inizIo ole 14.10

Thim ifunzionali "Coorninata"

$$
\left\{d x_{1}, d x_{2}, \ldots, d x_{n}\right\} \text { SONO BASE "CANONTCA" }
$$

nello samzio nunle $\left(\mathbb{N}^{n}\right)^{y}$.
proof (SIST. ni gevenatori)

$$
\begin{aligned}
\sin \varphi \in\left(\mathbb{R}^{n}\right)^{v} \in \sin \quad v & =\left(v_{1}, v_{2} \ldots, v_{n}\right) \in \mathbb{R}^{n} \\
& =\sum_{i=1}^{n} v_{i} \underline{E}_{i} .
\end{aligned}
$$

na (x) Seque:

(LIN. innipenoenza) Thésis
$(t) \sum_{i=1}^{\mu} c_{i} \cdot d_{x_{i}}=\frac{0}{\bar{j}} G\left(1 \pi^{n}\right)^{n} \Rightarrow c_{1}=e_{2}=\cdots=c_{n}=0$

1) valuto ca (t) su \underline{e}.

$$
\sum_{i=1}^{n} e_{i} \cdot d x_{i} \cdot\left(\underline{e}_{1}\right)=e_{1} \cdot d x_{1}\left(e_{1}\right)=\underline{\underline{e}}\left(\underline{e}_{1}\right)=0 \subset \mathbb{R} \Rightarrow e_{1}=0
$$

1
2) valuto ca(t) su \underline{e}_{2} :

$$
\begin{gathered}
\sum_{i=1}^{n} e_{i} \cdot d x_{i}\left(e_{2}\right)=c_{i} \cdot d_{x_{2}}\left(e_{2}\right)=e_{2}=\underline{\underline{0}}\left(\underline{e_{2}}\right)=0 \Rightarrow e_{2}=0 \\
1 \\
\text { RIRETU AINO AR } n \text {) }
\end{gathered}
$$

n) Vacuto la (f) su \underline{e}_{n}.

$$
\sum_{i=1}^{n} e_{i} \cdot d x_{i} \cdot\left(e_{n}\right)=c_{n} \cdot d x_{n}^{n}\left(e_{m}\right)=e_{n}=0\left(e_{2}\right)=0 \Rightarrow e_{n}=0
$$

Perceio $\quad e_{1}=e_{2}=\ldots=e_{m}=0 \quad$ QED.
pencio $\quad \forall \varphi \in\left(\Pi^{x}\right)^{x}$ si \quad an

Applieazioné fonn al ealeolo pifferineinle
$P: A \subseteq \mathbb{R}^{x} \rightarrow \mathbb{R}, A \operatorname{ArERTO}, x \in A$
P nifferenzinbinio is $\underline{x} \in A$.
Allora (λ s) miventa:

$$
\begin{aligned}
& \left(\mathbb{R}^{n}\right)^{\gamma} \Rightarrow d f(\underline{x})=\sum_{i=1}^{d \text { nipen nf }} \frac{d f(\underline{x})\left(\underline{e}_{i}\right)}{\| \text { Teon. Foon }} \cdot d x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& !\sum_{i=1}^{n} \quad \frac{\partial P}{\eta x_{j}}\left(x_{3}\right) \cdot d x_{i}
\end{aligned}
$$

IMPLIPAZIUN, di (x y) comé funtiont nelle variabil, x_{1}, x_{n}, x_{m}, CHI SONO LE FUNZ. LINEARI $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\text {LINEMRE ? ?? }}$

$$
\begin{aligned}
& J-\int\left(n_{1}, x_{2}, \ldots, x_{n}\right) \\
& !\sum_{i=1}^{n} \varphi\left(\underline{e}_{i}\right) d x_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } n=3 \\
& \varphi(x, y, z)=-3 x+17 y-27 z \text { 2, NEARE } \\
& f(x, y, z)=-3 x+17 y-27 z+1 \text { NON LINEARE } \\
& y(x, y, z)=x^{2} y+y z^{3} \quad \text { NON LINEARC }
\end{aligned}
$$

Questo ceneramizza quanto cia' supevamu per $x=1$:

$$
\varphi_{\text {LINEARZ }} \Longrightarrow \varphi(x)=k \cdot x \quad \varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

ivel caso pifferenzlala niventa

$$
d P(\underline{x})=\sum_{i=1}^{n} \frac{D P}{\partial_{i}}(\underline{x})=x_{i}
$$

Cone porruanio Netle variablul

Es $f: \mid n^{3} \rightarrow \mathbb{R}, f(x, y, z)=x^{2} y+y^{2} z^{3} \quad$ PoLivominit

$$
\underline{x}=(1,1,1)
$$

DIEFERE NZIABILT
emi è $\delta f(\underline{x}) ?$

$$
\begin{aligned}
& \frac{\partial P}{\partial x}\left(x, y_{p}, z\right)=2 x y /(1,1,1)=2 \\
& \frac{\partial P}{\partial y}(x, y, z)=x^{2}+2 y z^{3} /(1,1,1)=3
\end{aligned}
$$

nl,

$$
\begin{aligned}
& \frac{1}{\partial_{2}}(x, y, 2)=5 g^{2} z /(1,1, n)=5 \\
& d f(\underline{x})^{\prime}=2 d x+3 d y+3 d z \quad \text { in }\left(12^{3}\right)^{x} \\
& \\
& =2 x+3 y+3 z
\end{aligned}
$$

Breax rumans?
1 Mazo onio 15.10

