Begin tain at 12.05

Vector valued functions (one variable case)
That is:

EX $\quad r:[0,2 \pi] \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$
who $=r(t)=\underset{\sim}{(\cos t, \operatorname{cen} t)} \quad$ is $\quad \in \mathbb{R}^{2} \quad \forall t \in[0, \pi]$

Recall

$$
\cos (t)^{2}+\operatorname{sen}(t)^{2}=1 \quad \nabla!!
$$

SATISFIES TUE EQ: $x^{2}+y^{2}=1$
So $r[[0,2 \pi]]$ is the unit circle in in with center (0,0)!!!

WE RECALL $f: B \subseteq \| Z \rightarrow \mathbb{R}$

$$
\therefore A \subset \mathbb{R} \rightarrow \mathbb{R}
$$

If $2[A] \subseteq B$ we can consmpr the
compostition funetion:
for: $A \subseteq N \rightarrow$ suen that

$$
(f \circ 2)(x)^{\text {nit }}=f(2(x)) \quad!!
$$

We recall, that given aef ann $b=z(e)$
IF $\quad \exists 2^{\prime}(u), \exists f^{\prime}(b)$
TNEN $\exists\left(f_{\text {OR }}\right)^{\prime}(a) \stackrel{\operatorname{TnMm}}{=} f^{\prime}(\Omega(a)) \cdot n^{\prime}(a)$
(Tine ennitu rule for ordinarry nerivatives!!!).
Ceneralization
1)

$$
\begin{aligned}
\Omega: A & \leq \mathbb{R} \rightarrow \mathbb{R}^{n} \quad, \text { Aopen } \quad, u \in A \\
& \downarrow \text { véctor valuẽn } \\
z \equiv & \left(r_{1}, \ldots r_{n}\right) \\
& \text { a }{ }_{\text {Sealnr comnoluento }}
\end{aligned}
$$

2) $P: B \leq \mathbb{R}^{x} \rightarrow \mathbb{R}$, Bonin,$b \in B$.

ASSUME TOATT $\quad r[A]=\frac{\left\{r(t) \in R^{n} ; t \in A\right\} \subseteq B}{R^{n}} \quad P P!$

WE CAN COWSIDER TME COMAOBITION FUNCT:

$$
\left(P_{0}\right): A \subseteq \mathbb{R} \rightarrow \mathbb{R} \quad(f \circ r)(x)=P(r(x)) \nVdash x, A
$$

THM $\left(\begin{array}{cc}n=R E A T & i n[A] \subseteq B \\ i i) h=2(a)\end{array}\right)$
HP1 $\quad \forall i=1,2, \ldots, n$

HP2 \int nifFERENTIABLEE AT $b=r(a)$
Then (for): $A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ (ornimany funct.)
Th1) ADMITS $\frac{\text { DERIVATIVE }}{\text { The noInt } a \in A \subseteq \mathbb{R} \text {. } \text {. } \quad \text { (ar) } \text { At }}$

A special case: $m=1$
Then

Hi 1) Becomes 1') $\quad \exists 2(u)$
HP2) BECOMES 2') $\exists f^{\prime}(l)$ CiN DARTICLZAR

$$
\left.\operatorname{yrad} \rho(h)=\left(\rho^{\prime}(b)\right)\right)
$$

Th 1 becomes

$$
\exists\left(f_{0 r}\right)^{\prime}(a)
$$

Th ? BE COMES

$$
\begin{aligned}
& (f \circ r)^{\prime}(e) \stackrel{\text { ThM M }}{=}\left\langle\underset{1}{\left.\operatorname{grat} f(l),\left(r_{1}^{\prime}(v) \ldots, r_{m}^{\prime}(a)\right)\right\rangle \quad \text { But } n=1}\right. \\
& \left\langle\left(\rho^{\prime}(b)\right\rangle, \underset{\hat{R}}{\hat{R}} \underset{\hat{R}}{\left.\left(r^{\prime}(u)\right)\right\rangle} \begin{array}{c}
\hat{R}
\end{array}=f^{\prime}(l) r^{\prime}(u)\right. \\
& \text { IS IT CLEAR??? }
\end{aligned}
$$

is sain to BE A LOCAL max/min polat

$$
\text { For } \overline{P: A \leq} \mathbb{R}^{x} \rightarrow \mathbb{R}
$$

IF AND ONLy IF

$$
\begin{aligned}
& \frac{\exists I(x, \delta) \subseteq x_{x^{x}}}{\text { SUER THAT }}, \delta \in \mathbb{R}^{+} \\
& \stackrel{144 x}{=} \quad f(\underline{x}) \geqslant f(x) \quad \forall x \in I(x, j) \cap A \\
& \downarrow \text { if open } \\
& \text { nevancon by } x \in I(\underline{x}, d
\end{aligned}
$$

Stop
Questions?

BYE BYE

