Thm (Ever. eonnection tum) $\quad \forall \mu<\mathbb{Z}^{+}$
IR everinen is a cominecten spmee.
This inpires: $A \subseteq \mathbb{R}^{m}$ Awowtrivin $\left(A \neq \phi, \mathbb{R}^{m}\right)$
We nave: 1) A ODEN \Rightarrow A nut ecozen
2) Acruzen \Rightarrow A nut Onen

IWEinastina conse quence

Examule / motivation consiniar $] 0,1[\leq \mathbb{R}$ eveunema
$] 0,1[$ onew sat, $\quad] 0,1[\neq \phi, \mathbb{R}$

Wurle $=$ Tman
$0,1 \&] 0,1[$

AREscemornnion poiwts!!!

WE (AN CewETALIZE: $\quad(X, d)$ M.SPHEE CONWECTEN
let $A \subseteq X, A$ open, $A \neq \phi, X$. Then
$7 x_{0} \in X, x_{0} \notin A, x_{0}$ Ace. nuint ror A.
why? ? ?
$A \neq \phi, x \quad \Longrightarrow$

$\Rightarrow 15$ IS FALSE: A CUNTAINS ALC ITS ACC. POINTS \Rightarrow
$\Rightarrow \exists x_{0} \in X, x_{0} \in A, x_{0}$ ACC. Fon A (oven/wouthivime)

Cont. functs $\left(X, d_{x}\right),\left(y, d_{y}\right)$ M.ETnIC SAnCEES
consinen a funct Frum a subset $A \leq X$ Tu $\left(y, b_{x}\right)$

$$
F: A \subseteq\left(X, d_{x}\right)-\left(y, d_{y}\right)
$$

LET $x_{0} \in A$. By DEF:
F continuous at $x_{0} \in A \stackrel{\text { DEF }}{\Longrightarrow} X \varepsilon \cdot 1 R^{+} \exists \delta \in \mathbb{I R}^{+}$

$$
\begin{aligned}
& \text { S.T. } d \underset{\sim y}{\left.d F\left(x_{0}\right), F(x)\right)<\varepsilon} \quad(x) \\
& X x \in \underline{I\left(x_{0}, \delta\right) \cap A}
\end{aligned}
$$

notice tuny. if $x=y=$ ir euzinean
(x) Becumes : $\forall \varepsilon \in \mathbb{R}^{+} \overrightarrow{J \in \operatorname{SiR^{+}}}$

$$
\begin{aligned}
& \text { S. } 4 \quad\left|F\left(x_{0}\right)-F(x)\right|<\varepsilon \\
& X x \text { is s. }\left|x_{0}-x\right|<\delta, x_{0} \in A .
\end{aligned}
$$

Clobac coatimvity $f: A \leq\left(x, d_{x}\right) \rightarrow\left(y, d_{y}\right)$.

$$
X x_{0} \in A
$$

Thin $\quad F: A \subseteq\left(X, a_{x}\right) \rightarrow\left(y, d_{y}\right)$. tue ferdowing asseryions are equigaient:

1) F cuntivuous on A \&
2) $\forall B \subseteq y, B$ OPEN $\Rightarrow \exists B_{1} \subseteq X, B_{1}$ OPEN
sueh thay

$$
\left(F^{-1}[B]=B_{1} \cap \cap A^{\text {Gren numain }}\right.
$$

that is

$$
F^{-1}[B] \stackrel{n=F}{=}\{x \in A ; F(x) \in B\}<
$$

S.T. $F^{-1}[C]=C_{1} \cap A^{\text {Douninn }}$

EXAMPLE $\mathbb{F}: A \leq \mathbb{R e v e l}_{\text {eve }} \rightarrow M_{\text {ever. Feuntiuras }}$

$C_{1} C \operatorname{cosen} \quad F^{-1}[C]=\underset{e_{1} \cos =n}{ } \cap A$
BREAK DUESTIUNS??

