di 7 sono trascurabili rispetto a (x —¢)” , quindi

Zak x—c)f + Z a,(x—c) —I—o ((x—c) Zak x—c) +0((x—c))

k=n+1

Poiché g o f ¢ derivabile n volte in ¢, per la formula di Taylor con resto nella forma
di Peano 4.3.12, 377 a;(x —c)* &l polinomio di Taylor di go f di punto iniziale ¢ e
ordine 7. Pertanto (g o f)")(c) ¢ n! per il coefficiente di (x —c)” in tale polinomio, che
coincide con I’analogo coefhiciente del polinomio P.



204 Capitolo 4. Calcolo differenziale

Per il teorema sulla potenza di un polinomio 1.3.18, posto

Tk :{(61,62,...,€n)eN” 10+ 0+ +1, :/e},

st ha

g ®(f(0)) (< £9(c) B j’e_
kzz(; k! <]Z:; j!( )>_

- £ k n ) N
2 ((1,62,;&1)6]”’/6<g1,£2,...,€n>1_[< ]| ( )> =

J=1

n " () c [/.
- g(k)<f(C)> Z f '(2'1[ 'l_[<f] ( )> (x_c)[1+2€2+m+n[" .

'
k=0 (Cilyl )l 1 j=t )

k=0

Gli addendi contenenti (x—c)” sono quelli che si ottengono con (¢4,(,,...,{,) €], tale

che {,+20,+---+nl, =n. Evidentemente se £ =0 si ha ({,,{,,...,{,)=
quindi non si ha ¢, +2¢,+---+nl = n. Pertanto, posto, per k=1,2,...,n

Sit=k it =0},
1 1=1

1=

I, = {(51,52,...,@) e N

il coefficiente di (x —c¢)” ¢

n 1 n D\
Seb(fe) > flwzz---fvl_Kf 9,

|
(o lort el , =1 )

n 7,

da cui segue il teorema. u
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