(X, d) SP. METRICO SI DICE SCONNESSO = JA, AZEX, A, AZEA, X A APERTI L.C $X = A, \dot{U}A_z$, $A, AA_z = \beta$ UVVYAMENTE (X, d) SM SI NIRA CONNESSO CED NON E SCONNESSO RMK CONNESSIONE & SUTTOINSIEM APERTI / CHIUSI NB &, X SONO APERTI/ CHIUSI TRIVIAL PROP (X, d) SP. METTRICO (X, d) SCONNESSO C=> JAEX, AZ \$, X CON A APERTO / CHIUSO PROOF => (X, d) SCONNESSO => 3A, AZ EX $A_{1,A_{2}} \neq \phi, X, A_{1,A_{2}} \land \rho \in \mathfrak{PT} \qquad \forall e. X = A, \forall A_{2} \land (x) \land (A, A_{2} = \phi) \land (x) \land (x)$ IMPLIEA Az = (A,) = A, CHIUSO $A_1 = (A_2)^e \Rightarrow A_2 eriuso$ $=) \quad \exists A \in X, A \neq \phi, X, A APERTU/ CHIUSO.$ PONIAMO A, = A , Az = AC = X = A, UA2 con A, A2 + Ø, X PAPERTU APERTO

Ourieneura , se
$$(X, d)$$
 converso \rightarrow
 \Rightarrow $A \neq d, X$ en A Abero lemino.
This (TEOREMA as conversione eventoes)
 $n \in 2^{+}$, co Sakolo \mathbb{R}^{n} Eventineo
 $\stackrel{\circ}{\mathrm{E}}$
 $CONVESSO []]
CORDELARIO NO \mathbb{R}^{n} EVENTOED
 $\stackrel{\circ}{\mathrm{E}}$
 $CONVESSO []]
CORDELARIO NO \mathbb{R}^{n} EVENTOED
 $\stackrel{\circ}{\mathrm{E}}$
 $CONVESSO []]
CORDELARIO NO \mathbb{R}^{n} EVENTOED
 $\stackrel{\circ}{\mathrm{E}}$
 $A \neq 2^{+}$, co Sakolo \mathbb{R}^{n} Eventoed
 $\stackrel{\circ}{\mathrm{E}}$
 $CONVESSO []]
 $CONVESSO []]$
 (2) A $\leq \mathbb{R}^{n}$, A $\neq d$, \mathbb{R}^{n}
 $A = Aprezio \Rightarrow A DON CRUSSO
 $\stackrel{\circ}{\mathrm{E}}$ A $\leq \mathbb{R}^{n}$
 $A = ENNSO \Rightarrow A DON DERITO
 $\stackrel{\circ}{\mathrm{E}}$
 (2) A $\leq \mathbb{R}^{n}$, $A \neq d$, \mathbb{R}^{n}
 (2) A $\leq \mathbb{R}^{n}$
 (2) A $\leq \mathbb{R}^{n}$ (\mathbb{R} eventso $\stackrel{\circ}{\mathrm{E}}$ CONVESSO (\mathbb{T}^{n})
 (2) A $\leq \mathbb{R}^{n}$
 (2) A $\leq \mathbb{R}^{n}$ ($\mathbb{R}^{n} \in \mathbb{R}^{n}$ ($\mathbb{R}^{n} \in \mathbb{R}^{n}$)
 (2) A $\leq \mathbb{R}^{n}$ ($\mathbb{R}^{n} \in \mathbb{R}^{n}$)
 (2) A $\leq \mathbb{R}^{n} = \{q \in \mathbb{R}; q \in \mathbb{R}^{n}\} \in \mathbb{R}^{n} \neq d$, \mathbb{R}^{n}
 (2) A $\leq \mathbb{R}^{n} = \{q \in \mathbb{R}; q \in \mathbb{R}^{n}\} \in \mathbb{R}^{n} \neq d$, \mathbb{R}^{n}
 (2) A $\leq \mathbb{R}^{n} = \{q \in \mathbb{R}; q \in \mathbb{R}^{n}\} \in \mathbb{R}^{n} \neq d$, \mathbb{R}^{n}
 (2) A $\leq \mathbb{R}^{n} = \{q \in \mathbb{R}; q \in \mathbb{R}^{n}\} \in \mathbb{R}^{n} \neq d$, \mathbb{R}^{n}
 (2) A $\leq \mathbb{R}^{n} = \{q \in \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n}$
 (2) A $\leq \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n}$
 (2) A $\leq \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n} \in \mathbb{R}^{n}$
 (2) A $\leq \mathbb{R}^{n} \in \mathbb$$$$$$$

$$\begin{aligned} & \mathcal{Q} = \mathcal{Q}_{ch} \stackrel{\circ}{\cup} \mathcal{Q}_{ch} \implies \mathcal{Q} \in \text{isemarise} \\ & \text{MORELY ADARNOW AD$$



