Dini's Thearem

$F: A \subseteq \mathbb{R}^{n} \longrightarrow \mathbb{R} \quad A_{\text {nenew }}, F \in C_{A}^{(1)}$
$\operatorname{siA} \quad Z_{F}=\left\{(x, y) \in \mathbb{R}^{2} ; F(x, y)=0\right\}$
$\sin (a, \beta) \in Z_{f} \quad($ eive $\quad F(\alpha, \beta)=0)$
SE $\frac{\bigcap_{E}}{\rho_{y}}(0, \beta) \neq 0 \Rightarrow$
$\Rightarrow \quad \exists I(a, r), \exists I(\beta, d) \quad$ t.c.
$X x \in I(a, r) \quad \exists!y \in I(\beta, \delta)$ t.e.
$F(x, y)=0 \quad$ (eró $\left.\quad(x, y) \in Z_{F}\right)$

nipivi $\exists f^{\prime}(\alpha)=-\frac{\frac{\partial F}{\partial x}(0, p)}{\frac{\partial F}{\partial y}(0, p)} \neq 0$

1 MPLRCAZIONI CEOMETRICRE
SiA $\quad V=\left\{(x, y) \in \mathbb{R}^{2} ; F(x, y)=0\right\}$ con $F \in C^{(1)}$
$\sin (\alpha, \beta) \in V \quad$ ciox $\quad F(\alpha, \beta)=0 \Leftrightarrow(\alpha, \beta) \subset Z_{F}=V$
COMĖ è fatto V "veino al pto (a, h) "?

1) $\operatorname{Se} \frac{\cap F}{\partial y}(0, \beta) \neq 0$

Dácu. cioe

2) $\frac{\partial F}{\partial x}(0, B) \neq 0$

t.e. $F(x, y)=0$

CIOE $x=\varphi(y)$
$\operatorname{con} \exists \varphi^{\prime}(\beta)$

Se $\frac{n F}{\partial_{y}}(\alpha, \beta) \neq 0, \frac{\partial F}{\partial x}(a, \beta) \neq 0$ POSSO FARE in
ENTRAMB, MODI
CIOE SE F E' DI "TIPO RINI" SARA" DELLA FORMA:

C10 E
proikito
1)

Tear. nellé funz implieite (mini cotuerale) II versione

$$
\operatorname{TrM} 1 \quad F: A \subset \mathbb{M}^{n} \rightarrow \mathbb{V}^{n-2} \quad A_{\text {ADERTD }} \quad F \in C^{(1)}
$$

$$
\begin{aligned}
& z_{F}=\left\{\left(x_{1}, \ldots, m_{2} ; y_{1}, \ldots, y_{m}\right) \not \|^{n} ;\right. \\
& \left.F\left(x_{1}, \ldots x_{2}, y_{1}, \ldots, y_{n-1}\right)=u\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { UN PTO in } \mathbb{R}^{n}=\left(\left(x_{1}, \ldots, a_{n}\right),\left(y_{1, \cdots}, y_{\text {man }}\right)\right) \\
& Z_{F}=\left\{\left(x_{1}, \ldots, x_{a}, y_{1}, \ldots, y_{m-2}\right) \in \mathbb{R}^{n} ; F\left(x_{1}, \ldots x_{n}, y_{1}, \ldots y_{\ldots, 2}\right)=0 \in \mathbb{R}^{n-2}\right\} \\
& \sin (\alpha, \beta)=\left(\alpha, \ldots, \alpha, \beta, \ldots, \beta_{\alpha-n}\right) \in \mathbb{R}^{n} \text { t.e } F(\alpha, \beta)=0 \\
& \text { cioe } \\
& (\alpha, \beta) \subset Z_{F}
\end{aligned}
$$

SIA
$\sin H \mid P I$ det $\neq 0$
ARCorA $\exists I\left(a_{n}, \ldots, a_{2} ; 2\right) \quad \exists I\left(\beta_{\left.1, \ldots, \beta_{\mu-2}, \delta\right)}\right.$ t.e

$$
\begin{aligned}
& \forall\left(x_{1} \ldots x_{n}\right) \in I\left(\alpha_{1}, \ldots, \alpha_{n} ; n\right) \quad \exists^{\prime}\left(y_{1, \ldots, y_{m-2}}\right) \in I\left(\beta, \ldots, \beta_{1} s\right) \\
& \begin{array}{l}
\text { b.e } F\left(x, \ldots, x_{2} ; y_{1}, \ldots, y_{m, 2}\right)=0 \operatorname{elve} \\
\text { mnn }^{\prime}, r_{1}
\end{array} C^{112}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ClO}{ }^{\prime} \quad\left(y_{1, \ldots} y_{n-r}\right)=f\left(x_{1}, \ldots, x_{2}\right) \text { SCMARMENTE. } \\
& \left\{\begin{array}{ll}
y_{1}=f_{1}\left(x_{1} \ldots, x_{2}\right) \\
& =\cdots \\
y_{n-2}=f_{m-2}\left(x_{1} \ldots, x_{2}\right)
\end{array} \quad \rightarrow I(x, 2) \rightarrow m^{n-2}\right. \\
& \text { enipiù } f_{1}, l_{2}, \ldots, l_{n-2} \text { sono ancorat ni clasee (}{ }^{(1)} \\
& \text { hir é rimpiazzata na: } \\
& \operatorname{ah}\left(\int_{F(0,1)}\right)=n-2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
d & 1 & x_{2} & \text { TALI } \\
y_{i} & y_{x-\Omega} & e_{H E} \\
& &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=P_{1}\left(x_{1}, \ldots, x_{2}\right) \\
& y_{n-2}=P_{m}\left(x_{1}, x_{2}\right)
\end{aligned} \quad P_{1, \ldots, l_{n-2} \in C^{(1)}}
$$

IN1210 12.20

