# Codifica delle Informazioni e Aritmetica Binaria

Reti Logiche T

Pierluigi Zama Ramirez

Pierluigi.zama@unibo.it

# Programma di reti logiche

Saper
Descrivere
Progettare
e Analizzare
Le
Macchine
Digitali

5: Reti sequenziali sincrone

4: Reti sequenziali asincrone

3: Reti combinatorie

2: Codifica binaria dell'infor.

1: Macchine digitali

## Argomenti

- Informazione
- Codifica Binaria 01
- Codici 👪
- Rappresentare i numeri
- Operazioni aritmetiche

## Informazione

- Attributo del messaggio
- E' un entità misurabile
- E' diminuzione di incertezza (esprime una scelta tra un insieme di alternative possibili)
- Dato un segnale, l'informazione è contenuta nella sua variazione entro la sua dinamica.
- Nel corso di Reti Logiche i segnali sono digitali

## Informazione

- L'informazione può essere rappresentata in bit (Binary digIT): un'astrazione per il livello elettrico alto (1) o basso (0) [logica positiva].
- Quantità di informazione: il numero minimo di bit che servono a codificare un messaggio
- Un oggetto 'vero' o 'falso' porta 1 bit di informazione.
- Esempi di informazione: Testo, immagini, audio, video...
- Le *macchine digitali* usano l'informazione codificata in codice binario per dare dei risultati, anch'essi in codice binario

# Codice: Simboli, Alfabeto e Stringa

**Codice**: E' un sistema di Simboli elementari appartenenti ad un Alfabeto convenzionalmente designati per rappresentare un'informazione.

Informazione: Stringa di lunghezza finita di Simboli.

Esempi:

Testo

Alfabeto: Caratteri

Simboli: {a,b,c...,z}

Esempio di stringa: «Ciao»

Numeri decimali

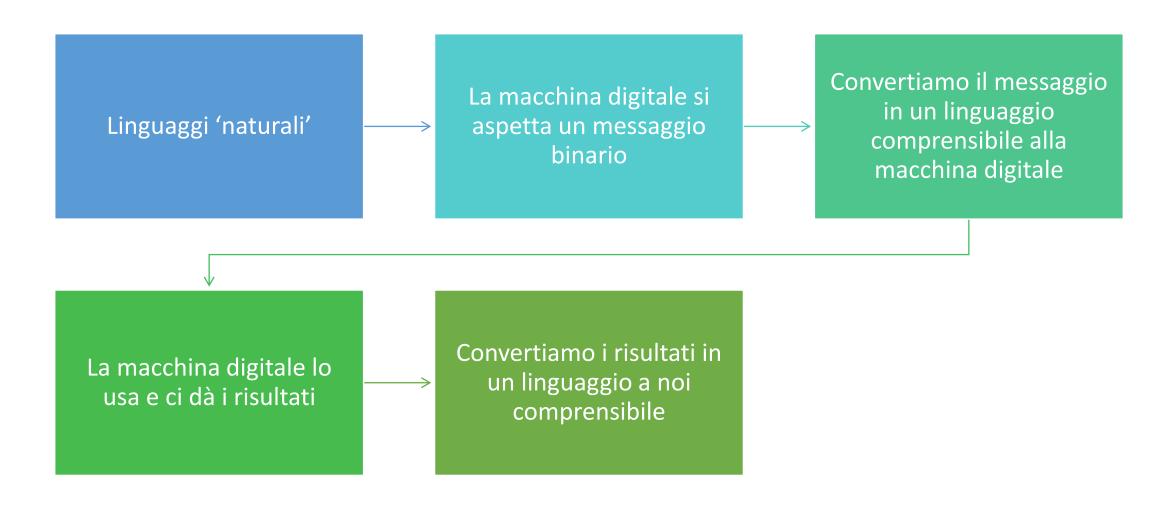
Alfabeto: Cifre

Simboli: {0,1,2,3,4,5,6,7,8,9}

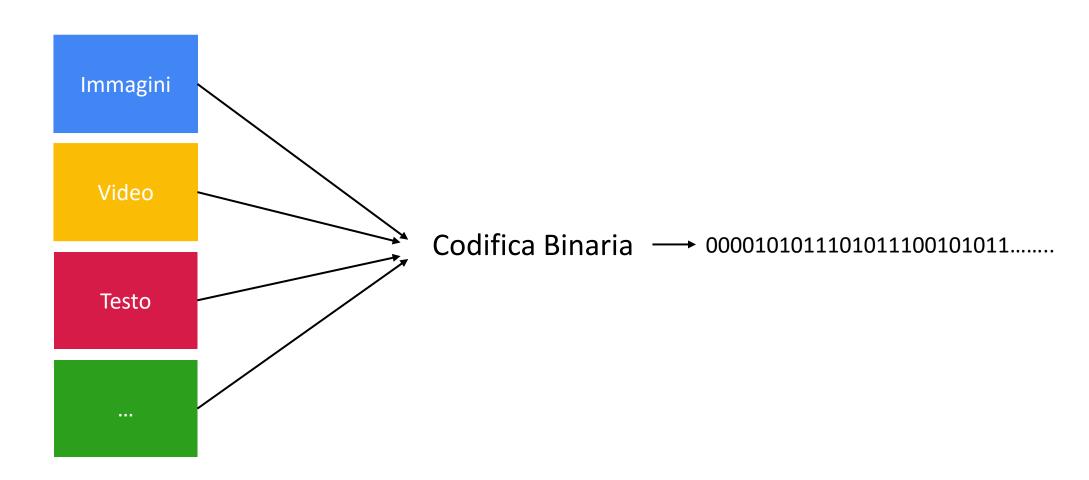
Esempio di stringa: «519»

Nel codice binario l'alfabeto è formato dai simboli «0» e «1»

## Codifica Binaria



## Codifica Binaria



## Codifica Binaria

#### I simboli vengono codificati tramite sequenze di 0 e 1

Per 2 simboli basta 1 bit

Per 4 simboli servono 2 bit

Per M simboli servono N bit:  $N = \lfloor log_2 M \rfloor$ 

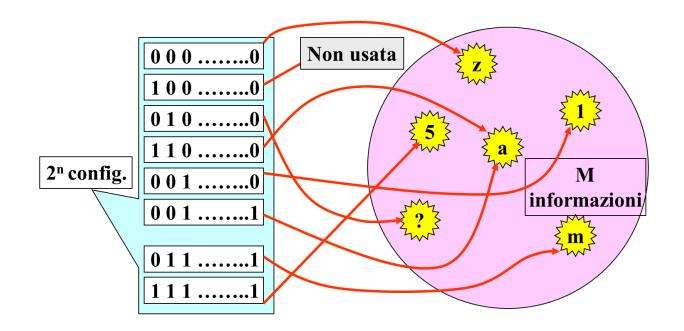
Alfabeto  $A_1 = \{0,1,2,3,4,5,6,7,8,9\}$ :  $\lceil \log_2 10 \rceil = 4$ 

Occorrono almeno 4 bit.

Potrei codificare fino a 16 simboli: da qui nasce la numerazione esadecimale

Alfabeto latino (solo maiuscole)  $\lceil \log_2 26 \rceil = 5$ Occorrono *almeno* 5 bit.

Quanti bit per includere le minuscole e i numeri?



## Codice Binario

Una volta calcolato il numero di bit n necessario per codificare gli M simboli del mio alfabeto, devo far corrispondere ad ogni simbolo almeno una configurazione.

Il codice binario è una funzione che ad ogni configurazione di n bit fa corrispondere uno dei simboli dell'alfabeto.

$$2^n \geq M$$

Perché  $\geq$ , e non solo = ?

### Codice Binario

La scelta del codice (la funzione che associa le configurazioni binarie ai simboli) deve essere condivisa.

Dati M simboli e n bit, quanti possibili codici biunivoci (ogni simbolo 1 configurazione)?

$$C = \prod_{i=0}^{M-1} (2^n - i) = \frac{2^n!}{(2^n - M)!}$$

Con *n* numero di bit, *M* numero di simboli.

Per esempio, per n = 2 bit, e M = 2 simboli

$$C = 12$$

### Codice Binario

#### Ridondante

$$n > \lceil \log_2 M \rceil$$

Permettono il controllo e una maggiore resistenza all'errore; semplificano la generazione e l'interpretazione delle informazioni.

(Potrei usare n bit, ma ne uso di più)

#### Non ridondante

$$n = \lceil \log_2 M \rceil$$

Minor costo di memorizzazione e maggiore efficienza di calcolo (e alcune situazioni particolari)

#### Proprietario

Volto all'ottimizzazione delle prestazioni di una specifica macchina e/o a 'blindare' il mercato. Esempi: Linguaggio Assembler, Telecomando TV

#### Standard

Esito dell'attività di un ente internazionale, o codice proprietario largamente riconosciuto e utilizzato.

Esempi: Stampanti e Calcolatori

# Rappresentare i numeri: Codice Binary Code Decimal (BCD)

| Cifra Decimale | Codice Binario |
|----------------|----------------|
| 0              | 0000           |
| 1              | 0001           |
| 2              | 0010           |
| 3              | 0011           |
| 4              | 0100           |
| 5              | 0101           |
| 6              | 0110           |
| 7              | 0111           |
| 8              | 1000           |
| 9              | 1001           |

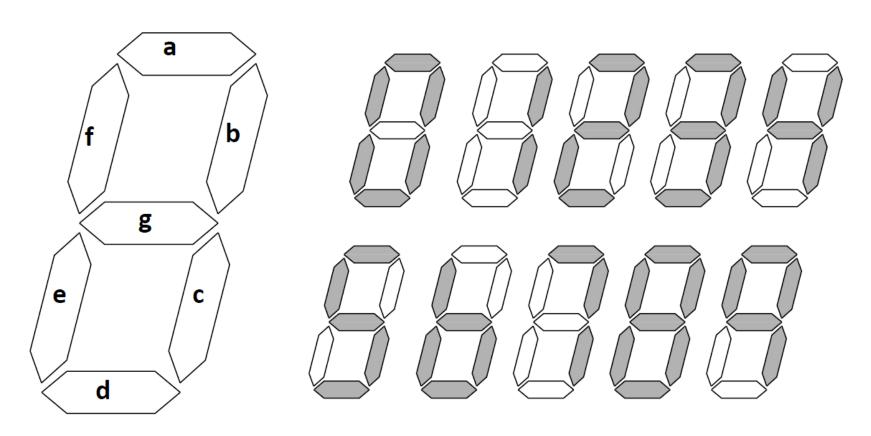
## Codice che rappresenta ogni cifra decimale con 4 bit

 $[\log_2 10] = 4 \text{ bit}$ 

Numeri con k cifre: 4k bit Codifichiamo il numero 371 (3 cifre = 12 bit): 0011 0111 0001

## Rappresentare i numeri: Codice a 7 segmenti

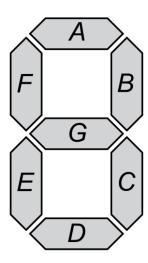
#### Codice ridondante utilizzato per visualizzare a display numeri decimali



a b c d e f g Zero 1111110 Uno 0110000 Ecc.

## Rappresentare i numeri: Codice a 7 segmenti

| Cifra<br>Decimale | A   | В | С | D | E | F    | G |
|-------------------|-----|---|---|---|---|------|---|
| 0                 | 1   | 1 | 1 | 1 | 1 | 1    | 0 |
| 1                 | 0   | 1 | 1 | 0 | 0 | 0    | 0 |
| 2                 | 1   | 1 | 0 | 1 | 1 | 0    | 1 |
| 3                 | 3 1 |   | 1 | 1 | 0 | 0    | 1 |
| 4                 | 0   | 1 | 1 | 0 | 0 | 1    | 1 |
| 5                 | 1   | 0 | 1 | 1 | 0 | 1    | 1 |
| 6                 | 1   | 0 | 1 | 1 | 1 | 1    | 1 |
| 7                 | 1   | 1 | 1 | 0 | 0 | 0(1) | 0 |
| 8                 | 1   | 1 | 1 | 1 | 1 | 1    | 1 |
| 9                 | 1   | 1 | 1 | 1 | 0 | 1    | 1 |



# Codice ridondante utilizzato per visualizzare a display numeri decimali

M = 10 (cifre decimali) n = 7 > 4

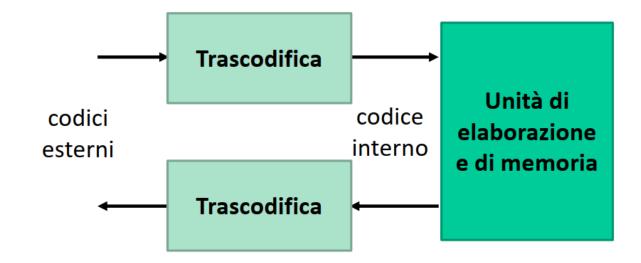
## Rappresentare i numeri: Codice 1 of n

| Cifra<br>Decimale | #1 | #2 | #3 | #4 | #5 |
|-------------------|----|----|----|----|----|
| 0                 | 1  | 0  | 0  | 0  | 0  |
| 1                 | 0  | 1  | 0  | 0  | 0  |
| 2                 | 0  | 0  | 1  | 0  | 0  |
| 3                 | 0  | 0  | 0  | 1  | 0  |
| 4                 | 0  | 0  | 0  | 0  | 1  |

#### Codifichiamo n simboli con n bit.

L'n-esimo simbolo viene codificato con n-1 bit a zero, e un bit a uno, alla posizione n

### Conversione tra codici - Trascodifica



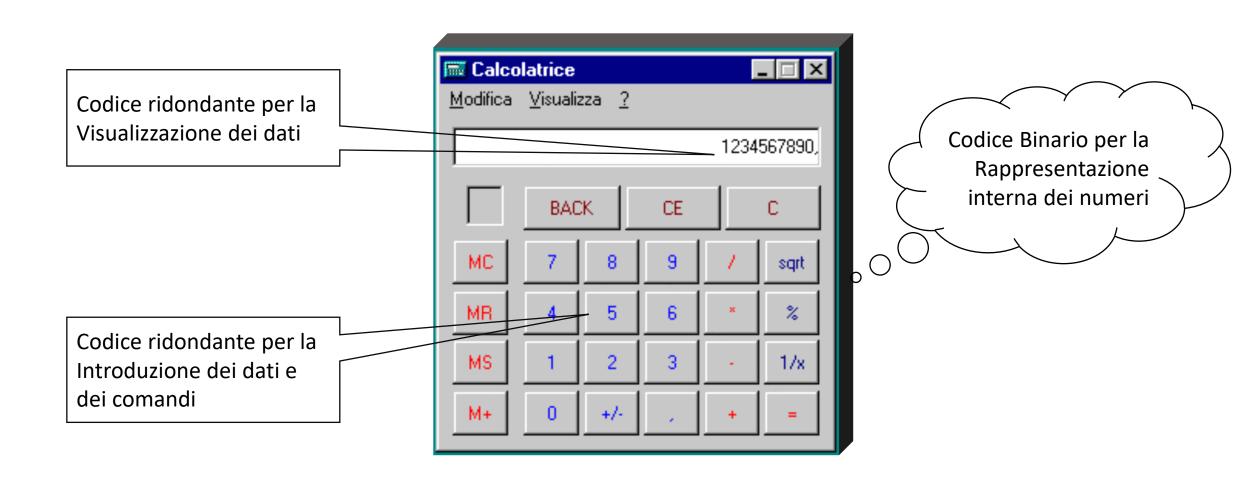
La conversione tra codici viene detta transcodifica.

#### Codice esterno:

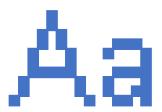
- ridondante, per semplificare la generazione e l'interpretazione delle informazioni,
- standard, per rendere possibile la connessione di macchine (o unità di I/O) realizzate da costruttori diversi.

Codice interno: è di norma non ridondante per minimizzare il numero di bit da elaborare e da memorizzare.

# Esempio di Trascodifica: Calcolatrice Tascabile



## ASCII e Unicode



American Standard Code for Information Interchange

| 4   | SCII | contro | ol characters         |     | ASCII printable characters |         |     |      |         |       |        |           | Extended ASCII characters |      |       |         |     |       |          |     |       |              |     |     |         |
|-----|------|--------|-----------------------|-----|----------------------------|---------|-----|------|---------|-------|--------|-----------|---------------------------|------|-------|---------|-----|-------|----------|-----|-------|--------------|-----|-----|---------|
| DEC | HEX  | Si     | mbolo ASCII           | DEC | HEX                        | Simbolo | DEC | HEX  | Simbolo | DEC   | HEX    | Simbolo   | DI                        | EC H | ΗEX   | Simbolo | DEC | HEX   | Simbolo  | DEC | HEX   | Simbolo      | DEC | HEX | Simbolo |
| 00  | 00h  | NULL   | (carácter nulo)       | 32  | 20h                        | espacio | 64  | 40h  | @<br>A  | 96    | 60h    | •         |                           |      | 80h   | Ç       | 160 | A0h   | á        | 192 | C0h   | L            | 224 | E0h | Ó       |
| 01  | 01h  | SOH    | (inicio encabezado)   | 33  | 21h                        | !       | 65  | 41h  |         | 97    | 61h    | а         |                           |      | 81h   | ü       | 161 | A1h   | í        | 193 | C1h   |              | 225 | E1h | ß       |
| 02  | 02h  | STX    | (inicio texto)        | 34  | 22h                        |         | 66  | 42h  | В       | 98    | 62h    | b         |                           |      | 82h   | é       | 162 | A2h   | Ó        | 194 | C2h   | т            | 226 | E2h | Ó       |
| 03  | 03h  | ETX    | (fin de texto)        | 35  | 23h                        | #       | 67  | 43h  | C       | 99    | 63h    | С         |                           |      | 83h   | â       | 163 | A3h   | ú        | 195 | C3h   | F            | 227 | E3h | Ò       |
| 04  | 04h  | EOT    | (fin transmisión)     | 36  | 24h                        | \$      | 68  | 44h  | D       | 100   | 64h    | d         |                           |      | 84h   | ä       | 164 | A4h   | ñ        | 196 | C4h   | <del>-</del> | 228 | E4h | õ       |
| 05  | 05h  | ENQ    | (enquiry)             | 37  | 25h                        | %       | 69  | 45h  | E       | 101   | 65h    | e         |                           |      | 85h   | à       | 165 | A5h   | Ñ        | 197 | C5h   | +            | 229 | E5h | Õ       |
| 06  | 06h  | ACK    | (acknowledgement)     | 38  | 26h                        | &       | 70  | 46h  | F       | 102   | 66h    | f         |                           |      | 86h   | å       | 166 | A6h   | 8        | 198 | C6h   | ã            | 230 | E6h | μ       |
| 07  | 07h  | BEL    | (timbre)              | 39  | 27h                        | •       | 71  | 47h  | G       | 103   | 67h    | g         |                           |      | 87h   | ç       | 167 | A7h   | 0        | 199 | C7h   | Ã            | 231 | E7h | þ       |
| 08  | 08h  | BS     | (retroceso)           | 40  | 28h                        | (       | 72  | 48h  | Н       | 104   | 68h    | h         |                           |      | 88h   | ê       | 168 | A8h   | ż        | 200 | C8h   | Ŀ            | 232 | E8h | Þ       |
| 09  | 09h  | HT     | (tab horizontal)      | 41  | 29h                        | )       | 73  | 49h  | 1       | 105   | 69h    | i         | 1                         |      | 89h   | ë       | 169 | A9h   | ®        | 201 | C9h   | F            | 233 | E9h | Ú       |
| 10  | 0Ah  | LF     | (salto de linea)      | 42  | 2Ah                        | *       | 74  | 4Ah  | J       | 106   | 6Ah    | j         | 1                         |      | 8Ah   | è       | 170 | AAh   | 7        | 202 | CAh   | <u>T</u>     | 234 | EAh | Ü       |
| 11  | 0Bh  | VT     | (tab vertical)        | 43  | 2Bh                        | +       | 75  | 4Bh  | K       | 107   | 6Bh    | k         | 1                         | 39   | 8Bh   | Ï       | 171 | ABh   | 1/2      | 203 | CBh   | ī.           | 235 | EBh | Ù       |
| 12  | 0Ch  | FF     | (form feed)           | 44  | 2Ch                        |         | 76  | 4Ch  | L       | 108   | 6Ch    | - 1       | 1.                        | 40   | 8Ch   | î       | 172 | ACh   | 1/4      | 204 | CCh   | Ţ            | 236 | ECh | ý       |
| 13  | 0Dh  | CR     | (retorno de carro)    | 45  | 2Dh                        | -       | 77  | 4Dh  | M       | 109   | 6Dh    | m         | 1.                        | 41   | 8Dh   | ì       | 173 | ADh   | i        | 205 | CDh   | =            | 237 | EDh | Ý       |
| 14  | 0Eh  | SO     | (shift Out)           | 46  | 2Eh                        |         | 78  | 4Eh  | N       | 110   | 6Eh    | n         | 1.                        | 42   | 8Eh   | Ä       | 174 | AEh   | «        | 206 | CEh   | 北            | 238 | EEh | _       |
| 15  | 0Fh  | SI     | (shift In)            | 47  | 2Fh                        | 1       | 79  | 4Fh  | 0       | 111   | 6Fh    | 0         | 1.                        | 43   | 8Fh   | Α       | 175 | AFb   | <b>»</b> | 207 | CFh   | ä            | 239 | EFh | •       |
| 16  | 10h  | DLE    | (data link escape)    | 48  | 30h                        | 0       | 80  | 50h  | P       | 112   | 70h    | р         | 1.                        | 44   | 90h   | É       | 176 | B0h   | 88       | 208 | D0h   | ð            | 240 | F0h |         |
| 17  | 11h  | DC1    | (device control 1)    | 49  | 31h                        | 1       | 81  | 51h  | Q       | 113   | 71h    | q         | 1.                        | 45   | 91h   | æ       | 177 | 81h   | 333      | 209 | D1h   | Ð            | 241 | F1h | ±       |
| 18  | 12h  | DC2    | (device control 2)    | 50  | 32h                        | 2       | 82  | 52h  | R       | 114   | 72h    | ŕ         | 1.                        | 46   | 92h   | Æ       | 178 | B2h   |          | 210 | D2h   | Ê            | 242 | F2h |         |
| 19  | 13h  | DC3    | (device control 3)    | 51  | 33h                        | 3       | 83  | 53h  | S       | 115   | 73h    | s         | 1.                        | 47   | 93h   | ô       | 179 | B3h   | T        | 211 | D3h   | Ë            | 243 | F3h | 3/4     |
| 20  | 14h  | DC4    | (device control 4)    | 52  | 34h                        | 4       | 84  | 54h  | T       | 116   | 74h    | t         | 1.                        | 48   | 94h   | ò       | 180 | B4h   | 4        | 212 | D4h   | È            | 244 | F4h | 9       |
| 21  | 15h  | NAK    | (negative acknowle.)  | 53  | 35h                        | 5       | 85  | 55h  | Ú       | 117   | 75h    | ü         | 1.                        | 49   | 95h   | ò       | 181 | B5h   | Å        | 213 | D5h   | ī            | 245 | F5h | Š       |
| 22  | 16h  | SYN    | (synchronous idle)    | 54  | 36h                        | 6       | 86  | 56h  | V       | 118   | 76h    | v         | 1                         | 50   | 96h   | û       | 182 | B6h   | Â        | 214 | D6h   | ĺ            | 246 | F6h | ÷       |
| 23  | 17h  | ETB    | (end of trans, block) | 55  | 37h                        | 7       | 87  | 57h  | w       | 119   | 77h    | w         | 1                         | 51   | 97h   | ù       | 183 | B7h   | À        | 215 | D7h   | î            | 247 | F7h |         |
| 24  | 18h  | CAN    | (cancel)              | 56  | 38h                        | 8       | 88  | 58h  | X       | 120   | 78h    | x         | 1                         | 52   | 98h   |         | 184 | B8h   | ©        | 216 | D8h   | Ť            | 248 | F8h | å       |
| 25  | 19h  | EM     | (end of medium)       | 57  | 39h                        | 9       | 89  | 59h  | Ÿ       | 121   | 79h    | v         | 1                         | 53   | 99h   | ÿ<br>Ö  | 185 | B9h   | Ĩ.       | 217 | D9h   | j            | 249 | F9h | -       |
| 26  | 1Ah  | SUB    | (substitute)          | 58  | 3Ah                        | :       | 90  | 5Ah  | 7       | 122   | 7Ah    | 7         | 1                         | 54   | 9Ah   | ŭ       | 186 | BAh   |          | 218 | DAh   | -            | 250 | FAh |         |
| 27  | 1Bh  | ESC    | (escape)              | 59  | 3Bh                        |         | 91  | 5Bh  | ī       | 123   | 7Bh    | į         |                           |      | 98h   | ø       | 187 | BBh   | 7        | 219 | DBh   |              | 251 | FBh | 1       |
| 28  | 1Ch  | FS     | (file separator)      | 60  | 3Ch                        | ζ       | 92  | 5Ch  | ,       | 124   | 7Ch    | ŀ         |                           |      | 9Ch   | £       | 188 | BCh   | ]        | 220 | DCh   |              | 252 | FCh | 3       |
| 29  | 1Dh  | GS     | (group separator)     | 61  | 3Dh                        |         | 93  | 5Dh  | i       | 125   | 7Dh    | 1         |                           |      | 9Dh   | õ       | 189 | BDh   | ¢        | 221 | DDh   | _            | 253 | FDh | 2       |
| 30  | 1Eh  | RS     | (record separator)    | 62  | 3Eh                        | >       | 94  | 5Eh  | ,       | 126   | 7Eh    | ,<br>~    |                           |      | 9Eh   | ×       | 190 | BEh   | ¥        | 222 | DEh   | ì            | 254 | FEh |         |
| 31  | 1Fh  | US     | (unit separator)      | 63  | 3Fh                        | ?       | 95  | 5Fh  |         |       | - hart |           | 1 7                       |      | 9Fh   | f       | 191 | BFh   |          | 223 | DEh   | Ė            | 255 | FFh | -       |
| 127 | 20h  | DEL    | (delete)              | 33  | Or B                       | •       | 33  | Of A | -       | theAs | Clico  | de.com.ar |                           | -    | 01.11 | J       | 131 | 20 11 | ٦        | LLJ | D1 11 |              | 200 |     |         |

Con 8 bit, il codice (Extended) ASCII codifica tutte le possibili lingue originate dall'alfabeto latino, i numeri, la punteggiatura.

Con 16 bit, il codice Unicode codifica (quasi) tutte le lingue conosciute sulla Terra, mantenendo la compatibilità con il codice ASCII.

Il tipo di dato 'char' del C è adibito ai caratteri ASCII.

# Bitmap: un codice ridondante per simboli alfanumerici

Rappresentazione binaria dei simboli grafici dei caratteri

Mentre nelle stampanti «ad impatto» basta il codice ASCII, per molti altri casi (getto d'inchiosto, laser, ma anche per mostrare a monitor) è necessario definire dei simboli grafici mediante matrici di pixel (*bitmap*)

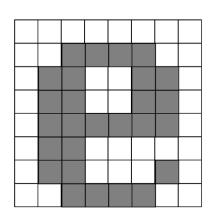
Ciascun elemento di una bitmap è rappresentato da un insieme di bit

• Bianco/nero: 1 pixel -> 1 bit

Scala di grigi: 1 pixel -> 8 bit

Colori RGB: 1 pixel -> 3x8 bit

Font: insieme dei simboli grafici caratterizzati da un certo stile



Esempio bitmap 8x8

### Distanza

#### Distanza tra due configurazioni binarie di n bit

• È il numero di bit omologhi con valore diverso: D(000,111) = 3 D(011,010)=1

#### Distanza minima

• Il numero minimo DMIN che assume la distanza entro le configurazioni di un codice.

#### Nota bene

- I codici non ridondanti hanno sempre DMIN=1
- I codici ridondanti (e.g., 1-of-n) possono avere DMIN >=1

## Codice Gray

E'un codice binario, composto da un qualsiasi numero di bit maggiore di due, nel quale il passaggio da un numero rappresentato al successivo (o precedente) comporta la variazione di un solo bit

Non lo usiamo per 'contare', ma per denominare degli 'stati' in un sistema.

Passando da 01 a 10 forse è meglio non rischiare che si passi per 11!

| Stato              | Codifica Gray |
|--------------------|---------------|
| Bomba spenta       | 00            |
| Bomba innescata    | 01            |
| Boom!              | 11            |
| Bomba disinnescata | 10            |

### Numeri in base B

$$n_B = \sum_{i = -\infty}^{+\infty} a_i B^i \qquad \qquad a_i \in \mathsf{Alfabeto}$$

Esempi base B=10:

$$3724,28_{10} = 0 \cdot 10^4 + 3 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10^1 + 4 \cdot 10^0 + 2 \cdot 10^{-1} + 8 \cdot 10^{-2} + 0 \cdot 10^{-3}$$

Esattamente allo stesso modo

$$49_{10} = 110001_2$$

## Numeri in base 2

$$N = \sum_{i=0}^{n-1} b_i 2^i$$

$$b_i \in \{0,1\}$$

i = 0 perché qui consideriamo i numeri interi

n bit

n è il numero di bit che vogliamo usare:

$$4_{10} = 100_2 = \sum_{i=0}^{3-1} a_i 2^i = 0 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2$$

## Quanti bit servono minimo?

Dato un numero Q, di quanti bit avrò bisogno per rappresentarlo?

$$N = \lceil \log_2 Q \rceil$$

La formula è sempre uguale.

Nei computer a 64 bit, una variabile numerica intero senza segno (unsigned long int) a 64 bit potrà contenere i numeri da 0 a 2<sup>64</sup>-1

### Conversione Da base 2 a base 10

$$100111101_{2} = \underbrace{1 \cdot 2^{0}}_{\text{bit } 0} + \underbrace{0 \cdot 2}_{\text{bit } 1} + \underbrace{1 \cdot 2^{2}}_{\text{bit } 2} + 1 \cdot 2^{3} + 1 \cdot 2^{4} + 1 \cdot 2^{5} + \\ + 0 \cdot 2^{6} + 0 \cdot 2^{7} + 1 \cdot 2^{8} = \\ = 1 + 4 + 8 + 16 + 32 + 256 = 317_{10}$$

### Conversione Da base 10 a base 2

$$317/2 = 158 + \text{resto } 1$$
  
 $158/2 = 79 + \text{resto } 0$   
 $79/2 = 39 + \text{resto } 1$   
 $39/2 = 19 + \text{resto } 1$   
 $19/2 = 9 + \text{resto } 1$   
 $9/2 = 4 + \text{resto } 1$   
 $4/2 = 2 + \text{resto } 0$   
 $2/2 = 1 + \text{resto } 0$   
 $1/2 = 0 + \text{resto } 1$ 

Ripercorrendo dal basso i resti delle divisioni:

100111101

Il metodo funziona in generale (anche per altre coppie di basi) e solo per la parte intera, per la parte decimale c'è un algoritmo separato!!

## Rappresentazione in Codice Esadecimale

Sistema esadecimale: B = 16

**Cifre:**0,1,..,9,a,b,c,d,e,f

n°di bit per cifra: 4 perché  $16 = 2^4$ 

| Dec | Hex | Bin  | Dec | Hex | Bin  |
|-----|-----|------|-----|-----|------|
| 0   | ОН  | 0000 | 8   | 8H  | 1000 |
| 1   | 1H  | 0001 | 9   | 9H  | 1001 |
| 2   | 2H  | 0010 | 10  | AH  | 1010 |
| 3   | 3H  | 0011 | 11  | BH  | 1011 |
| 4   | 4H  | 0100 | 12  | СН  | 1100 |
| 5   | 5H  | 0101 | 13  | DH  | 1101 |
| 6   | 6H  | 0110 | 14  | EH  | 1110 |
| 7   | 7H  | 0111 | 15  | FH  | 1111 |

#### Esempio:

$$76_{10} = 4CH = 0x4C$$

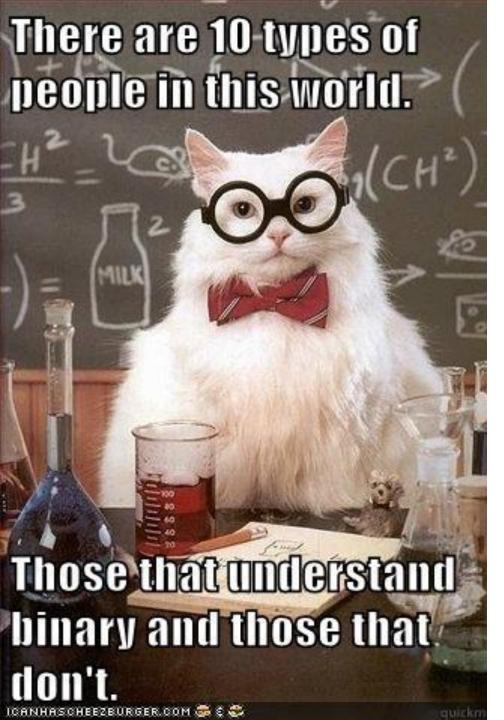
#### Conversione da decimale a esadecimale

Stessa metodologia della slide precedente:

- 76/16 = 4, remainder is 12 (C)
- 4/16 = 0, remainder is 4

#### Conversione da binario a esadecimale

- 1. Numero in binario  $76_{10} = 1001100_2$
- 2. Raggruppo 4 bit per 4: 0100 1100
- Riscrivo la combinazione: 4C



# Operazioni aritmetiche

## Somma aritmetica

Come è noto:

0+0=0

0+1=1

1+0=1

1+1=0

Senza dimenticare i riporti...

Gli oggetti che fanno questa operazione si chiamano *Half Adder* e *Full Adder*.

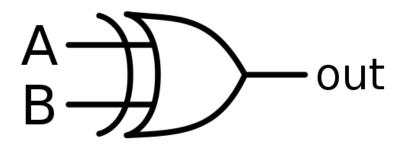
# (E)XOR: OR esclusivo

| Tabella | Tabella della verità EXOR |     |  |  |  |  |  |  |  |  |  |
|---------|---------------------------|-----|--|--|--|--|--|--|--|--|--|
| Α       | В                         | Out |  |  |  |  |  |  |  |  |  |
| 0       | 0                         | 0   |  |  |  |  |  |  |  |  |  |
| 0       | 1                         | 1   |  |  |  |  |  |  |  |  |  |
| 1       | 0                         | 1   |  |  |  |  |  |  |  |  |  |
| 1       | 1                         | 0   |  |  |  |  |  |  |  |  |  |

Non fa parte dell'algebra della commutazione, che è composta da

AND OR NOT

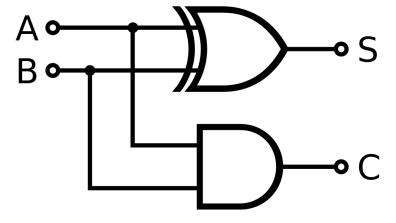
$$A \bigoplus B = (A+B)(\bar{A}+\bar{B})$$



# Half Adder

| Α | В | Cout | Sum |
|---|---|------|-----|
| 0 | 0 | 0    | 0   |
| 0 | 1 | 0    | 1   |
| 1 | 0 | 0    | 1   |
| 1 | 1 | 1    | 0   |





# Full Adder (FA)

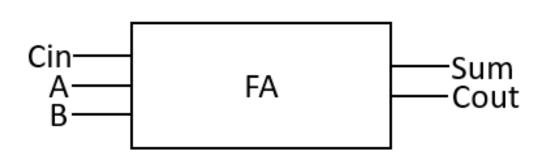
Somma fra due bit: non basta per eseguire la somma in colonna

0+0 = 00

0+1 = 01

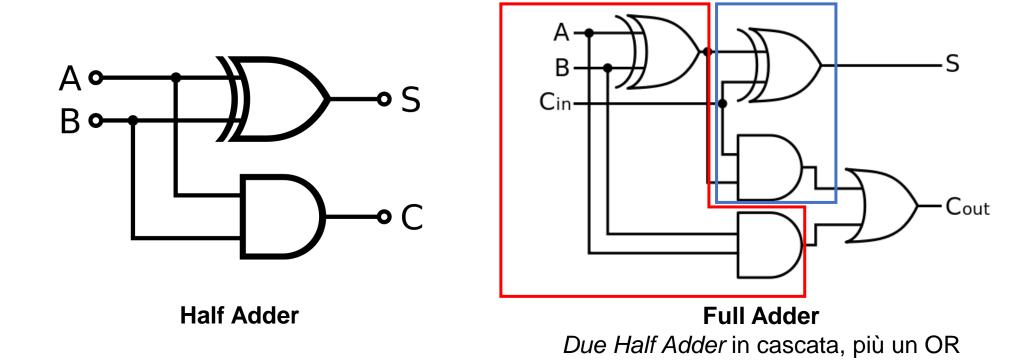
1+0 = 01

1+1 = 10



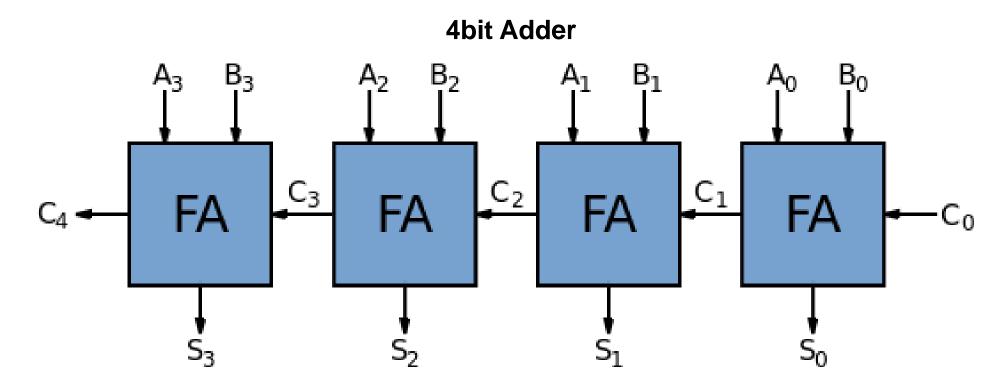
| Cin | Α | В | Cout | Sum |
|-----|---|---|------|-----|
| 0   | 0 | 0 | 0    | 0   |
| 0   | 0 | 1 | 0    | 1   |
| 0   | 1 | 0 | 0    | 1   |
| 0   | 1 | 1 | 1    | 0   |
| 1   | 0 | 0 | 0    | 1   |
| 1   | 0 | 1 | 1    | 0   |
| 1   | 1 | 0 | 1    | 0   |
| 1   | 1 | 1 | 1    | 1   |

# Full Adder (FA)



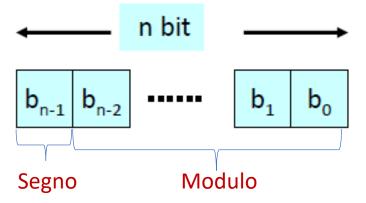
Il Full Adder consente di sommare i bit in una determinata posizione di una somma con due addendi, n Full Adder collegati consentono di ottenere un sommatore da n bit

## Adder per numeri senza segno a n bit



C4 qui viene detto "overflow": indica se la somma di peso maggiore ha generato riporto, e quindi se siamo usciti dal range di n bit.

Numeri relativi: Rappresentazione segno e valore assoluto



Utilizziamo un bit per indicare il segno del dato.

Anche se è facile da leggere, si vede che qualcosa non torna:  $B + (-B) \neq 0$ 

A + B non si ottiene la somma algebrica se B<0

Due rappresentazioni di zero

Range: 
$$[-2^{n-1} + 1, 2^{n-1} - 1]$$

| Segno |    | Decimale |
|-------|----|----------|
| 0     | 00 | 0        |
| 0     | 01 | +1       |
| 0     | 10 | +2       |
| 0     | 11 | +3       |
| 1     | 00 | 0        |
| 1     | 01 | -1       |
| 1     | 10 | -2       |
| 1     | 11 | -3       |

#### Complemento a 2 di un numero naturale N formato da *n*bit

$$^{2}N \stackrel{\text{def}}{=} 2^{n} - N$$

Complemento e incremento di N si ottiene  $^2N$ 

- ${}^{2}N \stackrel{\text{def}}{=} 2^{n} N$
- $=\underbrace{2^n 1 N}_{N'} + 1$  N' = not logico di N in base 2
- ${}^{2}N = N' + 1$

Esempio con n = 3 bit:

$$5_{10} = 101_2$$
 $^25 \stackrel{\text{def}}{=} 2^3 - 5 = 2^3 - 1 - 5 + 1$ 

In binario: (1)000 - 001 - 101 + 001 = 111 - 101 + 001 =**010**+ 001 = 011

#### Calcolo di A - B con A ≥ B

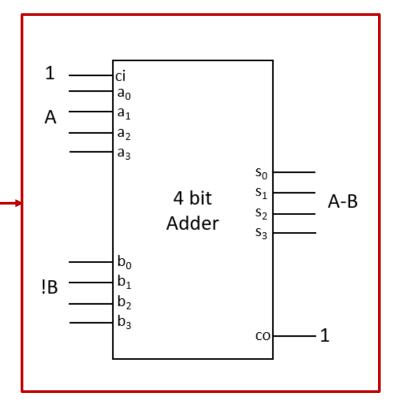
- $A B = A \underbrace{-B + 2^n}_{2_B} 2^n$
- $A B = A + {}^{2}B {}^{2}n$
- $= A + B' + 1 2^n$

Notare che per fare una differenza continuiamo ad usare un Adder!

II  $-2^n$  non viene considerato (sarebbe il segnale co)

#### Inoltre se A=0

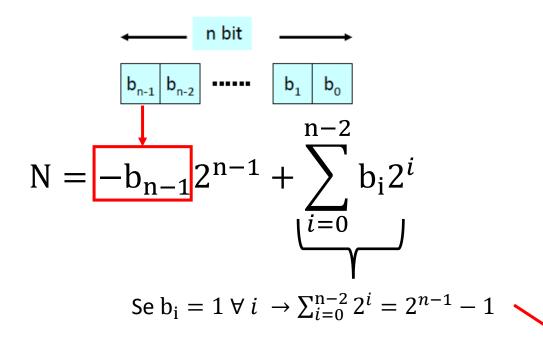
•  $-B = {}^{2}B - 2^{n} = B' + 1 - 2^{n}$ 



Numeri relativi: Rappresentazione in complemento a 2

con n bit

 $N \ge 0$ : segno-valore assoluto N < 0:  $^2(-N)$  con -N espresso in segno-valore assoluto



Range:  $N \in [-2^{n-1}, 2^{n-1} - 1]$ 

| В3 | B2 | B1 | В0 | N  |
|----|----|----|----|----|
| 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 0  | 1  | 1  |
| 0  | 0  | 1  | 0  | 2  |
| 0  | 0  | 1  | 1  | 3  |
| 0  | 1  | 0  | 0  | 4  |
| 0  | 1  | 0  | 1  | 5  |
| 0  | 1  | 1  | 0  | 6  |
| 0  | 1  | 1  | 1  | 7  |
| 1  | 0  | 0  | 0  | -8 |
| 1  | 0  | 0  | 1  | -7 |
| 1  | 0  | 1  | 0  | -6 |
| 1  | 0  | 1  | 1  | -5 |
| 1  | 1  | 0  | 0  | -4 |
| 1  | 1  | 0  | 1  | -3 |
| 1  | 1  | 1  | 0  | -2 |
| 1  | 1  | 1  | 1  | -1 |

Il bit più significativo indica il segno (0:positivo, 1:negativo) come nella rappresentazione segno-valore assoluto. Tuttavia la lettura del numero è meno intuitiva.

# Alcune proprietà della rappresentazione in complemento a 2

Dati A e B due numeri rappresentati in complemento a 2

1) -A = A' + 1. Si ottiene il negativo di un numero tramite inversione e incremento.

A: 
$$0001$$
 (+1) A:  $1001$  (-7)   
  $1110+$   $0110+$    
  $1$    
  $-A$ :  $1111$  (-1)  $-A$ :  $0111$  (+7)

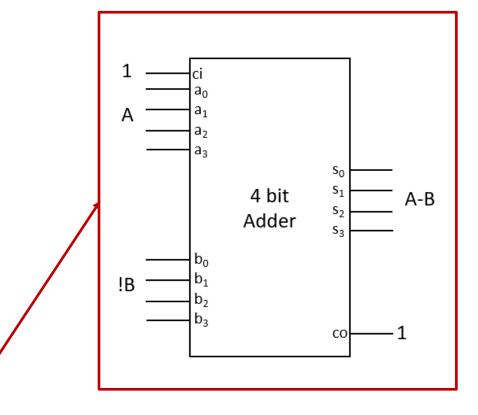
2) A + (-A) = 0. La somma di A e il suo negativo fa 0.

$$A (+1): 0001+$$
 $-A (-1): 1111=$ 
 $0000$ 

# Alcune proprietà della rappresentazione in complemento a 2

3) A + B restituisce la somma algebrica rappresentata in complemento a 2:

4) A - B = A + B' + 1. Per sommare o sottrarre due numeri relativi espressi in complemento a 2 è sufficiente un addizionatore.



| Config  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Unsign. | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| M&S     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 0    | -1   | -2   | -3   | -4   | -5   | -6   | -7   |
| Compl2  | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | -8   | -7   | -6   | -5   | -4   | -3   | -2   | -1   |

Il sommatore comprende(capisce) solo la prima riga, esso parte dalla configurazione al suo primo ingresso e si muove in avanti di tante colonne quanto è il valore unsigned(seconda riga) corrispondente al suo secondo ingresso. Se supera 1111 allora continua da 0000 con carry\_out CO=1

In modulo e segno le configurazioni dei bit sono semplicemente leggibili per l'uomo, non si può usare un sommatore convenzionale con notazione in modulo e segno

La notazione usata nei calcolatori è quella in complemento a 2 che consente al sommatore tradizionale di eseguire la somma algebrica fra due quantità. L'esempio in:

- blu 5 –4.
   Ris= 1, Ov= 0, CO =1, Co<sub>n,2</sub>=1
- verde -2 + 4. Ris= 2, Ov=0, CO = 1, Co<sub>n,2</sub>=1
- rosso -4 -5. Ris= 7, Ov= 1, CO=1, Co<sub>0.2</sub>=0
- arancione 6+3. Ris= -7, Ov= 1, CO=0, Co<sub>n-2</sub>=1

| Config  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Unsign. | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| M&S     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 0    | -1   | -2   | -3   | -4   | -5   | -6   | -7   |
| Compl2  | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | -8   | -7   | -6   | -5   | -4   | -3   | -2   | -1   |

Il sommatore comprende(capisce) solo la prima riga, esso parte dalla configurazione al suo primo ingresso e si muove in avanti di tante colonne quanto è il valore unsigned(seconda riga) corrispondente al suo secondo ingresso. Se supera 1111 allora continua da 0000 con carry\_out CO=1

In modulo e segno le configurazioni dei bit sono semplicemente leggibili per l'uomo, non si può usare un sommatore convenzionale con notazione in modulo e segno

La notazione usata nei calcolatori è quella in complemento a 2 che consente al sommatore tradizionale di eseguire la somma algebrica fra due quantità. L'esempio in:

- blu 5 –4. Ris= 1, Ov= 0, CO =1, Co<sub>n-2</sub>=1
- verde -2 + 4. Ris= 2, Ov=0, CO = 1, Co<sub>n-2</sub>=1
- rosso -4 -5. Ris= 7, Ov= 1, CO=1, Co<sub>2</sub>=0
- arancione 6+3. Ris= -7, Ov= 1, CO=0, Co<sub>n-2</sub>=1

| Config  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Unsign. | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| M&S     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 0    | -1   | -2   | -3   | -4   | -5   | -6   | -7   |
| Compl2  | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | -8   | -7   | -6   | -5   | -4   | -3   | -2   | -1   |

Il sommatore comprende(capisce) solo la prima riga, esso parte dalla configurazione al suo primo ingresso e si muove in avanti di tante colonne quanto è il valore unsigned(seconda riga) corrispondente al suo secondo ingresso. Se supera 1111 allora continua da 0000 con carry\_out CO=1

In modulo e segno le configurazioni dei bit sono semplicemente leggibili per l'uomo, non si può usare un sommatore convenzionale con notazione in modulo e segno

La notazione usata nei calcolatori è quella in complemento a 2 che consente al sommatore tradizionale di eseguire la somma algebrica fra due quantità. L'esempio in:

- blu 5 –4. Ris= 1, Ov= 0, CO =1, Co<sub>n-2</sub>=1
- verde -2 + 4. Ris= 2, Ov=0, CO = 1, Co<sub>n,2</sub>=1
- rosso -4 -5. Ris= 7, Ov= 1, CO=1, Co<sub>n-2</sub>=0

**OVERFLOW** 

arancione 6+3. Ris= -7, Ov= 1, CO=0, Co<sub>n-2</sub>=1 in complemento a 2!

OVERFLOW: Errore ottenuto quando si ottiene un risultato al di fuori del range rappresentato.

| Config  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Unsign. | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| M&S     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 0    | -1   | -2   | -3   | -4   | -5   | -6   | -7   |
| Compl2  | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | -8   | -7   | -6   | -5   | -4   | -3   | -2   | -1   |

Il sommatore comprende(capisce) solo la prima riga, esso parte dalla configurazione al suo primo ingresso e si muove in avanti di tante colonne quanto è il valore unsigned(seconda riga) corrispondente al suo secondo ingresso. Se supera 1111 allora continua da 0000 con carry\_out CO=1

In modulo e segno le configurazioni dei bit sono semplicemente leggibili per l'uomo, non si può usare un sommatore convenzionale con notazione in modulo e segno

La notazione usata nei calcolatori è quella in complemento a 2 che consente al sommatore tradizionale di eseguire la somma algebrica fra due quantità. L'esempio in:

- blu 5 –4. Ris= 1, Ov= 0, CO =1, Co<sub>n-2</sub>=1
- verde -2 + 4. Ris= 2, Ov=0, CO = 1, Co<sub>n,2</sub>=1
- rosso -4 -5. Ris= 7, Ov= 1, CO=1, Co<sub>0.2</sub>=0

**OVERFLOW** 

arancione 6+3. Ris= -7, Ov= 1, CO=0, Co<sub>n-2</sub>=1 in complemento a 2!

OVERFLOW: Errore ottenuto quando si ottiene un risultato al di fuori del range rappresentato.

# Considerazioni su somma: riporti e overflow

- Ipotesi: consideriamo qui n bit con n = 8
- Se eseguiamola somma di quantità senza segno (i numeri rappresentabili vanno da 0 e 255) possiamo utilizzare 8 full adder e l'ultimo carry segnala con il valore 1 l'errore nel risultato che è troppo grande per essere rappresentato
- Se consideriamo la somma di numeri con segno e usiamo la notazione in complemento a 2, allora i numeri rappresentabili vanno da -128 a 127. In questo caso l'errore di **risultato non rappresentabile** non è indicato dal valore 1 del carry out dell'ultimo full adder. Occorre invece realizzare una rete logica che legga almeno i segni degli operandi, il segno dell'uscita ed il bit di carry out dell'ultimo full adder. In alternativa si ottiene la stessa informazione dallo XOR del carry in e del carry out dell'ultimo full adder. Questo XOR dà quindi l'indicazione della situazione di overflow. Questa soluzione, non dipende dal segno degli operandi.
- ATTENZIONE: l'ultimo bit di carry out verrà d'ora in poi chiamato "carry out" il termine overflow verrà utilizzato solo per indicare lo stato di errore dovuto a risultato non visualizzabile

### Esercizi

- Si dica quanti numeri interi si possono rappresentare con 4 bit in *Complemento a due* e quanti numeri si possono rappresentare con il codice *bit di segno e modulo*
- Si indichino tutti i numeri rappresentabili con 3 bit con i due codici *Complemento a due* e *bit di segno e modulo*, poi a ciascuno di questi numeri si associ la codifica effettuata secondo ciascuno dei due codici assegnati
- Utilizzando una rappresentazione in complemento a 2 con n=5 si eseguano le seguenti operazioni:

$$(-12) + (+4)$$
  $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$   $(-12) + (-1)$ 

#### Esercizi

• Se lavoro in complemento a 2 la situazione di overflow è determinata dal fatto che i CO calcolati dai full adder in posizione n-2 ed n-1 siano diversi?