varreta' $V \leq \mathbb{R}^{n} n_{1}$ nimensione 2 esim
$\forall \propto \in V$
$F: I(\alpha, \delta) \rightarrow \mathbb{R}^{x-2}, F \in C^{\prime \prime \prime}$ La funcrowe
Qus mi nescrive re equazion).
SIA $d F(\alpha): \mathbb{R}^{x} \rightarrow \mathbb{R}^{x-r}$ LINEARE ic SOO
nifferenziale in ocv
$\operatorname{Ker}(d F(\alpha))^{n e F}=\left\{h \in M^{n} ; \quad d F(\alpha)(h)=0 \in \mathbb{R}^{x-2}\right\}$
Teor. Fown (vers 1)

$$
T(\alpha)=\operatorname{Ker} d F(\alpha) \quad \|!
$$

$$
\text { eore. 1) } T(\alpha) \stackrel{\tan }{=} \operatorname{Kad} d F(\underline{\theta}) E^{\prime}
$$

$$
\text { SOTTOSPAZIO VETTORIMLE NI } \mathbb{R}^{x}
$$

$$
\text { 2) } \operatorname{divm}(T(\alpha))=\operatorname{dmm}\left(K_{m} d F(\alpha)\right)=2!!!
$$

Proof. Rrassnann laws (1824).

in benerale
(1) $\quad \operatorname{dim}\left(\operatorname{Kan}_{2} \operatorname{dF}(\alpha)\right)+\operatorname{dim}\left(I_{m} d F(x)\right)=m$ PVP?

nel nostro caso , cosa diee

1) $\quad \operatorname{dim}(\operatorname{KrdF}(\mu))+\operatorname{dim}(\operatorname{Im} \operatorname{dF}(\mu))=n \quad$? ??
CHLE゙ Im $\operatorname{lF}(\alpha)$? ?
per Hip oi rétasnití:

$$
\operatorname{din}\left(\operatorname{Im}_{m} d F(\alpha)\right)=r h_{\substack{\lambda \\ P E R}}\left(T_{F(x)}\right)=x-r
$$

$$
\text { 1) } \begin{aligned}
\text { DWENTA: } \operatorname{din}(T(a))=\operatorname{Sim}(\operatorname{Ker}\{(F(a)) & =x-\operatorname{Sum}\left(I_{m} d F(a)\right) \\
& =x-(x-2)=2
\end{aligned}
$$

Furma matrcince nöl teor. Fond.

$$
\begin{aligned}
& (\imath)=\left\{h \in \mid Z^{n} ; \bar{\int}_{F(x)} \times\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{n}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
j \\
0
\end{array}\right)\right\}=
\end{aligned}
$$

Teor. Fown vers. 3
(3) $T(\alpha)^{T^{T m}=}=\left\{h \in \mathbb{M}^{n} ;\left\langle\right.\right.$ grael $\left.\left.F_{i}(\alpha), h\right\rangle=0 \forall i=1,2, \ldots, \mu-2\right\}$

SiA $\underset{i}{N}(\alpha)=(T(\alpha))^{\perp} \stackrel{D}{=}=\left\{v \in \mathbb{R}^{x} ;\langle v, h\rangle=u \forall h \in T(v)\right\}$
spazio vorame

$$
\operatorname{dim}(N(\alpha))=n-\operatorname{dim}(T(\alpha))=n-2 \quad!!
$$

ORA (3) minice che
$\operatorname{mad} F(\infty) \quad \cdot \operatorname{mad} E(\ldots) \in N(\infty) \|^{\prime}$


```
MA
    \(\operatorname{dim}(N(\alpha))=m-2+\)
Percio': \(\quad\) TMM \(\left\{\right.\) grasl \(F_{1}(\alpha), \ldots\) grast \(\left.F_{k-2}(r)\right\} \in\) BASE
pér co spazio normbie \(N(*)!!\)
```

 uttimizzarione con vincoeo:
 \(\bar{\Phi}: A \leq \mathbb{R}^{n} \rightarrow \mathbb{R} \quad A_{\text {areexio }}\)
 sia \(V\) vneretan rectanie ninius on \(\mathbb{R}^{x}\) (vinevzo)
 sia \(\alpha \in V\) nirimo cile a max limiv viveocato
 RISEETTU A \(V \stackrel{\text { DFF }}{\Rightarrow} \quad \exists I(\alpha, \delta)\) t.e
 \(\bar{\phi}(x) \geqslant \Phi(x) \quad \forall x \in I(a, s) \cap V\)
 \(\mathbb{m}_{1}^{2} \xrightarrow{\Phi} \xrightarrow{(\leq \Phi(x))}\)
 teor. Di cacrange
 Se oor. di laerange max (min) vincolato rismétto av per it
 \(\Rightarrow\) graed \(\bar{\phi}(\alpha) \in N(\alpha)\)
 classico ricornd ehe

$$
\left\{g \text { rad } F_{1}(x) \ldots g_{\text {uad }} F_{N-2}(())\right\} \text { E BnSE PER } N(\underline{O})!!
$$

ALCORA:
motitiplicatori (comfarienti)

$$
\begin{aligned}
& y^{n v} I^{n} \\
& \exists \lambda_{1}, \ldots \lambda_{m_{m+\infty}} \in R \text { t.e. } \\
& \operatorname{grad}\left(\Phi \cdot \sum_{i=1}^{m-2} \lambda_{i} F_{i}(\omega)\right)=0 \\
& \lambda_{\text {inerpacerane }}
\end{aligned}
$$

Ex $\bar{\Phi}:\left|R^{2} \rightarrow\right| R \quad, \quad \Phi(x, y)=x+y$

$$
V=\left\{(x, y) \in \mathbb{R}^{2} ; \quad x^{2}+y^{2}=1\right\}\left(1-\operatorname{Vanitiz}^{1}\right)
$$

CI SOMOPTH DI MAX (MIN) VINCNLAT RISDETTO AV?

