$$
\begin{aligned}
& \text { necan (ex or ysesterany) } \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad \text { S.T. } \\
& \left.f(x, y)=_{-1}^{0} \begin{array}{ll}
-1 & y \geqslant x^{2} \\
0 & y \leqslant 0
\end{array} \quad(x, y) \in \right\rvert\, x^{2} \\
& \frac{1}{1)^{y=x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \exists \text { ? } \frac{D P}{D_{n}}(3) \text { ? ? THis Ghoven man }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fuvernernoes } \exists \frac{\rho \rho}{\partial r}(\underline{x})!0 \\
& \text { DIFFERENTMABLE FUNCTS } \\
& P: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R} \text {, Aotau, } x \in A
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suen twat } \\
& \text { (*) } \\
& \lim _{h \rightarrow 0 \in \mathbb{R}^{m}} \frac{f(\underline{x}+h)-f(x)-L_{x}(h)}{\|h\|}=0 \quad!\|
\end{aligned}
$$

$$
\begin{aligned}
& \text { A natural preciminary question: Why, if } n=1
\end{aligned}
$$

Prop LET $n=1$ THEN
P Differentiable at \underline{x} a. $A \Leftrightarrow$ A Admits derivative $f^{\prime}(\underline{x}) \circ$ ok $A T x \in A$.

$$
\text { ST. } \lim _{h \rightarrow 0 \in \mathbb{R}} \frac{f(\underline{x}+h)-f(\underline{x})-L_{\underline{x}}(h)}{|h|}=0!11 \quad(x \neq)
$$

Sine $n=1, \quad\|h\|=|h|$

$$
(x *) \Leftrightarrow \lim _{h \rightarrow 0 \in \mathbb{R}} \frac{f(\underline{x}+h)-f(\underline{x})-L_{\underline{x}}(h)}{h}=0 \Leftrightarrow
$$

$$
\begin{aligned}
& \Leftrightarrow \lim _{h \rightarrow 0 \in \mathbb{R}} \frac{f(x+h)-l(x)}{h}=\lim _{h \rightarrow 0 \in \mathbb{R}} \frac{L_{\underline{x}}(h)}{h} \quad h=h \cdot 1 \\
& =\lim _{h \rightarrow 0 \in \mathbb{R}} \frac{L_{x}(h \cdot 1)}{h} \\
& =\lim _{h \rightarrow 0 \in \mathbb{R}} \frac{L_{n} \cdot L_{x}(1)}{h}=L_{x}(1) \in \mathbb{R}
\end{aligned}
$$

WE Proven $\lim _{h \rightarrow 0 \in \mathbb{R}} \frac{f(\underline{x}+h)-f(x)}{h}=L_{\underline{x}}(1) \in \mathbb{R} \quad \cdots$
THEN $\exists f^{\prime}(\underline{x})=L_{\underline{x}}(1) \in \mathbb{R} . \quad$ (MORE) (QED
TERMWOLON : THE LINER FUNeST $L_{\text {n }}$ is CALLED

$$
\text { THE DIFFERENTINL OF } P^{-} \text {AT } x \in A \text {. }
$$

\Longleftarrow WHAT IS "TME CAMMNATE" FOR $L_{\underline{x}}: \mathbb{R} \rightarrow N R$ LIDERAR???

$$
h \in \mathbb{R}, \quad h=h \cdot 1 \xlongequal{\text { Limanity }} L(h)=L(h \cdot 1)^{2 N}=h \cdot L(1)
$$

$$
\Leftrightarrow 0^{\text {cost }} 0{ }^{\text {costavt. }}
$$

THEN $L: M \rightarrow \mathbb{R}$ linear $\Leftrightarrow \quad L(h)=h \cdot L(1) \quad h \in \mathbb{R} \quad$ Pff
in unterviviras : $L: \mathbb{R} \rightarrow \mathbb{R} \quad$ Linearg $\Leftrightarrow L(x)=K \cdot x$
So, Assume (nin our Proork) THAT

$$
L_{\underline{x}} \quad i \| R \rightarrow \mathbb{R}_{\underline{\operatorname{LiNEAR}}} \quad \text { is } \quad L_{x}(h)=f^{\prime}(x) \cdot h \quad h \in \mathbb{R} \quad \text { PMl }
$$

now, is true

$$
\text { (t) } \lim _{h \rightarrow 0} \frac{f(\underline{x}+h)-f(\underline{x})-L_{\underline{x}}(h)}{|h|}=0 \quad \text { ??? (niff. couss.) } Y E=
$$

$(t) \Leftrightarrow \lim _{h \rightarrow 0} \frac{f(\underline{x}+h)-P(\underline{x})-h \cdot P^{\prime}(\underline{x})}{l}=0 \cap \cap!(H) \quad Y E S$

WE Prover

$$
\begin{aligned}
& \text { PAnmits nerivative } f^{\prime}(x) \Rightarrow \text { PDIFF AT } x \in A \text {, plus } \\
& L_{\underline{x}}(h)=\rho^{\prime}(\underline{x}) \cdot h \quad \text { PO! }
\end{aligned}
$$

BREEAK
QUESTIONS?
Berin ageain at 12.15

