MA (>) SECUE .

$$(\mathcal{G}(w) = \mathcal{G}\left(\sum_{i=1}^{m} w_{i} \cdot e_{i}\right) = 100$$

$$\begin{array}{c}
(\varphi(w) = \varphi\left(\sum_{i=1}^{n} w_{i}, e_{i},\right) = 1 \\
V \in \mathbb{R}^{n} \\
\forall w \in \mathbb{R}^{n}
\end{array}$$

$$\begin{array}{c}
\sum_{i=1}^{n} dx_{i}(w) \cdot \varphi(e_{i}) = \sum_{i=1}^{n} \varphi(e_{i}) \cdot dx_{i}(w) \\
= \sum_{i=1}^{n} dx_{i}(w) \cdot \varphi(e_{i}) = \sum_{i=1}^{n} \varphi(e_{i}) \cdot dx_{i}(w)
\end{array}$$

$$Q = \sum_{i=1}^{m} Y(e_i) dx_i \qquad \text{Qen}$$

$$(7) \sum_{i=1}^{m} e_{i} \cdot d_{n_{i}} = 0 \ e(1n^{n})^{n} \Rightarrow e_{i} = e_{z} = 0$$

2) return Left to
$$\underline{e}_{i}$$
:

 $\frac{\pi}{2}$ e_{i} d_{i} , $(e_{i}) = e_{i}$ d_{i} , $(e_{i}) = e_{i}$ e_{i} , $(e_{i}) = e_{i}$, $(e_$

$$\begin{array}{c} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{1}{2}, \frac{1}{2} d_{x_{i}} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \right) \\ = \sum_{i=1}^{N} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \\ = \sum_{i=1}^{N} \left(\frac{1}{2}, \frac{$$

92 (2/4,2) = 5 (1,1,1) = 5	
df(z) = 2 dn + 3 dy + 3 dz m (1123)*	
= 2n+3y+3z	
BREAK NOMAUNE?	
1NIZIO 000 15.10	