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In copertina:
rappresentazione della funzione elevamento al quadrato in campo complesso.
Ogni retta nel piano a sinistra viene trasformata in una curva (parabola o semiretta)
dello stesso colore nel piano a destra.
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FuNzIONI

1.1 Esercizi

DOMINIO E SIMMETRIE

Se ¢ assegnata una formula in cui compare una variabile (solitamente x ), ad esempio:

x?, ad vV x2—543x, v 1—logx,

b
ex—1

risulta naturale considerare la funzione individuata da tale formula. Con questo si intende
la funzione, reale di variabile reale, definita per tutti gli x €R per cui la formula ha senso.
Dinsieme ditali x, che risulta essere il domino della funzione definita dalla formula, ¢ detto
dominio naturale della funzione.

Per determinare il dominio naturale di una funzione ¢ necessario determinare 1 numeri
reali tali che nella formula considerata:

e ogni frazione ha denominatore diverso da 0,

® ogni potenza a esponente intero non positivo ha base diversa da 0,
® ogni potenza a esponente positivo non intero ha base non negativa,
® ogni potenza a esponente negativo non intero ha base positiva,

* ogni funzione elementare con dominio diverso da R ha argomento appartenente al
dominio.

Ricordiamo che le funzioni elementari con dominio diverso da R sono:

e radice, che ha dominio [0,+00[,

log (in qualunque base), che ha dominio R*,
e tan, che ha dominio R\ {(7/2)+kr|keZ},
® cot, che ha dominio R\ {kx |k €Z},

® arcsen e arccos, che hanno dominio [—1,1],
® settcosh, che ha dominio [1,+o0],

e setttanh, che ha dominio ]—1,1[,
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1.1.1 Esempio. Determiniamo il dominio naturale delle funzioni definite dalle formule
riportate sopra.

La formula x’ hasenso Yx € R; pertanto il dominio naturale della funzione x — x°

¢ R.

La formula x/(e*—1) ha senso se il denominatore non si annulla, cio¢ per e* # 1, che
equivale a x # 0; quindi il dominio naturale della funzione x — x/(e*—1) ¢ R*.

La formula v/x2—5+3x ha senso se 'argomento della radice ¢ non negativo, quindi il

dominio naturale della funzione x — +v/x2—5+3x ¢ ]—oo,— ﬁ] U [\/g, +oo[ .

La formula 4/1—logx ha senso se ’argomento del logaritmo ¢ positivo e 'argomento
della radice ¢ non negativo, quindi deve essere x >0 e 1—logx > 0; la seconda disequazione
¢ verificata se e solo se logx < 1, cio¢ x < e. Quindi il dominio naturale della funzione

x — 4/1—logx ¢ ]0,e]. <

Una funzione, o, per la precisione, il suo grafico, puo avere particolari simmetrie.
Studiamo il grafico di una funzione reale di variabile reale che sia simmetrico rispetto
all’asse delle ascisse.

Il simmetrico rispetto all’asse delle ascisse del punto (x,y) € R? ¢ (—x,y). Quindi il
grafico di una funzione f: A — R ¢ simmetrico quando

V(x,9)€R?,  (x,9)€Gr(f) <= (—x,9) € Gr(f);

questa condizione equivale a
V(x,y)eR?, (x€AAy=f(x)) <= (—x€AAy=f(—x)).

Tale condizione equivale a chiedere che, Yx € R, sia x € A <= —x €A eche, Yx €A,
sia f(—x)=f(x).

Poiché la trasformazione x — —x ¢ la simmetria dell’asse reale rispetto all’origine, la
condizione su A significa che A ¢ simmetrico rispetto all’origine.

Osserviamo che la condizione x €A <= —x €A, ¢equivalentea x €A = —x € A.
Infatti se vale questa, sitha —x€A — —(—x) €A, ma —(—x)=x.

Queste osservazioni si traducono nella seguente definizione.

Sia f:A—> R, con ACR simmetrico rispetto all’origine; se

Vxed, fl==x)=/(x),

allora diciamo che f* ¢ una funzione pari.
Il nome ¢ dovuto al fatto che, come si verifica facilmente, le funzioni potenza con
esponente intero pari godono di tale proprieta.

1.1.2 Esempio. Sia f; la funzione definita da

fix)=lx|+ v 1=x2.

Il dominio naturale di f; ¢ costituito dagli x € R per cui ¢ non negativo il numero sotto
radice, cio¢ {x € R|1—x? >0}, pertanto Z(f,)=[—1,1]. Evidentemente x €[—1,1] se
e solo se —x € [—1,1]. Inoltre, se x appartiene a tale insieme, allora

fil=x) = |=x[+ V1= (=x) = [x[+ V1=x2= fi(x).

Pertanto f; ¢ una funzione pari. <
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Figura 1.1.1

Il grafico della funzione pari f,
(v. esempio 1.1.2) ¢ simmetrico
rispetto all’asse delle ordinate.

Analogamente studiamo il grafico di una funzione reale di variabile reale che sia simme-
trico rispetto all’origine.

Il simmetrico rispetto all’origine del punto (x,y) € R? ¢ (—x,—y). Quindi il grafico
di una funzione f: A — R ¢ simmetrico quando

V(X’y>ER2’ (x,y>€Gf(f) <~ (_x’_y)EGr(f);

questa condizione equivale a
V(x,y) € R?, (x €ANy :f(x)) S (—x €EAN—y :f(—x)).

Tale condizione equivale a chiedere che, Yx € R, sia x €A <= —x €A eche, Yx €A,
sia f(—x)=—f(x).

Queste osservazioni si traducono nella seguente definizione.

Sia f:A— R, con ACR simmetrico rispetto all’origine; se

VxeA, f(—x)=—f(x),

allora diciamo che f ¢ una funzione dispari.

Il nome e dovuto al fatto che, come si verifica facilmente, le funzioni potenza con
esponente intero dispari godono di tale proprieta.

1.1.3 Esempio. Sia f, la funzione definita da

fo(x) = x(|x] —2).

Poiché la funzione valore assoluto ha dominio R, il dominio naturale di f, ¢ R. Tale
dominio ¢ simmetrico rispetto all’origine. Inoltre, Yx € R, si ha

f=x) = (=x)(|x| = 2) = —(x(]x] —2)) = —fo(x).

Pertanto f, ¢ una funzione dispari. <
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Figura 1.1.2

Il grafico della funzione dispari f,
(v. esempio 1.1.3) & simmetrico
rispetto all’origine.

Studiamo ora il grafico di una funzione che sia invariante per traslazioni in direzione
parallela all’asse delle ascisse.

Sia T € R*. Effettuando una traslazione di ampiezza T parallelamente all’asse delle
ascisse in direzione positiva, il punto (x,y) € R? viene traslato nel punto (x+7,). Quindi
il grafico diunafunzione f: A — R ¢ invariante per una traslazione di ampiezza T parallela
all’asse delle ascisse in direzione positiva quando

V(x,y)ERz, (x’y)EGr(f) — (x+T,y)€Gr(f),

questa condizione equivale a

V(x,y)€R?, (x€AAy=f(x)) <= (x+T €ANy=f(x+T)).
Tale condizione equivale a chiedere che, Yx €R,sia x €A <= x+T €A eche, Yx €A,
sia f(x+T)=f(x).

Queste osservazioni si traducono nella seguente definizione.
Siano T€R" e f:A—R,con A taleche, Yx€R,siha x€A <= x+T €A;se

VxeA, f(x+T)=Ff(x),

allora diciamo che f ¢ una funzione periodica di periodo T o funzione T -periodica.

1.1.4 Esempio. Sia f; la funzione definita da

fi(x)=x—[x]

Poiché la funzione parte intera ha dominio R, il dominio naturale di f; ¢ R. Per ogni
x €R risulta

) =x+1—[x+1]=x+1—([x]+1)=x—[x]= fi(x).

Pertanto f; ¢ periodica di periodo 1. <
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%

1) Determinare il dominio naturale della funzione definita da:

f(x):arcsen(l— 6x_5>.

Figura 1.1.3

Il grafico della funzione periodi-
/ ca f; (v. esempio 1.1.4) ¢ inva-
5 riante per traslazioni orizzontali
di ampiezza 1.

x—6

2) Determinare il dominio naturale della funzione definita da:

3) Determinare il dominio naturale della funzione definita da:

1
a V2x2—=3x+2—|x2+x—2| .

f(x)

4) Determinare il dominio naturale delle seguenti funzioni:

 fl= TR o S =tog(1f1- 242

b. f(x)=+vV2x?—1—vx+1 h. f(x)=+/log6—log(—x2 + 3x + 10)

+5)
4x + 8

c. f(x) :log(x2+x +1—[3x])

i f(x)=4/x2—4 arcsen<
d. f(x)=VV1—x—x—4

c. f(x):log< = >

x2—3x

ViIx+2|-3

e

ke f(x) = log(3+ +8— v/x7—4)
x242x
f. f(x)= \J: . f(x)= arcsen(M)
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ASINTOTI

Un asintoto per una funzione reale di variabile reale ¢ una retta a cui il grafico della
funzione “si avvicina all’infinito”.

Precisiamo questa idea. Consideriamo un punto del grafico la cui distanza dall’origine
tende a +00 e studiamo la sua distanza da una retta fissata. Quindi, assegnata f: A — R,
consideriamo la funzione, con lo stesso dominio di f*, che a x fa corrispondere la distanza

del punto (x,f(x)) dall’origine, cioe la funzione x — 4/x2+ (f(x))2 . Sia c€PL(A) tale

che per x — ¢, eventualmente da sinistra o da destra, sia 4/ x2+ ( f (x))2 —+o00. Cid
avviene per x — £00, oppureper x > c€R (0 x > ¢~ 0 x = ¢t )sesiha f(x) > too.
Vediamo se in questi casi il punto (x, f (x)) si avvicina a una determinata retta, nel senso
che la distanza del punto dalla retta tende a 0, per x — .

Nel caso x — +00, la distanza del punto (x, f (x)) dalla retta di equazione y = mx+p
¢ |f(x)—mx — p|/¥/1+m?, che tende a O se e solo se f(x)—mx—p — 0. E utile
distinguere il caso m =0 da m #0.

Diciamo che la retta di equazione y = p ¢ asintoto orizzontale per f quando risulta

lim f(x)=p oppure lim f(x)=p.

X——0Q x—+00

Diciamo che la retta di equazione y = mx + p ¢ asintoto obliquo per f* quando risulta

lim (f(x)—mx—p):O oppure  lim (f(x)—mx—p):O.

X——00 x——+00

Se per x = ¢, 0 x — ¢, f(x) — £oo, evidentemente il punto (x,f(x)) si avvicina
alla retta di equazione x = ¢. Quindi diciamo che la retta di equazione x = ¢ ¢ asintoto
verticale per / quando, per x — ¢t o per x > ¢~ siha f(x)— +oo.

1.1.5 Esempio. Sia

x
[ER\{Z} >R fi(x)= -
x—2
Risulta
lim fi(x)=1, linzliﬁ(x):—oo,
lir?+ﬁ(x):+oo, liin filx)=1.

Pertanto la retta di equazione x =2 ¢ asintoto verticale per f, , mentre la retta di equazione
y =1 ¢ asintoto orizzontale per f. <

Per stabilire che la retta di equazione x = ¢ ¢ un asintoto verticale per una funzione f
¢ sufficiente sapere che lim__ . f(x)=+o0. Per stabilire che la retta di equazione y = m
¢ un asintoto orizzontale per una funzione f & sufficiente sapere che lim,_ f(x)=m.
Si tratta in entrambi i casi di avere informazioni su limiti di /. Diverso ¢ il discorso per la
ricerca di asintoti obliqui.
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La condizione per cui la retta di equazione y = mx + p ¢ asintoto obliquo equivale a
f(x)=mx+p+o(1), per x — +00.

Da questa uguaglianza segue

f(x):mx+p+o(1):m+£+@ .
X X X x x—xoo

Inoltre risulta lim, ;. (f(x)—mx)= p. Pertanto, se la retta di equazione y = mx + p
¢ asintoto obliquo per [, allora, per x — —00 o0 per x — 400, risulta f(x)/x — m
e f(x)—mx — p. Viceversa, se, per x — —00 0 per x — 400, si ha f(x)/x = m e
f(x)—mx — p,allorasi ha f(x)—mx—p — 0, quindi la retta di equazione y = mx+ p
¢ asintoto obliquo per f .

1.1.6 Esempio. Sia
fs: ]=00,—4]U[0,+00[ = R, fi(x) =V x2+4x.

Per x — +o00 siha 1/x — 0, quindi

fw=hyfie =10 2 ro 1)) w20,

Pertanto la retta di equazione y = x + 2 ¢ asintoto obliquo per f;.
Procedendo invece con il calcolo di limiti, si ha

Vx2 V1+(4
lim S _ lim yxitdx lim K1+ @) lim v/1+(/x)=1,
xX— oo x X— oo x xX— oo x xX— oo

. . . (VP dx—x)(VaP+4x+x
Jim (59 —x) = Jim (Ve )= | ¢%+ -
x4 4x —x? ) 4x

im = lim
¥=Foo x| /14 (4/x)+ x x_’+°°x< 1+(4/x)+1)

Riotteniamo cosi che la retta di equazione y = x + 2 ¢ asintoto obliquo per f; .
Analogamente, per x ——o0 si ha

fs(x) = x| m:—x<l+ % % +o<%>> =—x—2+40(1).

Pertanto la retta di equazione y =—x —2 ¢ asintoto obliquo per f; . <

Come risulta da quanto esposto sopra, per determinare gli asintoti orizzontali e obliqui
di una funzione occorre studiarne il comportamento a —oo (se il dominio ¢ inferiormente
llimitato) e a +o0 (se il dominio € superiormente illimitato). Per determinare gli asintoti
verticali occorre studiare se la funzione ¢ divergente per x che tende, eventualmente da
sinistra o da destra, a un numero reale ¢ . Cio puo avvenire se ¢ ¢ un punto di discontinuita
per la funzione oppure se ¢ un punto che non appartiene al dominio, ma ¢ di accumulazione
per il dominio. In particolare, se il dominio ¢ unione di intervalli, hanno interesse gli
estremi reali di tali intervalli che non appartengono agli intervalli stessi.
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5) Determinare gli asintoti della funzione definita da:

f(x)= &<g + arctanx).

x2—1

6) Determinare gli asintoti della funzione definita da:

fl= T (L),

x _|x—2|

7) Determinare gli asintoti della funzione definita da:

Flx)= '71’_’“ arctan<x_6>.

—Xx x—4

8) Determinare gli asintoti delle seguenti funzioni:

a. f(x)=log(e®* +3) £ f(x):(x—S)eXp<i>

x+4
xv/x2—9+3
b. = x
f(x) 2 _5x o f(x)= x2 e’/
Vx2—2x
X7 3x— x|

c. f( ) Jx2+2x h. f(x): m+3x3—|—5x2

x2—3x
6
d. f(x):(x+3)log<2+ ;) i f(x)=x /_x2+2x(e_3/"—1)

e. f(x)= MI0g<5_x> i )= @

lx—2]| et/x+1

MONOTONIA ED ESTREMANTI LOCALI

Lo strumento principale per studiare la monotonia di una funzione ¢ il criterio di mono-
tonia, che assicura che una funzione definita in un intervallo 7, continua in / e derivabile
in int/, se ha derivata non negativa in int/ allora ¢ crescente, mentre se ha derivata non
positiva allora ¢ decrescente. Sottolineiamo che le ipotesi del teorema richiedono che il
dominio sia un intervallo.

Ricordiamo anche il criterio di stretta monotonia, che afferma che, se si impone I’ipo-
tesi piu restrittiva che la derivata sia positiva, allora la funzione ¢ strettamente crescente e,
analogamente, se la derivata ¢ negativa, allora la funzione ¢ strettamente decrescente.

Elenchiamo alcune condizioni necessarie e condizioni sufficienti perché un punto del
dominio di una funzione sia estremante locale.

Il teorema di Fermat stabilisce una condizione necessaria: se ¢ € int Z(f) ¢ estremante
locale e f ¢ derivabile in ¢, allora f’(c) = 0. Pertanto 'insieme degli estremanti di una
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funzione f: A — R ¢ incluso nell’unione dei seguenti tre insiemi:

ANJA,
{x €intA| f non ¢ derivabile in x} ,
{x €intA|f ¢ derivabile in x e f'(x)=0}.

I teoremi che stabiliscono condizioni sufficienti affinché un punto sia estremante lo-
cale si suddividono in due categorie: quelli che utilizzano informazioni sulla monotonia
della funzione o, equivalentemente, sulla sua derivata prima e quelli che utilizzano anche
informazioni sulla derivata seconda.

La condizione sufficiente di ordine zero assicura che, fissati /: A —R e ¢ €A, se esiste
S €R* tale che f ¢crescentein Jc—&,c]NA ed ¢ decrescente in [¢,c+S[NA, allora ¢
¢ punto di massimo locale. Una analoga condizione sufficiente affinché ¢ sia un punto di
minimo locale si ottiene scambiando crescenza e decrescenza.

Dalla condizione di ordine zero, mediante il criterio di monotonia, si ottiene immedia-
tamente la condizione sufficiente del I ordine. Questa assicura che, dati f: 7/ — R, con [
intervallo, e ¢ € I, se f ¢ continua in [ e derivabile in 7\ {c} ed esiste & € R* tale
che f/(x)>0 per x € Jce—8,c[NI e f'(x) <0 per x € Jc,c +8[ NI, allora ¢ & punto
di massimo locale. Un’analoga condizione sufficiente affinché ¢ sia un punto di minimo
locale si ottiene scambiando il segno della derivata.

La condizione vale anche se ¢ ¢ massimo o minimo di 7, in tal caso uno dei due insiemi
Je—38,¢c[NI e Je,c+S8[ NI ¢ vuoto, quindi ha senso solo una delle due condizioni sul
segno di f”.

Evidentemente la condizione del I ordine per Iesistenza di un punto di massimo lo-
cale ¢ verificata quando esistono un intervallo Ja,c[, con a < ¢, in cui f’ ¢ positiva
e un intervallo Jc,b[, con b > ¢, in cui f’ ¢ negativa. In tal caso si pud scegliere
& =min{c—a, b —c}. Analogamente per I'esistenza di un punto di minimo locale.

La condizione sufficiente del II ordine assicura che, dati f: 7/ — R, con I intervallo, e
ce€l,se f ¢derivabile 2 volte in ¢ erisulta f(c)=0 e f”(c)> 0, allora ¢ ¢ punto di
minimo locale; se invece f/(c)=0 e f”(c)<0, allora ¢ ¢ punto di massimo locale.

1.1.7 Esempio. Sia
fo: R—>R, fi(x)=x>—2x? +2x.

La funzione f; ¢ derivabile e, Yx € R, si ha f/(x) = 3x* —4x +2. Questo trinomio ha
discriminante —10, percio ¢ sempre positivo. Quindi, Yx € R, siha f/(x) >0, pertanto f
¢ strettamente crescente.

Non vi sono estremanti locali per f;, perché solo il minimo e il massimo del dominio
possono essere estremanti locali per una funzione strettamente monotona, ma 2(f,) =R
non ha né minimo né massimo.

1.1.8 Esempio. Sia
x

2—1]

]{7R\{—1,1}—>R ]{7(}6):

La funzione f; ¢ derivabile in x se x non annulla né I’argomento del valore assoluto né
quello della radice. Evidentemente tali argomenti sono non nulli in ogni punto del dominio
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di f;, che quindi ¢ derivabile. Si ha, Yx e R\ {—1,1},

pon xsgn(x?—1) 1 e =1 —x?sgn(x?—1)
f7<x>—<\/|x2_1|_x STl >(\/|x2—1|)2_ |x2—1]/2

_osgn(x? —1)(x* —1)—x?sgn(x*—1)  sgn(x*—1)
- |x2—1P3/2 o |x2—1p3/2 "

Il denominatore ¢ positivo, quindi £;(x)> 0 se e solo se sgn(x?—1) <0, cio¢ x> —1<0
Pertanto se x € ]—1,1[, allora f(x) > 0, quindi f; ¢ strettamente crescente in ]—1,1[ .
Se x € ]—oo,—1[, allora f/(x) <0, quindi f; ¢ strettamente decrescente in ]—oo,—1[.
Se x € ]1,400[, allora f/(x) <0, quindi f; & strettamente decrescente in ]1,4o00[ .

La funzione f, non ha estremanti locali. Infatti ¢ derivabile e il dominio ¢ aperto,
pertanto, per il teorema di Fermat, in ogni estremante locale £ ¢ nullo, ma f; non si
annulla.

1.1.9 Esempio. Sia

x+1
: 5 _- .
fosrR—R fe(x) 213

La funzione f; ¢ derivabile e, Yx € R, si ha
x24+3—2x(x+1) —x?—2x+3

K==y =~ 1

Il denominatore ¢ positivo, il trinomio a numeratore si annulla per

11— (=1)3 1:|:2_{1,
= — = =

X

-1 —3.

Poiché il coefficiente di x? ¢ negativo, risulta f;'(x) >0 se x € ]-3,1[ e f(x) <0 se
x € J—o00,—3[U]1,4+00[. Quindi la funzione f8|[ . ¢ derivabile e ha derivata positiva

in tutti i punti interni al dominio, quindi, per il criterio di monotonia stretta, ¢ strettamente
crescente. Per motivi analoghi f; ¢ strettamente decrescente in ]—o00,—3] ein [1,400[ .

Osserviamo che dal fatto che f; sia decrescente in ]|—oc0,—3] e in [1,400[ non segue
che essa sia decrescente nell’unione di tali insiemi. Infatti si verifica facilmente che per
x € ]—o00,—3] risulta fg(x) < 0, mentre per x € [1,400[ risulta fg(x) > 0, quindi f
non ¢ decrescente in ]—o0,—3]U[1,+00] .

Poiché esiste un intervallo che ha massimo —3 in cui f; € strettamente decrescente e un
intervallo che ha minimo —3 in cui f; € strettamente decrescente, si determina facilmente
8 €RT tale che f; ¢ strettamente decrescente in ]—3—3&,—3] ed ¢ strettamente crescente
[—3,—3+ & ; si puo ad esempio scegliere & = 1. Quindi —3 ¢ punto di minimo locale
per fq.

Analogamente, poiché esiste un intervallo che ha massimo 1 in cui f; strettamente
crescente ed esiste un intervallo che ha minimo 1 in cui f; ¢ strettamente decrescente, 1 ¢
un punto di massimo locale per f;.
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Ripetiamo lo studio degli estremanti locali utilizzando la condizione necessaria del 11
ordine. Sappiamo che f;(—3)= fJ(1)=0. La funzione f; ¢ derivabile e, Yx € R, si ha

(—2x —2)(x? + 3)* — 4x(x? + 3)(—x? — 2x +3)

fx)= =

(XZ + 3)4
=20 —6x—2x?—6+4x’ +8x?—12x _ 2x’+6x?—18x—6
B (x2+3) B (x2+3)}
Quindi
544544546 48
1/
—3)= = —> O,
f=3) 123 123
2+6—18—6 16
1" _szr= == =-__ ==
s ()= yE == 5 <0.
Pertanto otteniamo nuovamente che —3 ¢ un punto di minimo locale e 1 ¢ un punto di
massimo locale per f;. <

1.1.10 Esempio. Sia
3
fg:[—z,—i—oo[—dR, ﬁ,(x):|v2x—|—3—x|.

Le funzioni radice quadrata e valore assoluto sono derivabili nel dominio escluso 0, quin-
di £, & derivabile in x € 2(f;) se 2x+3#0,e /2x+3—x#0. Siha 2x+3=0see
solose x =—3/2. Siha 4/2x+3—x =0 seesolose x >0 e 2x +3 = x>. L’equazione
2x +3 = x? equivale a x* —2x —3 =0, che ¢& verificata per

1,
x=1+4/12—(=3)=14+2= {3
Poiché deve essere x >0, si ha la soluzione x =3. Pertanto f, ¢ derivabile in
3 3
@(ﬁ)\{—i,a} :]—E,S[U]3,+oo[.

Lo studio della derivabilita in —3/2 e 3 non ha interesse per la determinazione della
monotonia della funzione.
Per x nell’insieme indicato sopra risulta

f5(x) =sgn( 2x+3—x)<J29C1_H—1>.

Studiamo il segno di f; .
Siha v/2x+3—x>0 seesolose x ¢&soluzione del sistema
2x+3>0,
{x <0,

oppure ¢ soluzione dell’equazione 2x +3 > x2. Il sistema ¢ verificato per x € [—3/2,0].
Lequazione equivale a x> —2x —3 < 0. Sappiamo che il trinomio ha le radici —1 e 3,
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quindi & non positivo in [—1,3]. Pertanto, considerando solo i punti in cui abbiamo gia
stabilito la derivabilita di fy, siha v/2x+3—x>0 per x € ]-3/2,3[ e ¥/2x+3—x <0
n ]3,+o00f.

La disequazione 1/4/2x +3 > 1 & verificata per gli x maggiori o ugualia —3/2 tali che
2x+3<1,cioe x <—1.

Pertanto il segno di f; risulta dal seguente schema

-3 4 3
2
sgn(v2x +3—x) o e i e e e e i o B
1
-1 |
2x+3
fo (x) + |- — = = ++ 4+ + 4+ + 4+ +

Poiché f, € continuain [—3/2,—1] e derivabile in ]—3/2,—1[, con derivata positiva in
ogni punto di tale intervallo, per il criterio di monotonia ¢ crescente (e anche strettamente
crescente) in [—3/2,—1]. Per motivi analoghi, f; & crescente in [3,4+00[ e decrescente
n [—1,3].

Il punto —3/2 ¢ il minimo del dominio di f; e nel suo intorno destro [—3/2,—1[ la
funzione ¢ crescente, quindi, per la condizione sufficiente di ordine zero per gli estremanti
locali, —3/2 ¢ punto di minimo locale.

Scelto § =1/2,in ]—-1—&8,—1] fy & crescente, mentre in [—1,—1+ 8 f; ¢ decre-
scente, quindi —1 ¢ punto di massimo locale; per motivi analoghi, 3 ¢ punto di minimo
locale.

In questo caso la condizione sufficiente del II ordine non puo essere utilizzata per stabi-
lire che —3/2 e 3 sono estremanti locali, perché f; non ¢ derivabile in tali punti. Infatti

1 1
lim X lim sen(v/2x +3—x <——1>: lim <——1>:+oo.
Jim S0 = lim sgn( ) J2x+3 32\ y2x 3
Pertanto
3 T 1o
x~l>1n’31/2Rf< 2>_xl1£r31/2ﬁ)(x>_+oo,
quindi fy non ¢ derivabile in —3/2. Inoltre
lim f(x)= lim sgn(v2x+3—x)<;—1>: lim <;—1>:—z,
x=3” x=3” V2x+3 =37\ /2x +3 3
1 1 2
lim = lim sgn(v2x +3—x <——1>:—lim< —1>:—.
i )= i, sn( Ao A\ VT3 3
Quindi
lim R, (x,3)= lim £/(x)=—>,  lim R, (x,3)= lim £/(x)=2
lim Ry (x,3)= lim fo(x)=—2,  lim Ry(x,3)= lim fy(x)=7,

pertanto i limiti sinistro e destro del rapporto incrementale sono diversi, percio f, non e
derivabile in 3.
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13

9) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e di minimo

locale della funzione definita da:

_|x?—4x 43
N x+1 '

f(x)

10) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo
minimo locale della funzione definita da:

f(x) = x exp(—2x? 4 3x).

11) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo
minimo locale della funzione definita da:

Flx)=V2x2456—/x2—4.

12) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo
minimo locale della funzione definita da:

flo) =y T

13) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo
minimo locale della funzione definita da:

F(x) =log(x*+2x)—|x +4]|.

14) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo
minimo locale della funzione definita da:

f(x)=tanx+3cotx.

15) Determinare gli intervalli di crescenza e di decrescenza e 1 punti di massimo
minimo locale delle seguenti funzioni:

X2 o\
a f(9)= £ fx)=x(log )
b. f(x)=vx+1—x g f(x)=¢" X
x—2
1
- f(x)_l—logx h. f(x)=+vx2—3—2x*

d. f(x)=2x—arcsenx

i f(x)=x+/|logx]|
exp(v—x+5)

e. f(x)= 2 jo f(x)=8x +2x — 1] exp(—4x* + 2x)

e di

e di

e di

e di

e di

e di
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x+7

k. f(x):m o. f(x)=|x+4|

Clx 4342
L f(x)= 9 p. f(x)=2arctan(x?) + arctan< Z(le_ 9)>
B exp(x?/2) cosx
m. f(x)_m 9 f(x):senx—i-z

n. f(x)=|x*+3x[e > r. f(x)=sinx +/cosx

CONVESSITA E PUNTI DI FLESSO

Per studiare le convessita di una funzione possiamo utilizzare i criteri di convessita;
solitamente risulta utile quello del II ordine, che assicura che una funzione definita in un
intervallo 7, continuain I ederivabile 2 volte in int7, se ha derivata seconda non negativa
in int/ allora ¢ convessa, mentre se ha derivata seconda non positiva allora ¢ concava.

Il punto ¢ appartenente all’interno del dominio della funzione f € un punto di flesso
per f quando f ¢ derivabile in ¢ e 38 €R* taleche Jc—&8,c+3[ S 2(f) e

veele—d,e+ol\le, LD <pp

oppure

Vxe]e—38,c+8[\{c}, szﬂ(x)

X—cC

La prima condizione equivale a chiedere che sia

(Yxele=d,c[, f(x)—f(c) 2 f(x)x—)A(Yx € Je,c+8[, f(x)—f(e) < f'(x)(x—0)),
cioe

(Vx €Je=8,cl, f2) 2 Fle)+F (N e)A(Yx € Jere 8T, F(x) < Fle)+f (x)x—0)).
Geometricamente cio significa che in ]c —&8,¢[ il grafico di f ¢ “al di sopra” della retta
tangente al grafico in (c, f(c)), mentre in Jc,c+87 il grafico di / ¢ “al di sotto” della retta

tangente. In altre parole, nel punto (C, f (c)) il grafico di f attraversa la retta tangente.

Analogamente la seconda condizione equivale a

(Yx€Je=8,c[, f(x) < f(O)+f (x)x—)A(Yx € Je,c48[, £(x) 2 f(e)+f (x)(x—c)).

In questo caso la posizione del graﬁco rispetto alla retta tangente € invertita e, come prima,
il grafico attraversa la retta tangente.

Siano f:I — R, con [ intervallo, e ¢ € int/ tale che f ¢ derivabile in c¢. Se esiste
8 € RY tale che Jc—8,c+8[ C 1, f ¢ convessain Jc—&,c] e concavain [c,c + [,
allora, per le proprieta delle funzioni convesse e concave, risulta verificata la condizione

(Yxele=d.c[, f(x) 2 fO)+/ (x)x—0)A(Yx € Je,c+8[, f(x) < f(o)+f (x)(x—0)),
quindi ¢ ¢ punto di flesso per f .
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Figura 1.1.4
Punti di flesso. A sinistra il grafico di una funzione per cui il rapporto incrementale R (x,¢)

¢ minore o uguale a f’(c), per x vicino a ¢. A destra invece R/(x,c) > f'(c), per x

vicino a c.

Analogamente, ¢ ¢ punto di flesso se esiste & € R tale che Jc—&8,c+8[C1, f ¢
concava in Jc—&,c] e convessa in [c,c + S .

1.1.11 Esempio. Sia
fio: R—R, Fro(x) =x* + x> —3x7 4+ 4x.
La funzione f, ¢ derivabile 2 voltee, Yx €R, si ha
Fio(x) =4x> +3x? —6x +4,
(x)=12x* +6x —6.
Siha 12x%+6x—6 =0 se e solo se 2x? +x —1 =0, e questo & verificato per

1,
1t JTP—421) —143
X = = = 1
4 4 .
2
Pertanto fj; ¢ positivo in J—o0,—1[U]1/2,4-00[ ed ¢ negativo in ]—1,1/2[. Quindi f;,
¢ convessa in ]—o00,—1] e in [1/2,4+00[, ¢ concava in [—1,1/2].
I punti —1 e 1/2 sono punti interni al dominio di £}, in cui la funzione ¢ derivabile,
ognuno dei due separa un intervallo in cui f; ¢ concava da un intervallo in cui fi, ¢

convessa, pertanto sono punti di flesso per f,. <

1.1.12 Esempio. Sia
fuiRoR,  fule)=x =2,
La funzione f;; ¢ continua ed derivabile 2 volte in R* e, Yx € R*, si ha
i 06) = 26— 25gn(x),
f(x)=2.

Pertanto f/[(x) ¢ positivo per x € R*.
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Quindi £}, ¢ convessain ]—00,0] ein [0,400[.
Osserviamo che questo non consente di concludere che f; ¢ convessa nel suo dominio.

Siha fj,(—1)=—1e fj;(1)=—1¢

A((1=3)e0+31)=R0@=0
(1=3 D+ 3 A =(1-3 J-D+ 5 (-n=—1.

Pertanto, posto x =—1, y =1, t =1/2, non st ha
fu((A=0)x +1y) < (A=) fy,(x) + /13 (9)-
Perciod £, non ¢ convessa. <

16) Determinare gli intervalli di concavita e di convessita e i punti di flesso della funzione

definita da:
flx)=|4x* —8x +3|e*.

17) Determinare gli intervalli di concavita e di convessita e i punti di flesso della funzione

definita da:
f(x)= log(|x2 +2x|+3).

18) Determinare gli intervalli di concavita e di convessita e i punti di flesso della funzione
definita da:
fx)=(x—1)v/2x2—4x +1.

19) Determinare gli intervalli di concavita e di convessita e 1 punti di flesso delle seguenti
funzioni:

x4 3x x>+ 2x + |x|
= S 0)= T e f=—ar
b. f(x)=x*+6x —8—4|x? —x| f. f(x)=|x*—8x+15|v/x

c. f(x):log< a > 8- f(x):eXP<|z—_::i|>

6|x|—5
d. f(x):log(|x2—3|)+x2—3 h. f(x)=+vx2—4—2|x—4|

STUDIO DI FUNZIONE

Gli strumenti descritti finora servono per individuare alcune proprieta del grafico di
una funzione. Vediamo come utilizzarli per studiare il comportamento generale di una
funzione e tracciarne un grafico qualitativo.

Per lo studio del grafico di una funzione non vi sono regole precise da applicare in
ogni caso; diamo alcune indicazioni, tenendo conto che non sempre ¢ possibile (o agevole)
ottenere tutte le informazioni elencate.
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® Determinare il dominio naturale.

e Determinare eventuali simmetrie.

¢ Determinare le intersezioni con gli assi e il segno.

e Studiare il comportamento nei punti limite del dominio.

* Studiare la continuita e il comportamento nei punti di discontinuita.
® Determinare gli asintoti.

e Studiare la derivabilita e calcolare la derivata.

e Studiare il segno della derivata.

* Studiare la monotonia e determinare gli estremanti e gli estremi locali.
e Studiare I’esistenza della derivata seconda e calcolarla.

e Studiare il segno della derivata seconda.

* Studiare concavita, convessita e determinare i punti di flesso.

e Tracciare un grafico qualitativo.

Osserviamo che una particolare informazione sulla funzione studiata puo essere ottenu-
ta piu volte in passi successivi dello studio, oppure una informazione puo dare indicazioni
sui risultati che si ottengono nei passi successivi. Ad esempio, se si ¢ stabilito che una fun-
zione ¢€ positiva in un certo intervallo, i limiti della funzione agli estremi dell’intervallo non
possono essere negativi. In questi casi la ridondanza dell’informazione ¢ utile come verifica
di non avere commesso errori.

1.1.13 Esempio. Studiamo la funzione definita da

x®—2x

fia(x)= 23

Il dominio naturale di £}, ¢ costituito dagli x € R tali che il denominatore x*—3 ¢
diverso da 0, cio¢ dagli x diversi da ++/3, quindi

9(fi) = o0, V3[UT-VEV3[UI3, hoo].

Il dominio di f, € simmetrico rispetto all’origine e, Vx € 2(f,,), risulta

(P —2ew) w2
fiZ(_x)_ (_x)2_3 - x2—73 __fiz(x)’
pertanto f, ¢ dispari.
Determiniamo le intersezioni del grafico di f* con gli assi cartesiani. Si ha f;,(0) =0,
quindi Gr(f)interseca I’asse delle ordinate nell’origine. Si ha f},(x) = 0 se e solo se si
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annulla il numeratore, cioé se x(x>—2) =0, quindi Gr(f) interseca I’asse delle ascisse nei
punti di ascissa —+/2, 0 e /2.

Il segno di £}, risulta dal seguente schema

—V3 -2 0 V2 V3
x ———|-]-=-=-=-- + 4+ + + +|+[+ + +
x?—2 I e I e I I + 1+ + +
x*—3 + + + |- == - - — |+ + +
fio(x) — - —|+|-=-=-= - + 4+ ++ |-+ + +

Pertanto Gr( f12 ¢ contenuto nelle parti chiare del piano rappresentate nella seguente
figura e passa per i punti indicati.

Studiamo il comportamento di £}, nei punti limite del dominio, cio¢ negli estremi degli
intervalli che suo cono il dominio. I punti limite non appartengono al dominio, quindi
studiamo i limiti di fj,(x) per x che tende a tali punti limite. Si verifica facilmente che
st ha:

lim —00, lim (x)=—o00, lim +o00,
Jim_ ) im gl

lim f,(x)=—o0, lim f,(x)=+o0, lim f,(x)=4o0.
x—/3" x—/3" x=Foeo

Pertanto le rette di equazione x =—+/3 e x = +/3 sono asintoti verticali per £, .
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Stabiliamo se esistono asintoti obliqui. Si ha
. : ’—2 ’
lim fuol >: lim 2% x—:l;
X——00 x xX——00 x(xz —3) x——00 x3
inoltre
x3—2x x> —2x —x(x?—3) x
lim x)—x)= lim < —x> = lim lim =0.
x~>700<f‘12( ) ) x——oo\ x2—3 X——00 x2—3 x——00 x2 —3

Pertanto la retta di equazione y = x ¢ asintoto obliquo, per x — —o0, per fi,. Poiché f,
¢ dispari, tale retta ¢ asintoto obliquo anche per x — +o0 . Infatti

lim (fu(x) — x)

xX—+00

= lim (f(=2)+y) == lim (f,()=)

Riportiamo le informazioni ottenute nella seguente figura.

x=—+3

0.

La funzione f, ¢ razionale fratta, quindi derivabile; Vx € 2(f,,), si ha

(B3x?—=2)(x?—3)—2x(x’—2x) 3x*—9x? —2x? +6—2x* +4x?

)= 2

_ x*—7x*+6
T (w3

(2 =3p
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Il denominatore ¢ sempre positivo, quindi, per determinare il segno di f/,, ¢ sufficiente
studiare il segno del numeratore. Si ha x*—7x%+6x*=0 per

o TEVTA6 _7%5 :{1,

2 2 6.

Pertanto x*—7x? + 6x? = (x? — 1)(x? —6); il segno di f/, risulta quindi dal seguente
schema.

—V6 —v3 -1 1 VAR
x?—1 + 4+ + |+ |+ = + + |+ + |+ + +
x?—6 +++-— |- =] - + + +
Fh(x) e ol e R I e e e e o e e I o S

Pertanto f, ¢ crescente in ]—oo,—w/g] ,in [—1,1] ein [\/8,4—00[ ed ¢ decrescente
in [—\/g,—\/g[ ,1n J—ﬁ,—l], in [1,\/§[ ein Jﬂ, \/E] Inoltre —+/6 e 1 sono punti
di massimo locale, —1 ¢ /6 sono punti di minimo locale. Calcoliamo il valore di f;, in

tali punti. Poiché f,, ¢ dispari, ¢ sufliciente calcolare il valore nei punti positivi, cambiando
il segno si ottiene il valore nei corrispondenti punti negativi.

foy=1=221

1—-3 2
ﬂz(‘/g>:

bl

6vV/6—2v/6 442
6—=3 /3

quindi fj,(—1)=—1/2 ¢ f12<—\/g):—4\/§/\/§.

Studiamo la convessita di f},. La funzione f, ¢ derivabile e, per x € Z(f,,), si ha

(4% — 14x)(x* —3)* —4x(x? —=3)(x* —7x% +6)

(x)= (x2—3) =
(4% —14x)(x? —3) —4x(x* —7x? +6)
(w2 —3)
_ 4x° —12x° — 14x° +42x — 4x> +28x> — 24x _ 2x3 +18x _ 2x(x*+9)
(23 (=3 i3

Poiché x?+9 & sempre positivo e (x?—3)* ¢& positivo se e solo se lo ¢ x?—3, il segno di
15(x) ¢ uguale al segno di x(x*—3), pertanto risulta dal seguente schema:

—3 0 V3
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Quindi f}, ¢ convessa in ]— \/3,0] e in Jﬁ,—i—oo[, ¢ concava in ]—oo,—\/g[ e in
[0, \/3[ . Inoltre 0 ¢ punto di flesso per f,.

Osserviamo che —+/3 ¢ +/3 non appartengono a %(f,,), quindi non sono punti di
flesso, anche se £}, alla loro sinistra ¢ concava e alla loro destra ¢ convessa.

Determiniamo la retta tangente al grafico di £}, nel punto di flesso. Si ha £,(0)=0 e
/5(0)=2/3, quindi la tangente ha equazione y =(2/3)x.

Il grafico di f, € quindi, approssimativamente, il seguente.

1.1.14 Esempio. Studiamo la funzione definita da
fi3(x) = (|x + 4| —Z)el/x .

Il dominio naturale di f; ¢ costituito dagli x € R tali che il denominatore dell’espo-
nente ¢ diverso da 0, quindi Z(f;;) =R*.

Poiché ’esponenziale ¢ sempre positivo, f;3(x) =0 se e solo se |x +4|—2 =0, cioe
|x +4| =2, che ¢ verificatose ¢ x+4=2 0 x+4=—2,quindi x=—2 0 x =—6.

Siha fi5(x)>0 seesolose |x+4|—2>0, che equivale a |x +4| > 2. Questa disequa-
zione ¢ verificata se x +4 > 2 oppure x +4 <—2, cio¢ per x € |—00,—6]U[—2,+00][ .

Pertanto Gr(f};) ¢ contenuto nelle parti chiare del piano rappresentate nella seguente
figura e passa per 1 punti indicati.
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Studiamo il comportamento di nei punti limite del suo dominio, cio¢ negli estremi

.. . p . . . 13 . . p . . . g . .
degli intervalli che costituiscono il dominio. I punti limite non appartengono al dominio,
quindi studiamo i limiti di f};(x) per x che tende a tali punti limite. Si verifica facilmente

che si ha:

Jim fi3(x) = +o0, lim fi5(x) =
xlirgl+ﬂ3(x):+oo, kaoofu =+4oc0.

La retta di equazione x =0 ¢ asintoto verticale per fj;. Determiniamo eventuali asintoti
obliqui. Per x ——o00 siha 1/x — 0, quindi

fis(x)=(—(x+4)— )el/x:(—x—6)<1+%+o<%>>:—x—6—1+0<%>,

pertanto la retta di equazione y = —x —7 ¢ asintoto obliquo per fj; per x — —o0.
Analogamente, per x — +00 si ha

fis(x)=((x+4)—2)e* = (x+2)<1+£+O<£>>=x+2+1+0<%>,

pertanto la retta di equazione y = x +3 ¢ asintoto obliquo per f; per x — 400 . Ripor-
tiamo le informazioni ottenute nella seguente figura.
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La funzione f; ¢ continua.
Calcoliamo laderivatadi fj; per studiare la monotonia. La funzione ¢ derivabile in ogni

punto del dominio che non annulla ’argomento del valore assoluto, quindi e derivabile in
2(f15)\ {—4} =R\ {—4,0}. Per x in tale insieme si ha

fi(x) = sgn(x 4+ 4)e'/* + (|x +4] —Z)el/"<— é) =

_ x?sgn(x +4)—sgn(x +4)(x +4)+2 ol sgn(x +4)(x* —x—4)+2 o
B x? B x?

Risulta £/;(x)>0 se e solo se sgn(x +4)(x? —x —4)+2.

Se x > —4, allora sgn(x +4) = 1, pertanto sgn(x +4)(x> —x —4)+2 = x> —x —2.
Questo trinomio si annulla per

1y /(—1)2—4(=2) 143 _{—1,
= . = =

x 2 2.

Pertanto, considerando solo x > —4, il trinomio ¢ positivo per x € ]—4,—1[U]2,+o0[ ed
¢ negativo per x € |—1,2[ .

Se x < —4, allora sgn(x +4) =—1, pertanto sgn(x +4)(x*—x —4)+2=—x>+x+6.
Questo trinomio si annulla per

1/ 12—4(—1)6 145 {3,
= - = =

) —2.

X
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Poiché —4 ¢ minore di entrambe le radici e il trinomio ha coefficiente di x? negativo, esso
¢ negativo per x < —4. Quindi il segno di f}; risulta dal seguente schema

—4 —1 0 2
fhix) == === + 4+ 4+ ++| = |- — =]+ ++++

Pertanto f; ¢crescentein [—4,—1] ein [2,+00[, ¢ decrescente in Joo,—4],in [—1,0[
ein ]0,2]. Inoltre —1 ¢ punto di massimo locale, —4 e 2 sono punti di minimo locale.
Calcoliamo il valore di f}; negli estremanti locali. Si ha:

fis(—H)=(—4+4—2)e /= =27,
fis(=1)=(—1+4]=2)e " =",
fi32)=(12+4]—2)e'? =4e'/2.

Studiamo la derivabilita di fj; in —4. Se esiste il limite della derivata, allora esiste
anche il limite del rapporto incrementale e 1 due limiti coincidono, pertanto studiamo il
comportamento della derivata. Si ha

—4)+2 7
)+ RV AT,

b

—| 2_
lim f13 x)= lim (r"—x

X dm x——d x2 8
(x?—x—4)+2 .9
hm f13( )= EE}HTEU =3¢ /4

1l limite sinistro della derivata ¢ diverso dal limite destro, quindi anche il limite sinistro del

rapporto incrementale ¢ diverso dal limite destro, pertanto f;; non ¢ derivabile in —4.
Per x — 0~ si ha f5(x) — 0, per avere maggiori informazioni sul comportamento del

grafico a sinistra di O ¢ utile conoscere il corrispondente limite della derivata. Si ha

. . —(x?—x—4)+2
hrgl f5(x)= lim uel/x =0.
x—U™

x—0— x2

Quindiil graficodi f}5 siavvicinaall’origine con tangente che tende a diventare orizzontale.
Studiamo la convessita della funzione attraverso la derivata seconda. La funzione f}; ¢
derivabile e, Yx € R\ {—4,0}, si ha

sgn(x +4)(2x — 1)x? — Zx(sgn(x +4)(x2—x—4)+ 2) .

13(x)= , e+
x
2
+sgn(x+4)(x —x—4)+2€1/x<_i>:
x? x?
sgn(x+4)(2x —x? =263+ 2x? + 8x —x2+x +4)—4x—2 r _
x4 ©
sgn(x +4)(9x +4)—4x—2 ),
= e .
x4

Pertanto si ha f5(x) > 0 se e solo se sgn(x +4)(9x +4) —4x —2 > 0. Se x > —4,
allora sgn(x +4)(9x +4)—4x —2="5x+2 che ¢ positivo per x > —2/5. Se x < —4,
allora sgn(x +4)(9x +4)—4x —2=—13x—6 che, per tali x, ¢ positivo. Quindi fj(x)
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¢ positivo per x € |—oo,—4[ U ]—2/5,0[ U ]0,+o0[ ed ¢ negativo per x € |—4,—2/5[ .
Pertanto f; ¢ convessain ]—oo,—4],in [—2/5,0[ ein ]0,+o0[, ¢ concavain [—4,—2/5].

Osserviamo che nei punti critici —1 e 2 siha f5(—1) <0 e f/5(2) >0, da cuisi ottiene
nuovamente che —1 ¢ punto di massimo locale e 2 ¢ punto di minimo locale.

Il punto —2/5 ¢ di flesso, perché ¢ un punto di derivabilita interno al dominio ed esiste
un intervallo a sinistra del punto in cui fj; € concava e un intervallo a destra in cui f}5
¢ convessa. Anche in —4 la funzione cambia concavita, ma questo non ¢ punto di flesso,
perché fi; non ¢ derivabile in tale punto.

Determiniamo la retta tangente a Gr(f};) nel punto di flesso. Si ha

2 2 8
e T I
f“< 5> <' 5+‘ >e 5°

[ 2\ sen(=2/5+4)((=2/57 —(=2/5)—4)+2 o
f13<_§>— (_2/5)2 e =
_ Ljoowjfw — 952

Il grafico di f; € quindi, approssimativamente, il seguente.

20) Studiare, nel suo dominio naturale, la funzione definita da:
Fx)=1]2x> —9x| 4+ 9x

(si richiede lo studio della convessita).
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21) Studiare, nel suo dominio naturale, la funzione definita da:

Fx) =+ 6] exp )

(si richiede lo studio della convessita).

22) Studiare, nel suo dominio naturale, la funzione definita da:
£ (x) =arcsen|x? 4 4x + 3|

(si richiede lo studio della convessita).

23) Studiare, nel suo dominio naturale, la funzione definita da:
fx)=vIx+5]—1e".

24) Studiare, nel suo dominio naturale, la funzione definita da:

f()= V2 =22~

(si richiede lo studio della convessita).

25) Studiare, nel loro dominio naturale, le seguenti funzioni:

a. f(x)= x? +9x? g f(x)=+x2+2x (x*—4)

T ox2—1

b. f(x)=|x+1]Vx+2 h.f(x)—ﬁ

VR

c. f(x):arctan<\/ M)
x i f(x):(1—4x2)exp(|x2—2|)

(st richiede lo studio della convessita)

d. f<x):10g<1_ 4 >
X3 52
P x?—x—2—|x?—x—2

i f(x)= -

x> —4| A . :
e. f(x)=arctan 17 (si richiede lo studio della convessita)

. f(x):cos<arcsen<3x2——x—2>> k. f(x)=2v/x2—2x—3x|

5x —2 (st richiede lo studio della convessita)

26) Studiare, nell’intersezione del suo dominio naturale con 'intervallo [—, 7], la fun-
zione definita da:
2cos’x —1

fx)=

~ —2tanx 4 sen(2x)

(si richiede lo studio della convessita).
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27) Studiare, nell’intersezione del suo dominio naturale con I'intervallo [—, 7], la fun-

zione definita da:
f(x)=1+/]|senx]| exp<

4senx)'

28) Studiare, nell’intersezione del loro dominio naturale con lintervallo [—m, 7], le
seguenti funzioni:

1
a. f(x)= \/senzx—i + sen x|sen x|

(2senx —1)

sen x

b. f(x)=

c. f(x)=cosxcotx +5|sen x|

1
d. f(x)=+/2sen?x +senx + ——
v/2sen?x +senx

IMMAGINE DI UNA FUNZIONE

Se una funzione reale di variabile reale ¢ definita in un intervallo ed ¢ continua, allora il
teorema dei valori intermedi assicura che 'immagine € un intervallo. Un intervallo € noto
se si conoscono 1 suoi estremi e, nel caso che essi siano reali, se si sa se appartengono o no
all’intervallo. Quindi per determinare 'immagine di una funzione continua il cui dominio ¢
un intervallo ¢ sufficiente determinare estremo inferiore e estremo superiore della funzione
e stabilire se essi sono, rispettivamente, minimo o massimo.

1.1.15 Esempio. Sia
1
‘R>R, X)= ——.
furR— fra(x) 213
Il dominio di f}, ¢ un intervallo ed essa ¢ continua, pertanto Im(f,,) € un intervallo. Si
ha f(0)=1/3 e, Yx € R, x> +3 >3, da cui segue f(x) < 1/3; quindi maxf, =1/3.
Evidentemente f;, ha valori positivi, quindi inff;, > 0. Inoltre lim, ,,  f,(x) =0,
pertanto ogni numero reale positivo non ¢ maggiorante di f,,, quindi inf f;, <0. Percio si
ha inf £}, =0. Abbiamo osservato che f, ha valori positivi, quindi 0 ¢ Im(f,,). Pertanto
Im(f,,) ¢ un intervallo che ha estremo inferiore 0 e massimo 1/3 e 0 non appartiene
all’intervallo. Percio

Im(fl4)::|0,%:|. <

Se una funzione ¢ continua e il suo dominio ¢ unione di un numero finito di inter-
valli disgiunti, si puo determinare I'immagine della restrizione della funzione a ciascuno
degli intervalli che costituiscono il dominio. L'unione di tali immagini ¢ I'immagine della
funzione.



28 Capitolo 1. Funzioni

1.1.16 Esempio. Sia

x—1
fis: ]—00,—1[U]1,4+ o[ - R, fis(x) = —.
x2—1
Poiché f5 € quoziente di composizione di funzioni continue ¢ continua. La sua immagine
L. S .
¢ unione dei due intervalli f5(]—00,—1[) e f;5(]1,+00[).
Per determinare gli estremi di f|5 in ciascuno dei due intervalli che costituiscono il suo

dominio, studiamo la monotonia della funzione, attraverso il criterio di monotonia. La
funzione f5 ¢ derivabile e, Yx € 2(f5), st ha

2

y X 1 x?—1—(x*—x) x—1
f“"(x):<vxz_l_(x_l)m>xz_1: e N

Il denominatore ¢ sempre positivo, quindi il segno di f{5(x) coincide con il segno di x—1.

Se x € ]—oo,—1[, allora f{i(x) < 0, quindi f5 ¢ strettamente decrescente in tale
intervallo. Pertanto, per il teorema sul limite delle funzioni monotone, si ha

inf f,s(]—00,~1[) = lim fis(x) = lim ——— = oo,

sup fis(J-00,—1[) = lim_fis(x) =

= lm ——— =
M S e =)

Inoltre per tali x risulta v/x2—1 < |x| = —x < —x + 1; pertanto f;5(x) < —1, percio
—1 gﬁfls(]—oo,—l[). Quindi f15(]‘°°>_1|:> =]—o0,—1[.

Se x € ]1,+00[ , allora f/5(x)> 0, quindi f}5 ¢ strettamente crescente in tale intervallo.
Pertanto, per il teorema sul limite delle funzioni monotone, si ha

in oo[)=lim x—imﬂ_im LimE
ff15(]1,+ D_,lc—Af“’( >_alc—>1\/m1/x_—l—l_”_’11/x+l_

sup fis(J,+00[) = lim fis(x)= lim — 21

= [ ——
e e e T(1 )

Se x € ]1,400[, allora risulta fi5(x) = v/x—1/4/x+1, quindi si ha 0< fi5(x)<1,
pertanto né 0 né 1 appartengono a f5(]1,-+00[). Quindi f;5(]1,+00[)=10,1[ .

Percio

0,

Im(f,5) = ]—o0,—1[U]0,1[. <

Le indicazioni date finora riguardano la ricerca dell’immagine di funzioni coninue. Se
una funzione ha dei punti di discontinuita, si possono determinare 'immagine della re-
strizione della funzione all’insieme dei punti in cui essa ¢ continua e 'insieme dei valori
assunti dalla funzione nei punti di discontinuita. L'unione di tali insiemi ¢ 'immagine della
funzione.
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29) Determinare 'immagine della funzione definita da:

f<x>:x8—17°(x4—1)3/2.

30) Determinare 'immagine della funzione definita da:

_2\/x2+5x+4—1/x2—10x+16
" .

f(x)

31) Determinare I'immagine della funzione definita da:

1 1
f(x):\/cosx+5+2\/5—cosx.

32) Determinare 'immagine delle seguenti funzioni:

a. f(X>=7arcsen<l>+<x+6) L e fx)=vVx2—4—|2x+6|

x x?2

_ 24/x2—3x+42+3x—3

3 4
b. f(x)==+ * _ t6arctanx £ f(x) X
x  14+x2
x> —4x+3 2sen’x + /6 senx + 1
c. flny= "0 6. /()=
x?—x 2sen?x —1

_ x—2 V3 +tanx
d. f(x)=xex <2 —> CFlx)= Y2
F x h. /(x) V3 —cotx

ZERI DI UNA FUNZIONE

Spesso non ¢ facile determinare esplicitamente gli zeri di una funzione, ma studiando-
ne alcune caratteristiche ¢ possibile determinare il numero di tali zeri e anche individuare
intervalli in cui essi si trovano.

Se una funzione f ¢ continua e strettamente monotona in un intervallo [a, 5], e negli
estremi dell’intervallo ha valori di segno diverso, allora, per il teorema di Bolzano, in tale
intervallo f si annulla, inoltre si annulla una sola volta, perché una funzione strettamente
monotona ¢ iniettiva. Supponiamo invece che sia f(a) che f(b) siano positivi; per la mo-
notonia, / assume valori compresitra f(a) e f(b), pertanto non puo annullarsi. Analoga
¢ la situazione se f(a) e f(b) sono entrambi negativi.

Un ragionamento analogo si puo fare se I'intervallo, di estremi 4 e &, non ¢ chiuso
o non ¢ limitato, studiando il segno di lim__, f(x) anziché il segno di f(a) e il segno di
lim,_,, f(x) anziché il segno di f(b).

Se si scompone il dominio di una funzione nell’unione di intervalli in ciascuno dei
quali la funzione € continua e strettamente monotona, si puo ripetere il ragionamento fatto
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sopra per ciascuno degli intervalli. Per il criterio di stretta monotonia lo studio della stretta
monotonia di una funzione puo essere ricondotto allo studio del segno della derivata.

In alcuni casi € possibile studiare gli zeri di una funzione anche senza determinare il
segno della derivata, ma conoscendo soltanto i punti in cui tale derivata si annulla. Infatti
se una funzione f ¢ continua in un intervallo [a,5] e derivabile in ], 5[, con derivata
sempre diversa da zero, allora f* puo annullarsi al pit una volta. Infatti se avesse due zeri,
allora, per il teorema di Rolle, la derivata si annullerebbe. Pertanto se f(4) e f(4) hanno
segno opposto, allora, per il teorema di Bolzano, f st annulla in un solo punto.

Se invece f(a) e f(b) sono entrambi positivi, allora / non si annulla. Infatti non pud
esistere d € Ja, b[ taleche f(d) <0, perchéintal caso f siannullerebbe unavoltain Ja,d[
eunavoltain ]d, [, masappiamo che non puo annullarsi due volte in Ja, 5[ . Pertanto f ¢
non negativa, ma se esistesse ¢ € |, b[ taleche f(c)=0,allora ¢ sarebbe punto di minimo
locale per f* quindi, per il teorema di Fermat, si avrebbe f/(c) =0, contro I'ipotesi che f”
non si annulla. Pertanto f* ¢& diversa da zero in [4,5]. Analogamentese f(a) e f(b) sono
entrambi negativi, allora / non si annulla.

Anche in questo caso un ragionamento analogo vale se I’intervallo non ¢ chiuso o non
¢ limitato, studiando il segno di lim__ f(x) edi lim,_, f(x).

1.1.17 Esempio. Sia
fie: R—>R, fro(x)=x> +2x2 —4x +2.

Determiniamo il numero di zeri di f .
La funzione f, ¢ derivabile e, Yx €R, si ha

Fre(x) =3x* +4x —4.

La derivata si annulla per

—24+/2243-4 244

X = = 2
3 3 —.

3

Il trinomio 3x? + 4x —4 ¢ negativo nell’intervallo individuato dalle due radici e positi-
vo all’esterno di tale intervallo. Quindi fj, ¢ strettamente crescente in ]—o00,—2] e in
[2/3,+00[ , mentre ¢ strettamente decrescente in [—2,2/3].

Siha lim __ fi((x) = —oc0 e f(—2) = 10, pertanto nell’intervallo ]—o0,—2] la
funzione f, assume sia valori negativi che valori positivi ed ¢ continua; per il teorema
di Bolzano f, si annulla in tale intervallo. Inoltre f, ¢ strettamente crescente, e quindi
iniettiva, in tale intervallo, pertanto si annulla solo una volta.

Siha fi((—2) =10 e f,,(2/3) = 14/27; f,, & strettamente decrescente in [—2,2/3],
quindi in tale intervallo fi, assume valori maggiori o uguali a f4(2/3), quindi ¢ sempre
positiva.

Poiché f, ¢ crescente in [2/3,+00[, in tale intervallo assume valori maggiori o uguali
a f1,(2/3), pertanto ¢ sempre positiva.

Pertanto f;, ha un solo zero che appartiene a J—oo,—2[. <
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1.1.18 Esempio. Sia

f172]—°°,—%[U]0,+°°[—’R, f17(x):log<2+%>+X+Z.

Determiniamo il numero di zeri di f;,.

La funzione f;, ¢ derivabile e, Vx € 2(f), si ha

Xt 1  2xPx—1
S 2+1/x

/
X =— +1=
fix) 2x2+x 2x2+x

In 92(f) il denominatore ¢ positivo. Il numeratore si annulla per

_1’
—1+v/12+4.2 —1£3

X = = = 1

4 4 -

2

bl

quindi ¢ positivo per x € ]—o0,—1[U]1/2,4+00[ ed ¢ negativo per x € ]—1,1/2[ . Pertan-
to f}; ¢ positivo in J—oo,—1[U]1/2,4+00[ ed ¢ negativo in ]—1,—1/2[U]0,1/2[.

Per il criterio di stretta monotonia, f}, ¢ strettamente crescente in |—oo,—1], inoltre
risulta lim,_,_  f(x) =—o0 e f(—1)=1> 0. Quindi in tale intervallo f;, assume sia
valori positivi che valori negativi ed ¢ strettamente monotona, quindi si annulla una sola
volta.

Nell’intervallo [—1,—1/2[ f,, € strettamente decrescente; inoltre si ha f;,(—1)=1>0
elim, )2 f17(x) =—00 . Quindi anche in questo intervallo f, si annulla una sola volta.

Nell’intervallo 10,1/2] f,, € strettamente decrescente; si ha f,,(1/2) =log4+5/2>0.
Pertanto per x in tale intervallo si ha f},(x)> f,(1/2)> 0, quindi £, non si annulla.

Nell’intervallo [1/2,400[ f;, ¢ strettamente crescente; pertanto per x in tale inter-
vallo si ha f,(x) > f,(1/2) >0, quindi f;, non si annulla.

Pertanto f;, siannullain 2 punti, uno appartenente a |—oo,—1[ e ’altro appartenente
a —-1,—1/2[. <

33) Trovare per quanti valoridi x appartenenti al dominio naturale si annulla la funzione

definita da:
f(x)=logx + log|x — 4|+ |2 — x|

34) Trovare per quanti valoridi x appartenenti al dominio naturale si annulla la funzione
definita da:
1
f(x)= 2arcsen<—> +vVx2—1-2
x

35) Trovare per quanti valori di x appartenenti al dominio naturale si annulla la funzione

definita da:

Flx)=(x +2)exp<¥> _3ell2

X2 —
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36) Trovare per quanti valori di x appartenenti al dominio naturale si annullano le se-

guenti funzioni:

a. f(x):2arctan(x—f—2)—i—x_li_2
b. f(x)=x"+2x>—8x+2
c. f(x):arccosg— 4—x2
d.f(x):log(l_x>— 6

x? 1—x

1 1
e. f(x)=2 arctan< >+3 arctan< >
x—2 3—x

f. f(x)= % +log(2x* 4 2x)

g.f(x):log(1+x2)+arctan< ! >—1
1—x?

2

—X

h. f(x)=arcsenx —3 +6
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1.2 SOLUZIONI E RISULTATI

1) Il dominio naturale di f ¢ costituito dagli x € R per cui il denominatore x —6 non
¢ nullo, il numero sotto radice ¢ non negativo e I’argomento dell’arcoseno appartiene a
[—1,1]; quindi 2(f) ¢ I'insieme delle soluzioni del sistema

x—5
x—6

>0,

1_\6x— >—1,

1—\6 <1,

cioe
x—5

>0,
x—6

x—5
\6x—6
\6z:220.

L'ultima disequazione ¢ verificata da tutti gli x che verificano la prima disequazione. La
seconda disequazione ¢ verificata dagli x che soddisfano la prima disequazione e tali che

<2,

x—5

61> <4,
x—6
che, successivamente, equivale a
—5
322 _2<0,
x—6
3(x—5)—2(x—6) 0
x—6 -
x—3 <o.
x—6
Il sistema ¢ quindi equivalente a
x—>5
>0,
x—6
—3
- <o.
x—6

Linsieme delle soluzioni della prima disequazione ¢ J—o00,5]U ]6,4+00[, quello della se-
conda ¢ [3,6[ ; intersezione di tali insiemi ¢ [3,5].
Quindi si ha
2(f)=[3,5].
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2) 1l dominio naturale di f ¢ costituito dagli x € R tali che il denominatore x —2 ¢
diverso da O e I’argomento della radice ¢ non negativo. La presenza della funzione loga-
ritmo non comporta condizioni ulteriori, perché I’argomento ¢ sempre positivo. Quindi
deve essere

x#2 A log

& ‘zo.
x—2

Poiché il logaritmo ¢ non negativo se e solo se il suo argomento ¢ maggiore o uguale a 1,
la disequazione equivale a

>1.

x—2

=

Per risolvere questa disequazione ¢ utile osservare che, per x # 2, essa equivale a

—2
<1,
3
cio¢ |x —2| <3, che ¢ verificatase e solo se 2—3<x <243, cio¢ —1<x<5.
Quindi si ha
2(f)=[-1,2[U]2,5].
3) La radice quadrata ¢ definita quando il suo argomento ¢ non negativo, poiché essa ¢ a
denominatore deve essere diversa da 0, quindi il dominio naturale di f* ¢ costituito dagli
x €R per cui ¢ positivo ’argomento della radice; cioe tali che 2x? —3x +2> [x*+x—2|,

che equivale a
{x2+x—2< 2x>—3x+2,

x4 x—2>—(2x*—3x+2),

cioe
x?—4x+4>0,
3x2—2x>0.

Poiché x? —4x +4 = (x —2)?, la prima disequazione ¢ verificata per x # 2; la seconda ¢
verificata quando x >2/3 oppure x <O0.
Quindi si ha
2
@(f) = ]—O0,0[ U i|3,2|: U ]2,+OO[ .

4)

a. ]—00,—3]U[—1,+00[ d }_oo —9+_«/ﬁ]

b [_1’_%]%%’%0[ e. ]-1,0[U]L3[

¢. J-oo,—2—v3[U]-2+v3,1[Ull,+oo[ f. ]—o0,—3[U[—2,0]U]3,+o0[
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g. ]—oo,—1[U[2,+00] jo Jo0,—5]U[3,+00[

h. ]=2,—1]U[4,5[ k. :|_6+ﬁ,—2]u[2,+oo[

i ]—oo,—z]U[z,wO[ L [‘1’_§]U[o’ﬂ

5) Il dominio naturale di f ¢ costituito dagli x € R tali che 'argomento della radice &
positivo. Percio

P(f)={x €eR|x*—1>0} = ]—00,—1[U]1,+00[.

Studiamo il comportamento di / negli estremi dei due intervalli che costituiscono

9(f). Siha

flx)= W%<g + arctanx> = m(g + arctanx>

percio per x — —o0 si ha

T T T
x)~ —4arctanx —» — — — =0;
fla)~ 2 -5
mentre per X — +00 si ha
T T T
X)~ — tarctanx — — + — = 7.
fla)~ = )

Quindi le rette y =0 e y = 7 sono asintoti orizzontali per f .

Si ha
T T T
Ii <—+ t >:1<—+ t —1>:—,
xin_11|x| 5 tarctanx 5 Farc an(—1) .
lim| |<n+ t > 1<7T+ t 1> )
im|x|( = +arctanx | =1( = +arctanl ) == 7;
x—1 2 2 4
inoltre

lim \/xz—lzlirr% x2—1=0,
xX—

x——1

e vx?—1>0. Pertanto
lim f(x)=lim f(x)=+o00;

x——1 x—1

percio le rette x =—1 e x =1 sono asintoti verticali per f .
Quindi gli asintoti di f sono le rette di equazione y =0, y =7, x=—1 e x=1.
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6) Il dominio naturale di f* ¢ costituito dagli x tali che ciascuno dei denominatori delle
frazioni che compaiono nella definizione di f* sia non nullo, percio

2(f)=R\ {0,2} = ]—00,0[ U]0,2[ U ]2, +00[.

Studiamo i limiti di f(x) per x che tende a uno degli estremi degli intervalli che
costituiscono Z(f).
Per x — oo siha 1/|x —2| — 0, pertanto

exp< ! >:1— ! +o( ! >:1— ! +o(x7h);
|x —2] |x —2] |x —2] |x —2]

quindi, per x — £00, si ha

x
x—2|

Flx)=(x —|—3+4x71)<1— +o(x*1)> a5 340(1).

[x—2|
Percio per x — —o0 si ha

X

f(x):x+3—2 +o(1)=x+4+0(1),

—x
mentre per x — +00 si ha

flr)=x+3——

5 +o(l)=x+2+40(1).

X —

Quindi le rette di equazione y =x+4 e y = x +2 sono asintoti obliqui.
Poiché

. 1 1
hr%(x2 +3x +4)exp<— —> = 4exp<— §> >0,

[x—2|
st ha
lirglif(x):—oo, lirgl+f(x):+oo,

quindi la retta di equazione x =0 ¢ asintoto verticale.

Infine —1/|x—2| — —o0, per x — 2, quindi exp(—1/|x—2|) — 0, pertanto f(x)—0;
percio la retta di equazione x =2 non ¢ asintoto verticale.

Quindi gli asintoti di f* sono le rette di equazione x =0, y=x+4 e y =x+2.

7) 1l dominio naturale di f ¢ costituito dagli x € R tali che i due denominatori 1—x e
x —4 sono diversi da 0, quindi

D(f)=]—o0,1[U]1,4[ U 4,+00].

Studiamo 1 limiti di f(x) per x che tende ad uno degli estremi degli intervalli che
costituiscono Z(f).
Si ha

lim

arctan
x——00 ] —x

T
>:arctan1: —
x—4 4

e analogamente lim,_,,  f(x) = 7/4; quindi la retta di equazione y = /4 ¢ asintoto
orizzontale per f .
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Per x >1siha3—x—2,1—x—>0e arctan((x—é)/(x—4)) — arctan2 > 0. Il
limite di f(x) dipende dal segno del denominatore 1— x. Tale denominatore ¢ positivo
per x <1 e negativo per x > 1, percio si ha

. 3—x x—6
lim arctan =400,
x=o1- 1—x x—4
3— x—6
lim arctan =—o00,
x—1t 1 —X x —

quindi la retta di equazione x =1 ¢ asintoto verticale per f .
Per x — 4 si ha
3—x 3—4 1
R _

l—x 1—4 3
mentre la funzione arcotangente ¢ limitata, quindi f(x) non puo essere divergente per
x — 4 né da sinistra né da destra. Percio la retta di equazione x =4 non ¢ asintoto verticale
per f .

Quindi gli asintoti di f sono le rette di equazione y =7/4 e x =1.

5

8)
a. y=2x, y=log3 f. y=x—1,x=—4
b. y=1,y=—1,x=5 g x=2,y=x+6

. x=—2,y=x+1,y=—x-3 h. y=3x+14, x=3

. 3 3

d. x=0,y=log2x+3+3log2 1. y=3x—5, y:—3x+§
5log5 . 1 3
e. x=2,y=log5x+ +2 y=—gy=x—

9) Ildominiodi f ¢ costituito dagli x reali tali che il denominatore x+1 € diversoda 0.
Pertanto
(f)=]—00,—1[U]—1,400[

Nei punti del dominio che non annullano ’argomento del valore assoluto f & deriva-
bile. Tale argomento si annulla per

x=2+ 22—3:2i1:{3f
percio f e derivabile in 2(f)\{1,3}. Per x in tale insieme si ha

;oo sgn(x?—4x4+3)(2x —4)(x + 1) — |x* —4x +3|
fe)= (x+1)2 -

_sgn(x? —4x +3)(2x% —2x —4) — (x? —4x + 3)sgn(x? —4x +3)
a (x+ 1)
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_sgn(x? —4x 4 3)(x* +2x—7)
B (x+1)? '

Il denominatore ¢ positivo in Z(f), quindiil segnodi f coincide col segno del numeratore.
Il trinomio x?+ 2x —7 si annulla per

x=—1++/1247=—14+/8,
quindi x?42x—7 >0 per x € ]—oo,—l—\/§:|U[—1+1/§,+oo|: . Sappiamo che il trinomio

x*—4x+3 siannullaper x =1 e x =3, percio x>—4x+3 >0 per x € ]—o0,1]U[3,+00] .
Il segno di f” risulta quindi dal seguente schema

—1—+/8 —1 1 —1++8 3
x?+2x—7 + +|- === == ————| =]+ + |+ +
x?—4x+3 + |+ ++F A+ A== =+
1(x) + + |- === - = - — ==+ |- -+ +

Quindi f & crescente in ]—oo,—l— ﬁ] , in [1,—1 + \/§] ein [3,400[, & decrescente
in [—1—+/8,—1[,in ]-1,1] ein [—1++/8,3].

Per la condizione sufficiente di ordine zero, —1—+/8 ¢ —14-4/8 sono punti di massimo
locale, 1 e 3 sono punti di minimo locale.

10) Siha 2(f)=R.
La funzione f ¢ derivabile e, Yx €R, si ha

F/(x) = exp(—2x? 4+ 3x) + x exp(—2x? 4 3x)(—4x + 3) = (—4x? 4 3x + 1) exp(—2x” + 3x).

Poiché ’esponenziale & sempre positivo, si ha f/(x)>0 se e solo se —4x?+3x+1>0. 1l
trinomio —4x% +3x + 1 si annulla per

1,
—34+4/374.-4 345
X = = =

3 i N
4

Percio € non negativo per x € [—1/4,1] ed ¢ non positivo per x € ]—oo,—1/4]U[1,400[ .
Pertanto f ¢ crescente in [—1/4,1] ed ¢ decrescente in ]|—00,—1/4] e in [1,+00].

Poicheé esiste un intervallo con massimo —1/4 in cui f ¢ decrescente ed esiste un inter-
vallo con minimo —1/4 in cui f & crescente, —1/4 ¢ punto di minimo locale; per motivi
analoghi 1 ¢ punto di massimo locale.

11) Il dominio di f & costituito dagli x € R per cui € non negativo I’argomento delle
radici quadrate. Si ha 2x? +56 > 0, qualunque sia x € R, mentre x> —4 >0 se e solo se
x € ]—00,—2]U[2,400[ . Pertanto

9(f) = J-o0,—2]U[2,+o00].
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La funzione f ¢ derivabile in x € 2(f), se x non annulla gli argomenti delle radici,
pertanto [ ¢& derivabile in ]—o0,—2[ U ]2,4+00[ . Per x in tale insieme si ha

2x x x(2v/x7—4—+/2x7+56)
V222456 Jx2—4  A/2x2+56+/x2—4

Il denominatore ¢ positivo, percio il segno di f* ¢ determinato dal segno di x e da quello
di 24/x2—4—+/2x2+56. Per x € 2(f’) si ha

f(x)

24/x2—4—1/2x2 456> 0 <= 24/x2—4> /2x2 + 56 <= 4x>— 16> 2x* + 56;

tale disuguaglianza equivale a 2x% > 72, quindi

24/x2—4—4/2x2456>0 <= x € ]—00,—6]U[6,+00] .

Percio il segno di f” risulta dal seguente schema

—6 -2 2 6
x - — —|-=- + + + |+ + +
2/x2—4—+/2x2+56 + + + |- = = - — — |+ + +
f(x) - — — |+ + + - — — |+ + +

Quindi f ¢ crescente in [—6,—2] e in [6,+00[ ed ¢ decrescente in ]—00,—6] ein [2,6].

Per la condizione sufficiente di ordine zero per I’esistenza di estremanti locali, da queste
informazioni sulla monotonia della funzione segue che —6 e 6 sono punti di minimo
locale, —2 e 2 sono punti di massimo locale.

12) 1l dominio di f & costituito dagli x reali non nulli, tali che (x*+5x +4)/x >0. 1l
trinomio x?+ 5x +4 si annulla per

54544 —5+3 {—4
X = = =

2 2 —1;

quindi il segno dell’argomento della radice risulta dal seguente schema

—4 —1 0
x? +5x +4 ++++++-— - — — + +|+ + + + + +
x - —|—-—— — — —|— — + + + + + +
x% 4 5x +4
—————— ++++++—-——|++ + + + +
X

Pertanto (f)=[—4,—1]U]0,+o0[ .
Lafunzione f ¢ derivabile in tutti i punti del dominio che non annullano x*+5x+4,
pertanto f ¢ derivabile in ]—4,—1[ U ]0,+o0[ . Per x in tale insieme si ha

1<x2+5x+4>1/2(2x+5)x—(x2+5x—|—4) < x >1/2x2—4

/
x)= =
S 2 X x?2 x245x+4 2x?

Percio, per ]—4,—1[ U ]0,+o00[, si ha f/(x) > 0 se e solo se x> —4 > 0; quest’ultima
disequazione ¢ verificata se e solo se x € ]|—00,—2]U[2,+00[. Il segno di f’ ¢ riportato



40 Capitolo 1. Funzioni

nel seguente schema
—4 -2 -1 0 2
f(x) I+ + + +]|— —| |- —— =]+ ++++ + +

Quindi f ¢ crescente in [—4,—2] e in [2,+00[, ¢ decrescente in [—2,—1] e in ]0,2].

Per la condizione sufficiente di ordine zero per I’esistenza di estremanti locali, da que-
ste informazioni sulla monotonia della funzione segue che —2 ¢ punto di massimo locale
per f, —4, —1 e 2 sono punti di minimo locale.

13) Ildominiodi f & costituito dagli x €R tali che ¢ positivo I’argomento del logaritmo,
cioe tali che x*+2x >0, quindi Z(f) = ]—o00,—2[ U ]0,+00[ . Inoltre f ¢ derivabile in
ogni punto del dominio in cui non si annulla ’argomento del valore assoluto, cio¢ in ogni
punto del dominio escluso —4. Se x € Z(f)\ {—4} si ha

, 2x+2
x)=
fx) x2+2x

—sgn(x +4).

Studiamo il segno di f”. A tale fine ¢ necessario distinguere a seconda che sgn(x + 4)
sia —1 oa 1, cio¢ a seconda che x sia minore o maggiore di —4. Si ha

2x +2 +1_2x+2+x2+2x _ xP44x42

= = e x <—4,
f/(x): x2+2x x2+2x x2+2x
2x +2 2x+2—x*—2x —x?+42
—1= = se x >—4.
x2+42x x2+2x x2+2x

Se x € 2(f) si ha x*+2x > 0, pertanto il segno di f’(x) dipende solo dal segno del
numeratore. Il trinomio x%+4x + 2 si annulla per

x=—244/22—2=—244/2;

poiché —4 < —2—+/2, per x < —4 ¢ positivo. Il polinomio —x? 42 & non negativo per
x € [—\/E,\/EJ, quindi in 2(f)N]—4,+00[ si ha f/(x) >0 se e solo se x € JO,\/E].
Percio il segno di f” risulta dal seguente schema
—4 -2 0 V2
f(x) + ++ +[-— - —| I+ + +]- - - -

Pertanto [ ¢ crescente in |—00,—4] e in ]O,ﬁ], ¢ decrescente in [—4,—2[ e in
[ﬁ,+oo|:. Inoltre —4 e /2 sono punti di massimo locale per f e non esistono punti di

minimo locale.

14) 1l dominio di f ¢ intersezione dei domini delle funzioni tangente e cotangente.
Pertanto tale dominio &

(o

keZ}>ﬂ(R\{kn|keZ}):R\<{kn+§‘/eeZ}U{/enHeeZ}):

:R\{k%‘kez}.
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Poiché le funzioni tangente e cotangente sono periodiche di periodo 7, anche f ¢
periodica di periodo 7. Quindi se si conosce la monotonia di f nell’intersezione del
dominio con [—7/2,7t/2] si puo ottenere facilmente il comportamento in tutto il dominio.
Notiamo che Pintersezione di Z(f) con tale intervallo ¢ ]—m/2,0[ U0, /2 .

La funzione f ¢ derivabile e, Yx € Z(f), st ha

f/(x)— 1 B 3 _senzx—SCoszx

cos’x  sen?x cos?x sen2x

Studiamo il segno di f’. Il denominatore ¢ positivo nel dominio di £, quindi il segno
di #/(x) coincide con il segno di sen’x —3cos’x. Per semplificare lo studio del segno ¢
opportuno trasformare questa espressione in modo che compaia solo la funzione coseno.

Si ha

sen’x —3cos’x = 1 —cos’x —3cos’x = 1 —4cos’x .

Per x € ]—m/2,0[U]0, t/2[ siha cosx >0, quindi 1—4cos?x >0 se e solose cosx < 1/2.
Quindi il segno di f” risulta dal seguente schema

I e e === [+ +

Pertanto f ¢ crescente in |—7n/2,—m/3],in [7t/3, 72 e in ogni intervallo ottenuto da
questi con una traslazione di un multiplo intero di 7 ; inoltre /& decrescente in [—7/3,0[,
in ]0,7t/3] e in ogni intervallo ottenuto da questi con una traslazione di un multiplo intero
di 7. Inoltre —7t/3+km (k €Z) ¢ punto di massimo locale per /', n/3+km (REZ)
¢ punto di minimo locale.

15)

a. [ é&crescente in |—00,—2] e in [0,400[, ¢ decrescente in [—2,—1[ ein ]—1,0]; —2
¢ punto di massimo locale, 0 ¢ punto di minimo locale

. 37 ., . 3 . . .
b. f & crescente in [—1,— Z} , ¢ decrescente in [— Z,—i—oo[ ; —3/4 ¢ punto di massimo
locale; —1 ¢ punto di minimo locale
c. [ ecrescentein |0,e[ ein Je,+oo[; non visono estremanti locali
d. f & crescente in [— V3/2, \/3/2] , ¢ decrescente in [—1,—1/3/2} ein [\/3/2, 1]; —1

e —- sono punti di massimo locale; —5 ¢ 1 sono punti di minimo locale

e. [ &crescentein |—o0o0,—4], ¢ decrescente in [—4,2[ ein ]2,5]; —4 ¢ punto di massimo
locale; 5 ¢ punto di minimo locale.

f. f &crescentein [e!,400[, ¢ decrescente in ]0,e™']; e~! & punto di minimo locale
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g. [ ¢&crescente in ]—oo,l— \/5} ein [1 + \/3,—%00[ , ¢ decrescente in [1 — \/3,2[ ein
]2, 1+ \/3:| s 1—4/3 8 punto di massimo locale, 1+ VERS punto di minimo locale

. 77 . 77 . . 7 . I7
h. f &crescentein ]—oo,—z] ein [ﬁ’Z] , ¢ decrescente in [_Z’_ﬁ] ein [Z,-l—oo[;

7 7 g . Ce
5 € g somo punti di massimo locale, —+/3 ¢ v/3 sono punti di minimo locale

i. f ¢&crescente in ]0,671/2] ein [1,+00[, ¢ decrescente in [671/2, 1]; e 12 ¢ punto di
massimo locale, 1 ¢ punto di minimo locale

N : V77 . 1 1 V77, . V7o

j- f ecrescentein |—0o,—— [,in |—=,0fein | —,— [, edecrescentein | ——,—— |,
4 2 44 42

. 1 . 7 7 7 . . 1

in [O,—} ein [\/T_,—i-oo[; —£, Oe ‘/T_ sono punti di massimo locale, — =

4

1

€ sono

punti di minimo locale

. . 17 . 1 .
k. f & crescente in ]—oo,—\/g[ e in ]— \/5,—5] , ¢ decrescente in [—3, \/5[ e in
1 . .
]\/g,—i—oo[; -3 ¢ punto di massimo locale

l. f écrescente in |—o00,—3[ ein ]—3,—1], & decrescente in [—1,3[ ein ]3,4o00[; —1
¢ punto di massimo locale

—1—417

4

.1 . .
,—1j| ein [E,+c>o[, ¢ decrescente in }—oo, ,

—1—17
4

—2+«/ﬁ]
2

-7

m. f ¢&crescente in |:

. 1 . . . C e e
ein |—1, 2 ; —1 ¢ punto di massimo locale, e 2 sono punti di minimo locale

0 , & decrescente in ]—o0,—3], in

N . —2—4/10 .
n. f écrescentein | —3, — ein
—2—4/10 . —2+4++/10
—  ~0|lein|——— 400
2 2
locale, —3 e O sono punti di minimo locale

—2—4/10  —2+4/10
; e

’ 2 2

sono punti di massimo

. . [7 N . . .
o. [ ¢ crescente in [—4,0] e in [5,4—00[, ¢ decrescente in ]—oo0,—4], in [0,1] e in

]2,;]; 0 ¢ punto di massimo locale, —4, 1 e ; sono punti di minimo locale
p. [ ¢&crescente in [—3 \/5,—3[ , in ]—3,—\/3] , in [O, \/Z] ein [3 1/5,4—00[ , & decre-
scente in J—oo,—3 \/5], n [—1/8,0], in [\/8,3[ ein ]3,3 \/E], —+/6 e V6 sono punti

di massimo locale, —34/2, 0 e 3+/2 sono punti di minimo locale
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. . . 5 \ .
q- Per ogni B € Z, f & crescente in |:—g T+ 2/@7‘[,—% + 2/67'[], ¢ decrescente in

7 ) . 5 .
[—% +2km, ‘ T +2/e7t] ; —% +2k7 ¢ punto di massimo locale, — R 7+ 2km & punto

di minimo locale
. \ . 1 1 .
r. Perogni k €Z, f ¢ crescente in | —arccos — + 2k, arccos — + 2kt |, € decrescente

. 1 . 1
in [—z—i-Z/eﬂ,—arccos——i-Zkﬂ] e in [arccos—+2/e7‘c,z+2/e7ri|; —E—I—Z/en e
2 /3 2 2

V3

1 - . 1 .
arccos — +2k 7 sono punti di massimo locale, —arccos —+2k7 e §+2/€77.' sono punti
3
di minimo locale.

16) Siha 2(f) = R. La funzione f & derivabile in tutti i punti che non annullano
I’argomento del valore assoluto. Il trinomio 4x*—8x +3 si annulla per

1
4+ /42—4.3 442 2’

X = = =
4 4 3
2’

pertanto f & derivabile in R\ {1/2,3/2}. Per x in tale insieme risulta
F/(x) =sgn(4x® —8x +3)(8x —8)e* + [4x* —8x +3|e* =
=sgn(4x? —8x + 3)(8x —8 + 4x? —8x 4 3)e™ = (4x*> —5)sgn(4x* —8x +3)e*.
La funzione f’ ¢ derivabile in R\ {1/2,3/2} e per x in tale insieme si ha
F"(x) = 8x sgn(4x* —8x +3)e* + (4x* —5)sgn(4x? —8x + 3)e* =
= (4x? 4 8x —5)sgn(4x? —8x + 3)e”.

Poiché e* ¢ sempre positivo, il segno di f” ¢ determinato dai fattori 4x? +8x —5 e

sgn(4x? —8x + 3). Evidentemente sgn(4x? —8x +3) ha lo stesso segno di 4x?—8x +3.

Sappiamo che il trinomio 4x*—8x+3 siannulla per x =1/2 e per x =3/2, quindi & non
negativo se e solo se x € ]—00,1/2]U[3/2,400[ . Il trinomio 4x?+8x —5 si annulla per

5
4V +4.5  —4t6 |

X =

4 4

1

2 b

quindi ¢ non negativo se e solo se x € ]—00,—5/2]U[1/2,+00[. Il segno di f” risulta
quindi dal seguente schema:

4x? 4 8x—5 + ++ |- = = ++ 4+ + + +
4x2 —8x+3 ++++++ =+ ++
1 (x) + ++ = == = = + + + +
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Quindi, per la caratterizzazione del IT ordine della convessita, f ¢ convessain ]|—o0,—5/2]
ein [3/2,400[, ¢ concavain [—5/2,1/2] ein [1/2,3/2]. Il punto —5/2 ¢ di flesso per f .

Poiché f ¢ concava sia in [—5/2,1/2] che in [1/2,3/2], ci chiediamo se € concava
anche nell’'unione di questi intervalli. Studiamo la derivabilita di f in 1/2.

Si ha
lim f/(x)= lim ((4x2 —5) e") = —4¢'/?,

x—1/2- x—1/2-
lim f(x)= lim —(4x?—5)e* =4e'/?.
ng;f(X) Jim (47 —5)et = de

Percid

f(x)—£(1/2) _461/275461/2: lim f(x)—=/(1/2)

o x—(1)2) o1z x—(1/2)

quindi f non ¢ derivabile in 1/2. Pertanto non possiamo utilizzare il criterio del II or-
dine per stabilire la concavita in [—5/2,3/2]. Abbiamo per6 informazioni sufficienti per
affermare che f non ¢ convessa in tale intervallo. Infatti si ha lim_,;,  R;(1/2,x) <0
e lim ;. Ry(1/2,x) > 0, quindi esiste x; < 1/2 tale che R/(1/2,x;) < 0 ed esiste
x,>1/2 tale che R/(1/2,x,) > 0, pertanto il rapporto incrementale non ¢ decrescente
in [—5/2,3/2], quindi f non ¢ concava in tale intervallo.

In 3/2 la funzione cambia convessita, ma non sappiamo se f ¢ derivabile in tale punto.

Si ha
lim f'(x)= lim (—(4x2 —5) ex) = 4¢3,

x—3/2- x—3/2-
lim f'(x)= lim (4x*—5)¢* =4¢>/2.
ngl/lﬁf (x) ngnm( x"—5)e* =4e

Percio
im f(x)—f(3/2) — 4032 7£463/2 — lim fx)—£(3/2)
x—3/2- x—(3/2) x—3/2+ x—(3/2) ’

quindi f non ¢ derivabile in 3/2, percio tale punto non ¢ di flesso.

17) Largomento del logaritmo ¢ sempre maggiore o uguale a 3, quindi ¢ positivo, percio
2(f)=R. Se x non annulla ’'argomento del valore assoluto, allora f* ¢ derivabile in x.
Siha x2+2x =0 seesolose x =0 o x =—2, quindi f & derivabile in R\ {—2,0}. Per x
in tale insieme si ha
Flx)= sgn(xzz—l— 2x)(2x +2)

|x2 4+ 2x|+3

Questa funzione ¢ derivabile in R\ {—2,0} e per x in tale insieme si ha

|x? + 2x| + 3) —(2x +2)sgn(x? + 2x)(2x +2)
(|%2 +2x| +3)2 B
2sgn(x? + 2x)(x? 4+ 2x) + 6 —sgn(x? + 2x )(4x* + 8x + 4)

2
=sen(x” +2x =
gn( ) (|2 +2x| 4 3)?

" 2 2(
[ (x) =sgn(x”+2x)

_ —2x*—4x—4+6sgn(x? + 2x)
B (|x2 4+ 2x| +3)2
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Studiamo il segno di f”(x). Per x € ]—2,0[ risulta sgn(x*+ 2x) = —1, mentre per
x € ]—00,—2[ U]0,4+00[ si ha sgn(x?+2x) = 1. Quindi il numeratore nell’espressione

scritta sopra €
—2x% —4x —44+6=—2x"—4x+2, per x € J—o00,—2[ U]0, 400,
—2x? —4x —4—6=—2x"—4x—10, per x € |—2,0][.
Studiamo il caso x € J—00,—2[ U]0,+o0[ . Il trinomio —2x* —4x + 2 si annulla per
2+v/2242-2 2448
x = = =—1F \/E,
—2 —2
quindi esso ¢ non positivo per x € ]—oo,—l — \/5] U [—1 ++2, +OO[ e non negativo per
xe[—l—ﬁ,—l-l—\/i]. Poiché —1—v2<—2e 0<—1+4++/2,siha
xe[—1—-v2,—2[U]o,—14+v2] = f"(x)>0
x € ]—00,—1—v2|U[—14 V2,400 = f"(x)<0.

Studiamo il caso x € ]—2,0[ . Il trinomio —2x? —4x — 10 ha discriminante
42—4.2.10=—64<0,
quindi esso ha sempre lo stesso segno del coefficiente di x?, percio & negativo. Pertanto
x€]-2,0 = f"(x)<0.
Il segno di f” ¢ riportato nel seguente schema
—1—v2 =2 0 —1++2

f(x) —— |+ +|--——-——— - = |+ +]— - — -
Quindi f ¢ convessa in [—1 —/2, —2] ein [O,—l + ﬁ] , ¢ concava in ]—oo,—l — \/§:| ,
in [—2,0] ein [—1+1/§,+oo[. I punti —1—+/2 ¢ —14 +/2 sono di flesso per f .

Nei punti —2 e 0 la funzione cambia convessita, ma non sappiamo se in tali punti f

¢ derivabile. Si ha

. . 2 2 2
lim f'(x)= lim L:——,
x——2- x——2— x2 +2x+3 3
. . —(2 2 2
lim f'(x)= lim T 42) ==,
x——2+ x——2+ —x2 —2x+3 3
. . —(2x +2) 2
lim /()= lim — 242 _ 2
IS = e 5T
. . 2x +2 2
lim F(x)= lim —————— =Z
x—>0+f ( ) x—0+ x2 +2x + 3 3

Poiché, sia in —2 che in 0, limite sinistro e destro della derivata sono diversi tra loro, per
il teorema sul limite della derivata cio vale anche per i rapporti incrementali. Pertanto f
non ¢ derivabile né in —2 né in 0, percio tali punti non sono di flesso.
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18) 1l dominio naturale di f ¢ costituito dagli x € R tali che 2x*—4x+1 & non negativo.
Tale trinomio si annulla per

2+4/22-2-1 1
X=——7——=1£ —.
: V2
Pertanto
9(f)= |Foor— 2o 14+ oo
> ﬁ ‘/E’ .
La funzione f ¢ derivabile nei punti del dominio per cui non si annulla ’'argomento

della radice, cioé per x ;é 1+ (1/1/5) e, per tali x, si ha

4x—4
Fl)= V2 —dx 4+ (r— 1)
24/2x2 —4x+1
2P —4x+14+(x—1)(2x—2)  4x?—8x+3
2x2—4x+1 \/2x2—4x+1'

La funzione f” ¢ derivabile in tutto il suo dominio e si ha

4x—4 1
F(x)= <(8x—8)\/2x2—4x+1—(4x2—8x+3) * > > =
2V2x2—4x+1/(V2x2—4x+1)

_ (8x—8)(2x? —4x +1)—(4x? —8x +3)(2x—2)
N (2x2—4x +1)3/2 -
2x —1)(4(2x* —4x +1)— (42> —8x +3))  2(x —1)(4x? —8x + 1)
(2x2 —4x +1)3/2 o (2x2—4x41)3/2

Poiché il denominatore ¢ positivo, si ha f”(x) >0 se e solo se (x —1)(4x? —8x+1)>0.
Il trinomio 4x*—8x + 1 si annulla per

4+ /241 44412 V3
X = =

=1+ —.
4 4 2

Il segno di f” risulta quindi dal seguente schema:

V3 1 1 V3

=5 1-— I+ 147
x—1 - — — = + |+ + +
4x? —8x +1 + 4+ + |- -+ + +
F(x) - — — |+ -+ + +

Pertanto f & convessa in [1— V3/2,1— 1/\/5] e in [1 + \/3/2,4—00[ ed ¢ concava in
J-o0,1—=/3/2] ein [1+1/v/2,1++/3/2]. I punti 1—+/3/2 e 14+/3/2 sono di flesso.
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19)
9—34/33 . 94333 . . 9—34/33
—— 0| em T,—i—oo ,econcavain |—oo, ———

a. [ éconvessain
4 4

: [ 9—3@] 9—34/33
ein |0, 7 ;

. 2| . . . . 2
b. f ¢ convessa in ]—oo,—‘/ 5], in [0,1] e in [1,4+00[, ¢ concava in [—‘/ 3,0];
2, .
—{/ 3 ¢ punto di flesso

. . 5 5 .15 . . 5 5 . .
c. f ¢convessain |—=,—— |ein |>,+00| ¢&concavain |—-—,0| ; —— ¢& punto di
6 12 6 12

9+34/33
,0e 12 ¥77

sono punti di flesso
4 4

flesso

d. f &convessain ]—oo,— 6],in [—1,1] ein [\/g,—}—oo[,éconcavain [—1/3,—\/3},
in [—ﬁ,—l],iﬂ [1,v/3] ein [v3,v6]; £v6 ¢ £1 sono punti di flesso

e. / ¢convessain ]—oo,—3 ﬁ} ein [0,3 ﬂ],éconcavain [—3 1/3,0] ein [3 \/3,4—00[;
—34/3 ¢ 34/3 sono punti di flesso

4441
5

4441
5

,3:| e in [5,+00[, ¢ concava in [O, :| ein [3,5];

f. f ¢ convessa in [

4+ /41
5

¢ punto di flesso

g. [ &convessain [—5,—4[ ein |—4,—3], ¢ concava in ]—o00,—5] e in [—3,4+00[; —5
e —3 sono punti di flesso

h. f éconcavain ]—o0,—2],in [2,4] ein [4,+00[; non vi sono punti di flesso

20) 1l dominio naturaledi f ¢ R.
Cerchiamo le intersezioni del grafico di f con gli assi. Si ha £(0) =0, quindi il grafico

interseca I’asse delle ordinate nell’origine. Inoltre f(x)=0 se e solo se |2x*> —9x| =—9x;
il valore assoluto ¢ sempre non negativo, quindi deve essere —9x >0, cioe¢ x <0. Quindi
f(x) ¢ nullo se x ¢ non positivo e verifica una delle due equazioni 2x* —9x = —9x e

2x* —9x = 9x. La prima equazione ¢ verificata solo per x = 0, la seconda equivale a
2x> —18x = 0 e quindi ha le soluzioni x =0, x = —3 e x = 3. Deve essere x < 0,
quindi f siannullain O ein —3.
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Studiamo il comportamento negli estremi del dominio.

. . 9 9
lim f(x)= lim |2x°| '1——x_2 + 2 =400,
xX——00 X——00 2 |2x3|
9 9x
lim f(x)= lim |2x°|( |[1—=x72|+ =400
x—>+oof( ) x—»—ool |<' 2 |2x3|

Poiché per x — +o0 si ha f(x)~ 2|x|* non vi sono asintoti obliqui.

La funzione ¢ continua.

La funzione f ¢ derivabile in tutti i punti che non annullano I’argomento del valore
assoluto, cioé tali che 2x* —9x # 0. Poiché 2x®> —9x = x(2x* —9), si ha 2x’> —9x =0 per
x =0 eper x = :i:3/\/§. Percio f ¢ derivabile in R\{—3/\/§,0,3/\/§}. Per x in tale
insieme si ha

F(x) = (6x* —9)sgn(2x> —9x)+9.
Per studiare il segno di f” ¢ utile anzitutto determinare per quali x si ha sgn(2x®> —9x) =1
e per quali si ha sgn(2x® —9x)=—1. Si ha

2x% —9x :2x<x + %)(x— %)

quindi il segno di 2x? —9x risulta dal seguente schema

3 0 2
7 7
2 @ ————|-==-=--= ++ + + A+ [+ +
x+‘/i§ ——— =+ +++F++H+++F A+
3
x—%  — - = |- - - - - |- === == + + 4+ +
2x* —9x e I e e e + + + +

Percid sgn(2x’—9x) = 1 se x € ]—3/1/5,0[ U ]3/\/5,4-00[, e sgn(2x’ —9x) = —1 se
x € J—00,—3/v/2[U]0,3/V2[ .

Calcoliamo il limite della derivata nei punti —3/+/2, 0 ¢ 3/+/2 per determinare la
derivabilitd di / in tali punti.

lim f'(x)= lim —(6x*—9)+9=-9,

x——3/v2" x——3/+/2"
lim f(x)= lim (6x*—9)+9=27,
o ﬁf (x) H_S/ﬁ( )

linol_f'(x) = lirl(’)l_(6x2—9>+9 =0,

lim f'(x)= lim —(6x>—9)+9 =18,

x—0+ x—0
lim f/(x)= lim —(6x*—9)+9=-9,
an/\/Zﬁ x~>3/\/2ﬁ

lim f'(x)= lim (6x*—9)+9=27.
x—>3/xf2+ )c—>3/xf2Jr
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In ciascuno dei punti considerati il limite sinistro di f’ ¢ diverso dal limite destro, per-
ci0 anche 1 limiti sinistro e destro del rapporto incrementale sono diversi tra loro. Quin-

di —3/4/2, 0 e 3/4/2 sono punti di non derivabilita per f.
Studiamo il segno di f”. Se x € ]—3/1/5,0[ U ]3/\/5,4—00[ , allora st ha
f/(x) = (67 —9) +9 = 6x7;
poiché x #0, risulta f’(x)>0.Se x € ]—oo,—3/\/§[ U ]0,3/\/5[ , allora si ha
Fl(x) =—(6x*—9)+9 =—6x? + 18 = 6(—x* +3),
che ¢ positivo per x € ]—\/3, \/3[ e negativo per x € ]—w,—ﬁ[ U ]\/3,+oo[ e quindi,
tenuto conto delle condizioni a cui deve soddisfare x , abbiamo f/(x) >0 per x € :|O, V3 [

e f'(x) <0 per x € |—o0,—3/+/2[ U]V/3,3/V2[ .

Complessivamente, il segno di f” risulta dal seguente schema

—% 0 ﬁ%
f(x) — — =+ +++++ |+ +++ |+ ++

Pertanto f e crescente in [—3/\/5,0] ,in [O, \/3] ein [3/\/5,+oo[ ed ¢ decrescente in
]—oo, —3/4/2 ] ein [\/3, 3/ 1/5] . Il criterio di monotonia non pud essere applicato diretta-
mente per stabilire la crescenza di f in [—3/+/2,4/3 |, perché la funzione non ¢ derivabile
in tutti 1 punti interni a tale intervallo. Possiamo perd ugualmente concludere che f ¢
crescente, a partire dalle informazioni relative agli intervalli [—3/ V2, 0] e [o, V3 ]. Infatti
siano x,y € [—3/\/5, \/3] tali che x <y.Se x e y appartengono entrambi a [—3/1/5,0]
o entrambi a [O, \/3], allora sappiamo che f(x)< f(y). Se invece x € [—3/\/5,0] e
y€[o, \/3] ,allorasiha f(x) < f(0) < f(y). Quindi in ogni caso f(x) < f(y). Utilizzan-
do il criterio di monotonia stretta si puo analogamente dimostrare che f ¢ strettamente

crescente in [—3/\/3, \/3] .

Inoltre —3/+/2 ¢ 3/4/2 sono punti di minimo locale per f, +/3 &un punto di massimo
locale.

Il valore di f in tali punti é&:
27 27

3 3 3
55 A s 5 a5
f(V3)=|2(v3) =9V3|+9V3=6v3 93] +9V3 =123,

3 3\ 3
()5 5

Studiamo la convessita di f .
La funzione f” ¢ derivabile in tutto il dominio e si ha

27 27

3
+9-"—=
V2

2727

V2 V2

27 27

t 5T

F"(x) =12x sgn(2x> — 9x).
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Quindi il segno di #”(x) coincide con quello di 12x(2x* —9x), che ¢ uguale a

24x2<x— %><x - %)

Quindi per x € ]—oo,—3/\/§[ U ]3/\/5,—{—00[ risulta f”(x) > 0, mentre invece per
x G]—3/x/§,3/\/§|:\{0} si ha f”(x) < 0; pertanto f ¢ convessa in ]—oo,—S/\/E] e
in [3/ﬁ,+oo|: ed ¢ concava in [—B/ﬁ,O] ein [0,3/\/5].
Poiché nei punti di cambio di convessita / non ¢ derivabile, non vi sono punti di flesso.
Percio il grafico di f* ¢, approssimativamente, il seguente:

(‘/5112 ﬁ)

(%)

21) La funzione f ¢ definita per tutti gli x per cui non si annulla il denominatore
dell’argomento dell’esponenziale, pertanto si ha

P(f)=R".

Cerchiamo le intersezioni del grafico di f con gli assi cartesiani. Poiché 0 non appar-
tiene al dominio della funzione non ¢’¢ intersezione con I’asse delle ordinate. Lequazione
f(x)=0 equivalea x +6 =0, quindi f siannullasolo per x =—6. Poiché f ¢ prodotto
di funzioni a valori non negativi ¢ non negativa.

Studiamo il comportamento di f negli estremi degli intervalli che costituiscono il suo
dominio. Si ha

lim f(x)= lim |x+6|e' =400,

. . 1
lim f(x)=6 lim exp<i> =0,
x—0— x—0— X

lim f(x)=6 lim exp<x—+1> =400,
x

x—0+ x—0t

lim f(x)= lim |x+6[e' =+4o00.
x—+00 x—-+00
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La funzione ha quindi I’asintoto verticale x =0.
Poiché per x chetendea —oo ea +oo lafunzione diverge, cerchiamo eventuali asintoti
obliqui. Per x — —oo si ha

|x +6|exp<x7+1> =—(x+6)e eXp<%> =—(x +6)e<1 + % +o<%>> =

:e<—x—6—x£+0(1)>:—€x—7€+0<1);

percio la retta di equazione y = —ex —7e ¢ asintoto obliquo per f* per x — —oo. In
modo analogo per x — 400 si ha

|x +6|exp<x7+1> =(x +6)eexp<£> =(x +6)e<1 + % +0(%>> =

1
:e<x+6+x—+o(1)>:ex+7e+o(1),
x

quindi f* ha Pasintoto obliquo y = ex +7e per x — +oo.
La funzione f ¢ continua, perché prodotto di composizione funzioni continue.

Studiamo la derivata di f . La funzione f ¢ derivabile in x se x non annulla I’argo-
mento del valore assoluto. Pertanto f ¢ derivabile in Z(f)\ {—6} =R\ {—6,0}. Per x in
tale insieme si ha

f(x)=sgn(x +6) exp<x7+1>+|x+6| eXp<x:1>x—(xx2+ 1) _

1 1 Z_x—6 1
=sgn(x +6)<1—(x +6) >exp<i> =sgn(x +6) X ch exp<x + >
X x x

x2

Poiché, Vx € 2(f'), si ha x? > 0 e I’esponenziale ¢ maggiore di 0, il segno e di f'(x)

coincide con il segno di (x* —x —6)sgn(x +6). Gli zeri del trinomio x?>—x—6, sono
1£4/12—4.(—6) 1+5 (-2,
X = = =
2 2 3,
pertanto € positivo se e solo se x € J—00,—2[ U ]3,400[ .
Il segno della derivata risulta quindi dal seguente schema:
—6 -2 0 3
x?—x—6 +++H+++ A== = — |+ ++
sgn(x+6)  — — —|+ + F A+ + |+ + |+ + A
Fi&) —— =+ ++ |- = == = = =+ + 4+

Pertanto f ¢ crescente in [—6,—2] e in [3,400[, ¢ decrescente in ]—o0,—6], in
[—2,0[ ein ]0,3]. Inoltre —6 e 3 sono punti di minimo locale, —2 ¢ un punto di massimo
locale.
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Studiamo la derivabilita di / in —6.

lim f/(x)= lim (xz—x—6)sgn(x+6)exp<x+1>:

x——6— x——6— x2
— hm _x2_x—6 < <x+1>:_(—6)2+6—665/6_ 65/6,
xX——6~ x2 (—6)2

im_f(x)= im XL (L)

2 2
~ im " _x_6exp<x+1>:(_6) +6_685/6:e.’;/6’
x (—6)

quindi esistono limite sinistro e destro di f’(x) per x — —6, ma tali limiti sono diversi tra
loro, dunque f non ¢ derivabile in —6.

Poiché lim,_; f(x) esiste reale, per studiare I'andamento della funzione, ¢ utile calco-
lare lim_, f’(x). Per x — 0~ risulta

Z_x—6 1 Z_x—6 1 1 1
Flx)= a ;C exp<x + > =X TrTo, exp<—> ~—be — exp<—>
x x

X x2 x X

| 1 .
lim — exp<—> = lim y%” =0.
x—0— x2 X y——00

Pertanto lim,_, f'(x)=0.
Calcoliamo il valore di f* negli estremanti locali; sappiamo che f(—6) = 0, inoltre
st ha:

f(=2)=(=2+6) exp<_2—;1>:4el/2,

F(3)=(3+6) exp(33L1> — 9t

Studiamo la convessita. Evidentemente f” ¢ derivabile in ogni punto del suo dominio,
che ¢ R\ {—6,0}; per x in tale insieme si ha

(2x — 1)x? —2x(x* —x —6) x+1
p exp +
x x

f”(x)=sgn(x+6><

L (x?—x—6) x—(x+1) exp<x+l>>:

x?2 x2 x

2x® —x? —2x3 4+ 2x2 + 12x —x2+x+6> <x+1>
+ exp =

=sgn(x + 6)< " "

13x+6 x+1
=sgn(x +6) oo —— )
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Se x € 2(f") si ha x* > 0 e I’esponenziale ¢ positivo, il segno di f”(x) coincide con il
segno di (13x + 6)sgn(x +6) e risulta dal seguente schema:

—b -5 0
13x+6 - = = |- = = = = — = + |+ + + + +
sgn(x +6) - — - |+++++++++++|+ + + + +
f//(x) + ++-—-—-—-"—-—— - + |+ + + + +

La funzione f ¢ quindi convessa in ]—o00,—6], in [—6/13,0[ e in ]0,+oo[ mentre ¢
concava in [—6,—6/13]; inoltre —6/13 ¢ punto di flesso. Si ha:

6 6 —6/134+1 72
)| o) B
13 13 —6/13 13

b

(—6/13)?
quindi la retta tangente nel punto di flesso ha equazione

72 756 —7/6< 6>
e AT 2,
T RACRET

cio¢
y =(—25x—6)e"/°.

Il grafico di f ¢ quindi, approssimativamente, il seguente:

- y=ex+7e

6 72 _
e 7/6)

BB
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22) Poiché la funzione arcoseno ha dominio [—1,1], si ha
D(f)={xeR|—-1<|x’ +4x+3| <1} ={x €R| —1<x*+4x+3< 1},
Dobbiamo quindi risolvere il sistema di disequazioni
P 4x+3<1,
x2+4x+3 >—1,
cioe
x?4+4x+2<0,
x2+4x+4 >0.

Il trinomio x?+ 4x +2 si annulla per

x=—244/22—2=—244/2,

pertanto la prima disequazione ¢ verificata per x € [—2— V2,24 \/5] . Dall’'uguaglianza
x% +4x +4=(x+2)* segue che la seconda disequazione ¢ sempre verificata. Pertanto

2(f)=[-2—vV2,—2+V2].
I valoridi f negli estremi del dominio sono:

f(—2—1/§):arcsen|(—2—1/5>2+4<—2—\/§)+3| =

:arcsen|4+4\/§+2—8—4\/§+3| —arcsen|—1| :g,
f(—2+1/§):arcsen|(—2+\/§>2+4<—2+ \/§)+3| —
:arcsen|4—4\/§+2—8+4\/§—|— 3| = arcsen|—1| :g,

Il grafico di / non interseca ’asse delle ordinate perché 0 ¢ Z(f). Cerchiamo le in-
tersezioni con I'asse delle ascisse; si ha f(x) =0 se e solo se arcsen|x? +4x +3| =0, che
equivale a x? +4x +3 =0. Questo trinomio si annulla per

)

x=—2% 22—3:—2:|:1:{ |

Poiché la funzione arcoseno assume valori non negativi quando il suo argomento ¢ non
negativo, / ¢ sempre non negativa.

La funzione non ha asintoti orizzontali o obliqui perché il dominio ¢ limitato e non ha
asintoti verticali perché, per il teorema di Weierstrass, ¢ limitata.

Poiché f ¢ composizione di funzioni continue, ¢ continua.

La funzione f ¢ derivabile in ogni x € R tale che "argomento del valore assoluto ¢ di-
verso da 0 e ’argomento dell’arcoseno ¢ diverso da £1. Quindi deve essere x* +4x +3 #0

e [x*+4x+3| # 1, non si ha mai |x? +4x + 3] = —1. Come gia trovato in precedenza
x*+4x+3=0 per x =—3 eper x =—1. Siha |x?+4x+3| =1 seesolose x*+4x+3=1
oppure x?+4x+3 = —1, tali equazioni, gia risolte per determinare il dominio di f, hanno

le soluzioni x = —2—+/2 ¢ x =—2++/2 la prima e x = —2 la seconda. Pertanto f ¢
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derivabile in

D)\ {—2—v2,-3,-2,—1,—2++2};

la derivabilita nei punti —2— V2, =3, =2, —1, =2+ /2 sard studiata in seguito.
Per x € 2(f)\ {—2— V2,-3,—2,—1,—2+ \/5} si ha

Flx)= sgn(x? +4x +3)(2x +4)
V1—|x2+4x+3]2

Poiché
T—|x? +4x 43 = (1— (x> +4x43))(1+ (x> +4x +3)) =
=(—x?—4x —2)(x* +4x +4) = (—x? —4x —2)(x + 2)?
risulta
Fx) 2sgn(x? +4x+3)(x+2)  2sgn(x?+4x +3) sgn(x +2)
x)= =
|x +2|v/—x2—4x —2 V—x2—4x—2

Il segno di f’(x) coincide con il segno di sgn(x?+4x+3)sgn(x+2), che risulta dal seguente
schema:

—2—4/2 =3 -2 —1 —2+42
sgn(x? +4x +3) 4+ |- = = - - — +
sgn(x +2) — ===+ +++| +
(2 HAx+)sgn(x+2) | — |+ 4+ + = — — —| +

Pertanto f ¢ crescente in [—3,—2] ein [—1,—2—!—\/5] , & decrescente in [—2—\/5,—3]

ein [—2,—1]. Inoltre —2—+/2, —2 ¢ —2+4 +/2 sono punti di massimo locale per f, —3
e —1 sono punti di minimo locale per f .

Studiamo la derivabilita di f nei punti —2—+/2, =3, =2, —1, —24++/2. Si ha

2
lim fl)==lim  —m—=—00,
xa72fﬁ+ x~>727\/§+ \/m

. / _ 1 2 =
Jm f==lm s =
lim f(x)=li - =
L N i v

. 1N — 1 2 =
xgr_r;ff(ﬂ—xkrfz—m_ﬁ’

. / _ 1 2 =
i S )=, g =
. / _ 1 2 =
e
. 1 2

lim f'(x)= lim ———— =2,

x——1+ x—==3F f_x2 4y —2



56 Capitolo 1. Funzioni

lim f'(x)= lim ; =
x——2+42 xo24v2 AV —x2—4x—2

Poiché il limite della derivata (se esiste) coincide con il limite del rapporto incrementale,
risulta che f non ¢ derivabile in nessuno dei punti elencati sopra, perché nei due estremi
del dominio il limite del rapporto incrementale non ¢ reale, mentre in tutti gli altri punti
il limite sinistro del rapporto incrementale ¢ diverso dal limite destro.

+o0.

Calcoliamo il valore di f* negli estremanti locali. Sappiamo che si ha:

f(=2=V2)=f(=2+V2)=n/2.

Inoltre
f(=3)=arcsen|(—3)* +4- (—3) + 3| = arcsen|0| = 0,
f(—2) = arcsen|(—2)* +4- (—2) + 3| = arcsen|—1| = g ,
f(—1)=arcsen|(—1)* +4- (—1) + 3| = arcsen|0] = 0.

Studiamo la convessitadi f . Lafunzione f” ¢ derivabile in ogni punto del suo dominio,
perché in tale dominio non si annullano gli argomenti delle funzioni segno e radice che
compaiono nell’espressione di f”, e si ha

F"(x) = sgn(x? +4x + 3)sgn(x + 2)2<— %)(—x2 —4x =2y (—2x —4) =

2(x +2)sgn(x +2)
(—x2—4x—2)3/2

2|x + 2|

_ 2
=sgn(x” +4x +3) ——T—

= sgn(x? +4x +3)

Sappiamo che sgn(x? +4x +3) >0 per x € ]—o00,—1[ U ]3,+00[, quindi se x € Z(f") si

ha f"(x)>0 seesolose x € |-2— \/5,—3[ Ul—1,—2+ 1/5[ Pertanto f & convessa in

[—2— 1/5,—3] ein [—1,—2 + \/E] , ¢ concava in [—3,—2] e in [—2,—1]. Infine / non

ha punti di flesso, perché i punti di cambio della concavita sono punti di non ¢ derivabilita.
Il grafico di f ¢ quindi, approssimativamente, il seguente.

(-2-v23) (-2) (-2+423)

22
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23) Lafunzione f ¢ definita per gli x reali diversi da 0, (perché per x =0 si annulla il
denominatore dell’esponente) e tali che I’'argomento della radice |x 4+ 5|—1 ¢ maggiore o
uguale a 0. Siha |x+5|/—1>0 seesolose |[x+5]>1 ecio e verificato se x +5> 1
oppure x +5<—1, che equivale a x >—4 0 x <—6. Pertanto

D(f)= J—o00,—6]U[—4,0[ U 0, +00] .

Il grafico di f non interseca I’asse delle ordinate perché 0¢ 2(f). Siha f(x)=0 see
solo se 4/|x +5|—1=0, cio¢ |x +5|—1=0 che ¢ verificato se x =—6 o x =—4.
Poiché ¢ prodotto di funzioni a valori non negativi, / ha sempre valori non negativi.

Studiamo il comportamento di /" negli estremi degli intervalli che costituiscono il suo
dominio.

lim f(x)=+o0,

X——00

Pertanto la retta di equazione x =0 ¢ asintoto orizzontale.

La funzione diverge per x — +00, ma ¢ semplice provare che f(x)~ 4/|x|, pertanto
non vi sono asintoti obliqui.

La funzione f ¢ prodotto di composizioni di funzioni continue, quindi ¢ continua.

La funzione ¢ derivabile in x se x non annulla I’argomento del valore assoluto e non
annulla I'argomento della radice. Quindi deve essere x +5 # 0 e |x +5/—1# 0. Se
x € D(f), allorasi ha x # —5 e, come gia visto, |x +5|—1 si annulla per x =—6 e per
x =—4. Pertanto f ¢ derivabile in ]—o0,—6[ U ]—4,0[ U ]0,+00[ , mentre la derivabilita
in —6 e in —4 verra studiata in seguito.

Si ha
1
fl0)=—F——=

24/|x+5]—1

_ x%sgn(x +5) —2((x +5)sgn(x +5)— 1) I (x?—2x —10)sgn(x +5)+2 ol

2x24/|x +5|—1 2x24/|x +5|—1

Studiamo le derivabilita in —6 ein —4. Si ha

1
sgn(x +5) e'/* + |x+5|—1<——2>el/x =
x

2
. . —x+2x+12
lim f'(x)= lim —el/x:—oo,
H*é‘f( ) x——6~ 2x24/—x—6

2_2x—8
x—>—4+f ( ) x——4t 2x2, [ x +4

Poiché il limite della derivata coincide con il limite del rapporto incrementale, il limite del
rapporto incrementale non ¢ reale, pertanto / non ¢ derivabile in nessuno dei due punti.

el/x:—i-oo.
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Poiché lim__, f(x) € reale, per conoscere il comportamento di f ¢ utile calcolare il
limite corrispondente della derivata. Si ha:

2 . 1/x
c e XT—2x—8 0 8. et
)= e T T aew =

Per x € Z(f') si ha
F(x)>0 < (x*—2x—10)sgn(x +5)+2>0;

distinguendo a seconda che sia sgn(x+5) =1 o sgn(x+5)=—1, f/(x) ¢ positivo se e solo
se x ¢ un elemento del dominio di f” che soddisfa uno dei seguenti sistemi di disequazioni:

x>—5,

x?—2x—8>0;

x <=5,

—x*4+2x+12>0.
Il trinomio x?—2x —8 si annulla per

x:l:l:\/1+8:1:|:3:{ ’

4
pertanto le soluzioni del primo sistema risultano dal seguente schema

-5 -2 4

Quindi I'insieme delle soluzioni ¢ [—5,—2]U[4,+o00[ . Il trinomio —x?42x+12 si annulla
per
—1+v14+12
X = —1+ =15+/13;

pertanto le soluzioni del secondo sistema risultano dal seguente schema

x <—5
—x?4+2x+12>0

sistema

percio questo sistema non ha soluzioni.
Il segno di f” ¢ quindi rappresentato nel seguente schema:

—6 —4 -2 0 4
flx) = ——| |+ ++|-=-=]--=-=-=-- + 4+ +
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Pertanto f ¢ crescente in [—4,—2] e in [4,+00[ ed ¢ decrescente in ]—o00,—6], in
[—2,0[ ein ]0,4]. Inoltre —6, —4 e 4 sono punti di minimo locale per /', —2 € un punto
di massimo locale.

Sappiamo che f(—6)= f(—4) =0, inoltre:
f(=2)=+/]-2+5]—1 eV =y2e712]
F@=v]4+5]—1e =8l

Il grafico di f ¢ quindi, approssimativamente, il seguente.

| (4, el/4 1/§>
(-2e7V2)

N

—6  —4

24) Poiché 'argomento della radice ¢ sempre non negativo, s ha 2(f)=R.
Cerchiamo le intersezioni del grafico con gli assi cartesiani.

Siha f(0)=4/|0—0|+0=0.

Inoltre f(x) =0 se e solo se 4/|x2—2x| = x, che equivale a |x? —2x| = x? purché
sia x > 0. Risulta x* —2x > 0 se e solo se x € ]—00,0]U[2,+00[, pertanto per tali x
’equazione |x* —2x| = x? equivale a x?—2x = x?, che ¢ verificata per x = 0. Se invece
x €10,2[, allora 'equazione |x* —2x| = x? equivale a —x? +2x = x?, cio¢ 2x*—2x =0
che, nell’intervallo considerato, ¢ verificata per x = 1. Pertanto f(x) =0 per x =0
ex=1.

Studiamo il comportamento di f negli estremi del dominio.

2 . 2
1——|—x )= lim ( |x]4/1—=—x|=
X X——00 x

—x<1—%z +o(x_1)>—x> = lim (—x+1+0(1)—x)=+o00,

X——00

2 . 2
1——|—x )= lim ( |x]4/1—=——x|=
X x—+00 X

x<1—%%+o(x_1)>—x>: lim (x—1+0(1)—x)=—1.

x——+00

X——00 X——00

lim f(x)= lim < x2

x—+00 x—+00

(
lim f(x)= lim < x2
(
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Pertanto la retta di equazione y = —1 ¢ asintoto orizzontale per x — +oo e la retta
di equazione y = —2x + 1 ¢ asintoto obliquo per x — —o0, come si prova facilmente
esaminando 1 passaggi fatti per calcolare il limite.

La funzione f ¢ somma di composizione di funzioni continue e quindi ¢ continua.

La funzione ¢ derivabile in ogni punto del suo dominio in cui non si annullano né
’argomento del valore assoluto né I’argomento della radice; questi argomenti si annullano
pergli x taliche x> —2x =0, cio¢ per x =0 e x =2. Quindi f ¢&derivabile in R\ {0,2},
mentre dobbiamo studiare a parte la derivabilita della funzione in 0 e in 2.

Per x e R\ {0,2} si ha

—1.

) = 1 son(x? — 22) (2% — 2) — _ (x—1)sgn(x* —2x)
/i )——2 T (x"=2x)(2x—2)—1= FE—

Per studiare f” osserviamo che si ha x?—2x >0 se e solo se x >2 o x <0, quindi risulta
sgn(x*—2x) =1 per x € ]—00,0[U]2,+00[ e sgn(x*—2x)=—1 per x € ]0,2[, pertanto
il comportamento della derivata nei punti O e 2 ¢ il seguente:

hmf(x)_ lim <L1)|—1>:—oo,

x—0" |x2 —2x

lim £7( )—hm<ﬂ—l>:+oo,
x—0t x—0+ |x2_2x|

—(x—1) >
Iim '(x)= lim ——1 =—00,
—>2*f ) x—>2< | _2x|

lim f'(x)= lim <L1)I—l>:+oo;

X2+ =2\ /]x2 = 2x

poiché il limite destro o sinistro della derivata (se esiste), coincide con il corrispondente li-
mite del rapporto incrementale, si deduce che f non ¢ derivabile néin 0 néin 2. Sappiamo

che f(0)=0, inoltre
f2Q)=+]22—2.2|—2=-2.
La disequazione f’(x)>0 ¢ abbastanza complessa, per risolverla ¢ opportuno determi-
nare anzitutto gli zeri di /.
Se x e R\ {0,2},si ha f’(x)=0 seesolo se
(x —1)sgn(x* —2x)
|x2 —2x|

=1,

quindi deve essere (x —1)sgn(x*—2x)> 0. Il segno di questo prodotto risulta dal seguente
schema

0 1 2
e — =+ |+t
sgn(x?—2x)  + 4+ + + +|— —|— — |+ + + + +
(x—Dsgn(x*—=2x)  — — — — — + 4+ |- =+ ++++
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Quindi, se f(x)=0, allora x €]0,1[ U]2,+00[ . Per x in tale insieme si ha f/(x)=0 se
e solo se
(x—1 _
|x2—2x|

b

cio¢
x?—2x+1=|x*—2x|.

Se x €]0,1[ si ha x> —2x <0, quindi I’equazione diventa

x2—2x+1:—x2+2x,
cioe
2% —4x+1=0,

che ¢ verificata per

Risulta 1—1/v/2€]0,1[ e 1+1/4/2¢]0,1[. Se x € ]2,400[ si ha x> —2x > 0, quindi
’equazione diventa
x2—2x+1:x2—2x,

che non ha soluzione. Percid f/(x) =0 seesolose x =1—1/+/2.

Studiamo il segno della derivata. La funzione f” ¢ continua e diversada 0 in J—o0,0[,
quindi, per il teorema di Bolzano, in tale intervallo /* si mantiene sempre positiva o sem-
pre negativa. Si ha lim _, f’(x) = —oo, percio f’ ¢ negativa in |—00,0[. In ]0,2[ la
derivata & continua, si annulla solo in 1—1/4/2, dunque, ancora per il teorema di Bolzano,
essa ha segno costante in ]0,1— 1/\/5[ cin J1— 1/\/5,2[ . Poiché lim_ 5 f/(x) = +o0
e lim,_, f'(x) = —o0, la funzione f’ ¢ positiva nel primo intervallo e negativa nel se-
condo. Infine in ]2,+o00[ f” ¢&continua e non si annulla, quindi ha segno costante, poiché
lim_,, f'(x)=+o0 essa ¢ positiva.

Il segno di f” ¢ quindi rappresentato dal seguente schema:

I [+l - R

Pertanto f & crescente in [O,l— 1/\/51 ein [2,400[ ed ¢ decrescente in ]—00,0] e
in [1— 1/1/5,2] . Inoltre 0 e 2 sono punti di minimo locale per f ¢ 1—1/+/2 ¢ punto di
massimo locale.

Il valore della funzione in 0 e in 2 ¢ gia stato calcolato;

2

1 1 1
1—— ) —2(1—— )| -1+ —=
< ﬁ) < ﬁ)’ V2

1 1 1 1 1
1—2—+——2+2—’—1+—: ’ ‘

V2 2 V2 V2

1
4 —=—1442.

V2

2
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Studiamo la convessita di f mediante la derivata seconda. Se x € 2(f’), allora gli
argomenti delle funzioni radice e valore assoluto che compaiono nell’espressione di f”(x)

sono diversi da 0, quindi f’ ¢ derivabile in ogni punto del suo dominio, pertanto si ha
2(f"Y=92(f") =R\ {0,2}. Per x in tale insieme, si ha

f//(x) —
:sgn(xz—zx)<\/m_(x_1) (2x—2)sgn(x2_2x)> 1 _
( | 2x|)

24/ |x%—2x]|

sgn(xz—Zx)< |x2—2x|)2—(x—1)sgn(x2—Zx)(x— 1)sgn(x? —2x) _
( |xz—2x|)3
sgn(x? —2x)|x? —2x| —(x —1)*  x?—2x—(x*—2x+1) _ —1
|x2 —2x /2 - |x2—2x3/2 - |x2 —2x /2 ’

qu1nd1 Vxe2(f"),siha f"(x)<0, pertanto f ¢concavain ogm intervallo il cui interno
¢ contenuto in @(f ), in partlcolare f €concavain ]—o0,0],in [0,2] ein [2,400].

, . . A . . .
Poiché f” ¢ sempre negativa, ogni punto in cui f’ si annulla ¢ un punto di massimo

locale per f; sappiamo che f” si annulla solo in 1—1/4/2, & cosi confermato che tale
punto & di massimo locale.

Il grafico di f ¢ quindi, approssimativamente, il seguente.
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1.2. Soluzioni e risultati

25)

(2,arctan3)

—4
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26) Poiché la funzione tangente ha dominio R\ {n/Z +kr|ke Z} , affinché x appar-
tenga a 9(f) bisogna che esso appartenga al dominio della funzione tangente e che non si

annulli il denominatore —2tanx + sen(2x). Quindi deve essere x # 7/2+ k7, qualunque
sia k €7, e —2tanx +sen(2x) # 0. Poiché

sen x —2senx +2senx cos’x —2sen’x
+2senx cosx = =
cosx cosx cosx

—2tanx +sen(2x) =—2

st ha —2tanx + sen(2x) =0 se e solo se senx =0, cio¢ x =k7 con k €Z. Quindi Z(f)
¢ costituito dai reali che non sono né multipli interi di 7 né somma di 77/2 con multipli
interi di 7. St ha quindi

@(f):R\{kg‘kez}.

Dalla periodicita delle funzioni seno, coseno e tangente segue che f ¢ periodica di
periodo 27. Inoltre f & dispari, perché, Yx € 2(f), si ha

2cos?(—x)—1 2cos?x —1

fl=x)= = =—f(x).

- —2tan(—x)+sen(—2x) 2tanx —sen(2x)

Come richiesto studiamo la funzione in [—,7]. Essa ¢ dispari, quindi possiamo stu-
diarla in [0, 7] e ricavare il comportamento in tutto [—7, 7] per simmetria. Osservia-
mo che

apris=p3[ulz o

E utile un’espressione di f che contenga solo le funzioni seno e coseno. Come gia visto,
il denominatore ¢ uguale a —2sen’x/cosx , quindi Si ha:

2cos?x — 1 _ cosx (1—2cos’x)

f(x)=

~ —2tanx +sen(2x) 2sen3x

Cerchiamo le intersezioni del grafico di /* con gli assi cartesiani. Poiché 0 ¢ Z(f) non
vi sono intersezioni con I’asse delle ordinate. Poiché per x € Z(f) si ha cosx 0, f(x) si
annulla se e solo se 1—2cos?x =0, cio¢ se cosx =+1/4/2. Se x €[0, 7] ciod avviene per
x=m/4ex=37/4.

Poiché per x € 10,7[ si ha senx > 0, il segno di f(x) coincide con il segno del
numeratore, quindi risulta dal seguente schema

0 5 7 in m

cosx ++++ |+ +++-=—=—=|=- == =
1—2cos’x —— = |+ ++ |+ ++ |- ==
f(x) ——— =+ 4+ + |-+ +++

Pertanto [ ¢ positiva in |7/4,7/2[U]37/4, [ ed € negativa in ]0,7t/4[ U |7/2,37/4[ .
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Studiamo il comportamento di /" nei punti di frontiera del dominio.

1—2cos? . 1

lim f(x)= lim cos cosx) =— lim =—o00,

x—0+ x—0+ 2sen3x x—0t 2sen3x

. ) 1—2cos? 0-(1—2-0

lim f(x)= lim cosx ( cos“x) _ ( ) _o,
x— /2~ x—om/2- 2sen3x 2-1

. 1—2cos? 0-(1—2-0

lim f(x)= lim cos x ( cos?x) _ ( ) o,
x> /2t x—o /2t 2sen3x 2-1

. . 1—2cos? : 1

lim f(x)= lim cosx( cos x) = lim =+o0.

Pamen PR 2sen3x x—7m= 2sendx

Le rette x =0 e x = 7 sono quindi asintoti verticali per f .
La funzione f ¢ continua, perché quoziente di somma di funzioni continue.
La funzione f ¢ derivabile e, per x € 2(f), si ha

1 (—senx + 6cos’x sen x)sen’x — 3sen’x cos x (cos x —2cos’ x)

fx)= 2 (sen3x)?

_ (—senx +6cos’x senx)senx —3cosx (cosx —2cos’ x)

2sen*x
2 2 2 2 4
—sen“x +6cos"xsen“x —3cos*x +6¢cos” x

2sentx
_ —sen’x 4 6(1—sen’x)sen’x —3(1—sen’x) + 6(1 —sen’x)*
N 2sen‘x N
_ —sen’x + 6sen’x —6sen*x —3 + 3sen’x +6— 12sen’x + 6senx _
N 2sen* x N
_ —4sen’x 43
2sen*x

Il denominatore e sempre positivo, quindi il segno della derivata dipende esclusivamen-
te dal segno del numeratore; pertanto si ha f/(x) > 0 se e solo se sen’x < 3/4. Poi-
ché nell’intervallo [0,7r] la funzione seno € non negativa, tale disequazione equivale a

senx < +/3/2; quest'ultima disuguaglianza ¢ verificata se x < 7/3 oppure se x > 27/3
(continuiamo a considerare solo x € [0,7]). Il segno di f/ ¢ quindi rappresentato dal
seguente schema:

2
0 g 37 T

o) |+ ++++++|— = —|— = —|++++++ +|

Nla

Pertanto f ¢ crescente negli intervalli ]0,77/3] e [27t/3, [ e decrescente negli inter-
valli [/3,7/2[ e ]7/2,27/3]. Inoltre 7/3 ¢ un punto di massimo locale per f, 27/3
¢ un punto di minimo locale per f .

Poiché f(x) halimite finito per x — 7t/2, per conoscere I’'andamento del grafico vicino
a tale punto ¢ utile calcolare il limite di f”(x). Si ha:

—4sen’x+3  —4+3 1

Ii "(x)=li —.
x—1>171rl/2f (x) x—l»rrrrl/z 2sen*x 2 2
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Calcoliamo il valore di f negli estremanti locali.

n _cos(n/3)(1—2cosz(n/3)) (1/2)(1—2(1/2)2) 1
5)-

3

2sen3(1/3) 2(v3/2) 343
2\ cos(2m/3)(1—=2cos*(2m/3))  (—1/2)(1—2(=1/2)) 1
157)- -

3

2sen’(27/3) 2(v3/2) 33

Studiamo la convessita. La funzione f” ¢ derivabile e, per x € Z(f), si ha

*x —4sen’x cos x(—4sen’x + 3)

1 —8senx cosxsen
2 (sen*x)?

—8sen?x cosx + 16cosx sen’x —12cosx  8sen’x cosx — 12cosx

2senSx 2sen’x

f(x)

_ 2cosx(2sen?x —3)

sen®x

Poiché senx ¢ compreso tra —1 e 1, si ha sempre 2sen’x —3 < 0, inoltre in ]0, 7t[ si ha
senx >0, quindi f”(x) >0 se e solo se cosx < 0, che ¢ vero per x € ]7/2,7[ . Quindi
f"(x) ¢ positivo per x € ]7/2, [ e negativo per x € ]0,7/2[.

Percio f ¢ convessain |rt/2,7[ ed ¢ concavain ]0,7/2[.

Il grafico di f ristrettaa 2(f)N[0, 7] ¢ quindi, approssimativamente, il seguente:

X T

Poiché f & dispari, da questo si puo facilmente ottenere il grafico della restrizione di f
a 2(f)N[—m,0]: ¢& il simmetrico rispetto all’origine. Percio il grafico di e:

fl.@(f)ﬂ[—n,n] ¢
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X v

<%
N——r

Osserviamo che questo grafico suggerisce che f, oltre a essere periodica di periodo 27,
sia anche periodica di periodo 7 ; verifichiamo se ci0 € vero. Anzitutto si ha

x€9(f) VkeZ,x;éleg < VeeZ, x+n#tkn/2 <= x+me€D(f),

inoltre se x € 9(f) allora

_ 2cos?(x +m)—1 _ 2—=cosx)’—1 x):
flx+m)= _ztan(x+7f)+seﬂ(2(x +7r)) "~ 2tanx + sen(2x) =/(x);

quindi f & periodica di periodo 7.

27) Poiché senx compare al denominatore, il dominio naturale di f ¢ costituito dagli x
tali che senx #0. Se x €[—m, 7] siha senx =0 per x =0, x =7 e x =—n. Pertanto
2(/)N[—mr,n]=]—=,0[ U], x[.

La funzione non interseca I’asse delle ordinate, perché 0 ¢ Z(f). Poiché esponenziale

¢ sempre positivo e il seno si annulla in punti non appartenenti a Z2(f), f non si annulla.
Studiamo il comportamento di f nei punti di frontiera del dominio. Si ha

lim f(x)= lim+\/|senx| lim+exp< L >:O-O:O,

x——mt 4senx
. . . 1
lim f(x)= lim 4/|senx| lim exp< >:O-O:O.
x—0— x—0— x—0— 4senx

Per calcolare lim_ 4. f(x) € utile porre y =1/(4senx); si ha

1 1 1 e
lim 4/|senx ex< >: lim 4| —e¢’'=- —=+40c0.
x—0* | | exp 4senx y—=+oo \ 4y 2 ./y
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Analogamente lim_, __ f(x)=+o00. Pertanto f ha gli asintoti verticali x =0 e x = 7.
La funzione f ¢ continua, perché prodotto di composizioni di funzioni continue.
In ogni punto di Z(f) I'argomento del valore assoluto ¢ non nullo, lo stesso vale per
’argomento della radice, quindi f ¢ derivabile. Si ha, Yx € 2(f),

1 1 1
Flx) = cosx sgn(senx) exp< >+ sen ] exp( >_ <_ cosx >:
2 4senx 4senx /4 sen?x

|sen x|
< 1 ><cosx sgn(senx) 1 cosx >
=exp — = =
4senx 24/|senx| 4 |senx|*/2
< 1 >2cosx|senx|sgn(senx)—cosx < 1 >cosx(236nx—1)
—ex =
P\ Zsenx 4|sen x|*/2 4senx 4[sen x|*/2

Si ha f’(x) > 0 se e solo se cosx(2senx —1) > 0. Considerando x € [—r, 7], ri-
sulta senx =1/2 per x =7/6 e per x =57/6, da cio segue che si ha senx > 1/2 per
x € ]m/6,57/6[ . llsegnodi f ¢ quindi rappresentato dal seguente schema:

= -3 0o 3 in
2senx—1 |— — — — —|— — — — — — |+ + + |+ + +| =
cosx | — — — — — +++++ + |+ + + |- = —| =
f(x) +++++-——-—-— -+ ++|==—| +

Pertanto f ¢ crescente in |—m,—7n/2],in [7t/6,7/2] ein [57/6, [ ed ¢ decrescente
in [—7/2,0[, in ]0,7/6] ein [7/2,57/6]. Inoltre —7/2 e /2 sono punti di massimo
locale e 70/6 e 57/6 sono punti di minimo locale. In tali punti si ha

-5\ el = /sl =
A=\ it %
)=\ o i) = Tenl)="
1)\l vl i) o)

Poiché f(x) ha limite reale per x — —7n" e per x — 07, ¢ utile calcolare i corrispon-
denti limiti della derivata. Ponendo y =1/(4senx), si ha

lim f = lim

x—0- x—0- 4|senx|3/2 p<4senx
1
— lim —————¢' =
y——00 4]1/4y[3/2

>(cosx (2senx—1)) =

— lim 2JyP?e” =0
y——0Q
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lim ' (x)= lim ex <
x—>—7r+f( ) x——r+ 4sen x [*/? P\ 4senx

><cosx(2senx —1))=

= lim ————¢” = lim 2Jy|*/?¢” =0.
y——00 4|1 /4y[3/2 y——00 bl

Pertanto il grafico di f ¢, approssimativamente, il seguente.

x

(5:2%)

(=3¢ (z &)

5 6’1/2
§

28)
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29) Il dominio naturale di f ¢ costituito dagli x € R tali che x*—1>0, quindi
P9(f) = J—o00,—1]U[ 1,400 .

Poiché nella formula che definisce f* la variabile x ¢ sempre elevata alla quarta, possia-
mo semplificare i calcoli considerando una nuova funzione rispetto alla variabile y = x*.
Al variare di x in ]—o00,—1]U[1,+00[, la nuova variabile y varia in [1,400[, quindi

determiniamo I"immagine della funzione

10
gilltoo[ =R, g()=y'=— (=17
Poiché il dominio € un intervallo e g ¢ continua, I'immagine & un intervallo. Per determi-
narlo cerchiamo gli estremi di g.

Si ha

. . 10 (y —1)*/? .
1 =1 (1—=2 L )= 1 (1 1) = ;
Jim g(y)=lim y < 5 > Jim y*(1+0(1)) = +o0;
pertanto sup g =+00.

Dobbiamo determinare infg e stabilire se appartiene all'immagine. Fissiamo M € R
maggiore di inf g ; poiché lim_, . g(y) = +o00, esiste K >1 tale che, se y € ]K,+oo[,
allora g(y)>M. Siha

infg = min{infg([l,K]),infg(]K,—FOO[)},

ma infg(]K,+oo[) > M > infg, quindi infg = infg([1,K]). Poiché g ¢ continua e
[1,K] ¢ compatto, per il teorema di Weierstrass ¢ ha minimo in tale insieme; tale minimo
¢ evidentemente il minimo di g in tutto il dominio.

Il minimo (assoluto) di g ¢ anche minimo locale e ovviamente ¢ il piu piccolo tra tutti
1 minimi locali. Per determinarlo ¢ quindi sufficiente individuare tutti i punti di minimo
locale e determinare il pit piccolo tra i valori assunti da g in tali punti. Il teorema di Fer-
mat consente di individuare i possibili estremanti locali, ¢ necessario un ulteriore studio
per distinguere tra di essi i punti di minimo, ma tale studio non & necessario per trovare il
minimo assoluto della funzione. Infatti se B ¢ un sottoinsieme di Im(g) a cui appartiene
min g, allora minB = min g, quindi ci basta conoscere un sottoinsieme di Im(g) conte-
nente min g . Un sottoinsieme che ha tale proprieta ¢ I'insieme dei minimi locali, ma anche
I'insieme degli estremi locali; per il teorema di Fermat tale insieme ¢ incluso nell’insieme
costituito dai valori che g assume nei punti che non sono internia %(g), nei punti di non
derivabilita e nei punti in cui g’ si annulla.

La funzione g ¢ derivabile, quindi se

B={g(1)}U{g(y) e, 4o0[|g'(y)=0},

allora, per i ragionamenti precedenti, min g = minB.
Determiniamo gli zeri di g’. Per y €[1,4+00[ si ha

g'(n)=2y—50—1)".

Si ha g/(y) =0 se e solo se 2y = 5(y —1)"/2. Poiché entrambi i membri sono non nega-
tivi, questa equazione equivale a 4y = 25(y — 1), cio¢ 4y* —25y +25 = 0. Il trinomio
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4y* —25y +25 si annulla per

25442524425  25+£4/225 25415
B 2.4 n 8 T8

y

U s

Pertanto possono essere estremanti locali per g soloipunti 1, 5/4 ¢ 5. Si ha

g(h)=1,
(-CF-26-)"- 3212
81)7\4) 3\ 16 38 48
10 10 5
5)=52— —(5—1)/2=25— —~8=—".
g(5) 3( ) 3 3
Quindi
. ind o1 <5> ) .{1 55 5} 5
min ¢ = min s -, =minyl, ——=(r=—-—.
g g8 4 )8 48" 3 3
Pertanto

30) Il dominio naturale di f* ¢ costituito dagli x reali diversi da O per cui ¢ non negativo

’argomento di ciascuna delle due radici, cioe x € R* deve verificare
x’+5x+4>0,
x> —10x+16>0.

Il trinomio x?+5x +4 si annulla per

—5++/52—4.-4 —5+3 {_4,
X = = =
2 2 —1.

Il trinomio x?— 10x + 16 si annulla per

b

x=5% 52—16:5:i:3:{8

Pertanto le soluzioni del sistema risultano dal seguente schema.

—4 —1 2 8
x24+5x4+4>0 P
x2—10x+16>0  ———————
sistema e
Quindi
2(f) = ]—o0,—4]U[—1,0[ U ]0,2]U[8,+00] .
Pertanto

Im(f) = f(]—o00,—4])U f([—1,0[) U £ (10,2]) U f([8,+00[).
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Poiché f ¢ continua, per il teorema dei valori intermedi, ognuno degli insiemi di cui si fa
’unione ¢ un intervallo. Per determinarli occorre trovarne estremo inferiore ed estremo su-
periore, e stabilire se essi appartengono all’immagine; a tal fine studiamo la monotonia di f
mediante il segno della derivata. Se x € R* non annulla I’argomento di una delle due radici,
allora f ¢ derivabile in x . Quindi per x € ]—o0,—4[ U]—1,0[ U]0,2[ U]8,4+o0[ si ha

2% +5 —5 1
< s X )x—(Z\/x2+5x+4—\/x2—10x+16>>—:
x2+5x+4 Vx2—10x + 16 x?

(x (2x +5) Vx2—10x + 16 —x(x—5)vx24+5x +4—
—2(x? +5x+4) \/x2—10x—|—16+(x2—10x—|—16)\/x2+5x+4)><
1
X =
x24/x2+5x+4+/x2—10x + 16
_ (—5x—8) v x2—10x + 16+ (—5x +16) v/ x> +5x +4
x2+4/x2+5x+4 /x2—10x + 32 '

Il denominatore ¢ sempre positivo, quindi il segno di f* coincide con il segno del numera-
tore.

Se —5x —8 > 0 e —5x 4+ 16 > 0, allora tale numeratore ¢ positivo. La disequa-
zione —5x —8 > 0 ¢ verificata per x < —8/5, mentre —5x + 16 > 0 ¢& verificata per
x < 16/5, pertanto per x € ]—oo,—4[ siha f/(x)>0; quindi / & strettamente crescente
in ]—oo,—4].

Se x > 16/5 allora —5x —8 < 0 e —5x + 16 < 0, quindi il numeratore ¢ negati-
vo. Pertanto per x € ]8,400[ si ha f/(x) < 0; quindi f & strettamente decrescente
n [8,400[.

Consideriamo infine il caso —8/5 < x < 16/5, cioe, x € [—1,0[ U ]0,2], perché deve
essere anche x € Z(f). Si ha —5x —8 <0 e —5x + 16> 0. La disequazione

(—5x—8) v/ x2—10x + 16+ (—5x +16) v/ x2+5x +4 >0
(5x +8) v/ x2—10x + 16 < (—5x +16) v/ x2 +5x + 4.

Poiché entrambi i membri sono non negativi, questa equivale a

equivale a

\ (5x + 8)% (x> — 10x + 16) < (—5x + 16)* (x> +5x +4),
C10¢
(25x7 + 80x + 64)(x* — 10x + 16) < (25x* — 160x + 256)(x? + 5x +4),
25x* —250x” 4 400x? + 80x” — 800x? + 1280x + 64x> — 640x + 1024 <
< 25x* 4 125x° 4 100x% — 160x°> — 800x? — 640x + 256x2 + 1280x + 1024,
135x> —108x% > 0.

Questa disequazione € verificata per x > 108/135 =4/5; quindi, per x € ]—1,0[ U ]0,4/5[ ,

st ha f’(x) < 0, mentre per x € ]4/5,2[ si ha f’(x) > 0. Percio f ¢ strettamente
decrescente in [—1,0[ ein ]0,4/5] ed ¢ strettamente crescente in [4/5,2].
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Poiché f ¢ strettamente crescente in ]—o0,—4], in tale intervallo non ha minimo e ha
massimo e si ha

f(—00,—4])= ]inff(]—oo,—ﬂ),maXf(]—oo,—4])] = ] lim f(x)af(—4)] :

X——00

St ha

24/16—20+4—+/16+40+16 3
f—H= ==

—4

>

e per x — —oo risulta

_ 2|14 (5/x) + (4/x?) — x| /1—(10/x) + (16/x)

X

f(x)

d

== ((2+0(1)—(1+0(1))) > —1.

x
Pertanto

f(]—oo,—2])=]—1,%]-

Poiché f & strettamente decrescente in [—1,0[, in tale intervallo non ha minimo e ha
massimo e risulta

F(~1,00) = Jinf £([—1,0[),max £ ([—1,0 )] = ]xlirg f(x), f(—l)] .

St ha
1—5+4—4/1+10+16
flony= ISR VIRIORIE 5 5
e per x — 0 risulta
£(x) 4(x? +5x +4)— (x> —10x + 16) 3x% +30x
X)= — —
x(2v/x245x +4++/x2—10x+16)  x(vx2+5x+4++/x2—10x+16)
3x+30 30 15
= —_ — = —.
24/x2+5x+4++/x2—10x+ 16 8 4
Pertanto

f([—1,00) = }?3 ﬁ].

La funzione f non ¢ monotona in ]0,2], pertanto per conoscere [ (]0,2]) non ¢ suffi-
ciente studiare il comportamento di f negli estremi dell’intervallo. Sappiamo pero che f
¢ strettamente decrescente in ]0,4/5] e strettamente crescente in [4/5,2], pertanto

roo)=r(Jo.3)or([32])=[ (3} tim s o[ (5 ]

f<z_1>_2\/16/25+5-4/5+4—\/16/25—10-4/5+16_§<2m_m>_3ﬁ
5/ 4/5 4\ W Vs V2
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2/4+10+4—/4—20+16
V4+ +2\/ +16_ 5 3.

f@)=

inoltre, calcolando lim,_, f(x) abbiamo in realta calcolato il limite bilatero, quindi si ha
lim, 4 f(x)=lim _,f(x)=15/4. Pertanto

f(]0,2])=[%,2—5[u[%,3ﬁ]

Poiché f ¢ strettamente decrescente in [8,+00[, in tale intervallo non ha minimo e
ha massimo e si ha

£(18,+00[) = Jinf £ ({8, +oo), max f([8,+oo[)]:] lim f(x), f(s)].

xX—+00

St ha

2/64+40+4—+/64—80+16 343
8 )

f®)=

e per x — +o00 risulta

20x| V14 (5/x)+ (4/x2) — |x| v 1—(10/x) + (16/x2) _

fo)= -
|z| ((2+0(1)—(1+0(1)) =1
Pertanto )
(s +oo)= 1222
Si ha quindi _
o S s RS S)

Per determinare questa unione, osserviamo anzitutto che si ha

3 343 3 15
—1<1<—<i< V3 —<3\/_<3«/_

V2.2 W2

come si verifica facilmente, confrontando eventualmente i quadrati di tali numeri. Risulta
quindi

]-1,3v2]

]15/4,33]
[3 \/3/\/5,15/4[ ........................................................... 1 N N A,

]

]

[343/V2,6v2
11,3v/3/2

unione @ rrrre——————
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Pertanto

Im(f)= ]—1,#} U [%3 ﬁ].

Osserviamo che nel determinare 'unione occorre prestare attenzione agli estremi de-
gli intervalli che si uniscono. In particolare 15/4 appartiene a Im(f) perché appartiene

a [3v/3/v2,32].

31) Poiché le funzione coseno ¢ periodica di periodo 27, anche f ¢ periodica con lo
stesso periodo. Inoltre la funzione coseno ¢ pari, pertanto anche f ¢ pari. Percio I'im-
magine di f coincide con I'immagine della restrizione di f all’intersezione del dominio
con [0,7].

Determiniamo tale intersezione. Il dominio di f ¢ costituito dagli x € R tali che risulta
cosx+1/2>0e 1/2—cosx >0, cioe

——<cosx < —.
2 2

Si ha arccos(—1/2) = 27/3, arccos(1/2) = 7/3 e la funzione coseno ¢ decrescente in
[0, ], quindi risulta

9(h)nforl=| 5. 2.

Poiché f ¢ continua, f ([n /3,27/ 3]) ¢ un intervallo, per il teorema dei valori inter-
medi, e ha massimo e minimo, per il teorema di Weierstrass. Per determinare I'immagine
di f ¢ quindi sufficiente trovarne il minimo e il massimo assoluti; per questo cerchiamo
anzitutto gli estremanti locali.

La funzione f ¢ derivabile in x se x non annulla gli argomenti delle radici che de-
finiscono [, per quanto visto sopra questo avviene solo negli estremi di 2(f) N[0, x],
pertanto nei punti interni di tale intervallo f ¢ derivabile. Per il teorema di Fermat posso-
no essere estremanti locali per f solo gli estremi dell’intervallo e i punti interni a derivata
nulla. Per x € |7t/3,27/3[ si ha

Flx) = —senx 2senx :senx< 1 _ 1 >
24/cosx+1/2  24/1/2—cosx V1/2—cosx  24/cosx+1/2
Poiché senx #0 per x € ]7/3,27/3[, stha f'(x)=0 se e solo se
1 1 B
\/1/2—cosx_2\/cosx+1/2_

cio¢ 1/2—cosx =4cosx +2, quindi cosx =—3/10, percio x = arccos(—3/10). Risulta
T 1 1 1 1
— )= —+—+2\/———:1,
f<3> \/2 2 2 2
3 3 1 1 3 1 4
R = e — 2 - —_— = — 2 —:\/g,
f<arccos< 1o>> \/ TR \/2+1o \/Z+ \/;
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Pertanto gli estremi locali di f sono 1, 4/5 e 2. Il minimo e il massimo assoluto di f
sono tra questi valori. Poiché 1< 2 < +/5, il minimo di £ ¢ 1, mentre il massimo & v/5.

Quindi
Im(f) :f<[§, ; nD =[1,5].
32)

a. :|—OO,—7arcsen<%>+2\/§i|U e ]—oo,\/g]

U[£n+4\/§,+oo[ f. ]—w,%]U]lﬁoo[

b. J—o0,—37[U]37,+00[

]

8. }—oo,—%]up—w/g,—i-w[

g

1
d. J-o0,(1—+/5)exp(v5+1)]U[2, +00] h. }—w,g]u[l%o[

33) 1l dominio naturale di f ¢ costituito dagli x che rendono positivi gli argomenti della
funzione logaritmo, quindi deve essere essere x >0 e [x—4| > 0; la seconda disuguaglianza
¢ soddisfatta se e solo se x # 4. Pertanto

2(f)=10,4[U]4,400[.

La funzione f ¢ continua, perché somma di funzioni continue, ed ¢ derivabile in tutti

1 punti del dominio per cui non si annullano gli argomenti della funzione valore assoluto,
cio¢ ¢ derivabile in Z(f)\ {2,4} = 2(f)\ {2} . Per x in tale insieme risulta

Fl(x)= % + |xi4| sgn(x —4)—sgn(2—x) = i + xi4 —sgn(2—x)=
_ x—44x—x(x—4)sgn(2—x) 2x—4—(x?—4x)sgn(2—x)
B x(x —4) B x(x —4)

Studiamo il segno di f”.
Se x € 2(f')N]—00,2[ =10,2[ allora¢ sgn(2—x) =1, quindi si ha

x _ 2x—4—(x"—4x) —x?46x—4
e

Il numeratore si annulla per

x=34+/(—3)2—4=34+/5,
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quindi ¢ positivo in ]3 — 5,3+ 1/3[ e negativo in J—oo,3 — ﬁ[ U ]3 + \/g,—l—oo[. 1l
segno di f” risulta dal seguente schema

0 3—v/5 2
—x?+16x—4 |- — — — — — — — +++++++++++ 4+
x +++++++FH A+

x—4 |- ---"—"—"—"|-—"—"-—" - - - - - - — — — —
f'(x) +++++++ |- —— - — - — =
Se invece x € 2(f')N]2,+oo[ = ]2,4[ U ]4,+00[ allora, ¢ sgn(2—x)=—1, quindi si

ha
_ 2x—44(x?—4x)  x?—2x—4

fix)= x(x—4) T x(x—4)

Il numeratore si annulla per

x=144/(=1)2—(—4)=1£+/5,

quindi ¢ positivo in ]—oo, 1— \/5[ U ]1 + ﬁ,—l—oo[ e negativo in ]1 —V5,1+ \/3[ 1l
segno di f” risulta dal seguente schema

2 1++/5 4
—2x—4 |- = = = = — — — +++++H |+ ++++ 4+
x +++++++ |+ |+ +
e e e +++++++
f'(x) + 4+ ++ - = - +++++++

Quindi negli intervalli ]O, 3—4/5 :| , [2, 1+ \/3] e J4,+o00[ [ & strettamente crescente,
e negli intervalli [3— 1/3,2} e ]3— 1/5,4} ¢ strettamente decrescente. Per stabilire in quali
di questi intervalli / siannulla, studiamo il comportamento negli estremi di tali intervalli.

xli_)r51+f(x):xli_)n8+(logx+ log(4—x)+2—x)=—o00,
f(3—v5)=log(3—v5)+ log|3—v5—4|+|2—3+ /5| =
=log(3—+/5)(1++5))+v5—1=log(2v/5—2)+ /51,
£(2)=log2 +logl2— 4|+ [2—2| = log4,
f(1+v5)=log(1+/5)+ log|1 +v5—4|+[2—1—+/5| =
=log((1+V5)(3—+5))+v5—1=log(2v5—2)+ V51,
limf(x):chiir}‘(logx—l— log|x —4|+x —2) =—o0,

x—4
Jim f(x)= xll)llloo(logx + log(x —4)+x —2)=+oc0.

Siha lim,_,, f(x)<0e f(3—+/5)>0, quindi f assume sia valori positivi che valori

negativi in ]0,3 — \/5] , poiché & continua, per il teorema di Bolzano, essa si annulla in
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]O, 3—4/5 [ . Poiché ¢ strettamente monotona si annulla solo una volta. Un ragionamento
analogo vale per gli intervalli ]1 + \/5,4[ e ]4,4o0].

La funzione f ¢ strettamente decrescente in [3—+/5,2], quindi assume valori maggiori
ougualia f(2) in tale intervallo; poiché f(2)>0, f ¢& positiva.

Analogamente in [2, 1+ \/3] f ¢&strettamente crescente, quindi assume valori maggiori
ougualia f(2), percio f ¢ positiva.

Quindi f siannullain 3 punti, uno in ciascuno degli intervalli :|O,3—\/§ [ , ]1 + \/5,4[
e ]4,400[.

34) Affinché x appartenga al dominio naturale di f/ debbono essere soddisfatte le seguen-
ti condizioni:

x#0,
1
— € Y(arcsen) =[—1,1],
x
x*—1>0.

Per x # 0 si ha 1/x € [—1,1] se e solo se x € ]—00,—1]U[1,4+00[. La condizione
x?—1>0 ¢ anch’essa soddisfatta se e solo se x € ]—o0,—1]U[1,+00[, quindi

D(f)=]—o00,—1]U[1,+00[.

La funzione f & continua perché somma di composizione di funzioni continue ed ¢
derivabile in tutti i punti del dominio tali che I’argomento della funzione arcoseno ¢ diverso
siada 1 che da —le l’argomento della radice quadrata ¢ diverso da 0. Deve quindi essere
1/x #£+1 e x> —1#£0, cio¢ x # =£1. Pertanto f ¢ derivabile in ]—oo0,—1[U]1,+00[;

per x in tale insieme si ha:
1 1 2x 2 1 X
f/(x):2—<——2>+ =— —+ =
1—(1/x)*\ x 2vx2—1 V(x2—1)/x2 x*  x2—1
2|x| x  —2+4x|x]
x24/x2—1  +/x2—1 |x|\/x2—1.

Per x € |—oo,—1[U]1,+00[ si ha f'(x)=0 se e solo se —2+ x|x| =0. In particolare se

x € ]—o0,—1[ allora |x| = —x e quindi —2+ x|x| = —2—=x? che ¢ sempre diverso da0,
mentre se x € ]1,+00[ allora |x| = x e quindi —2+ x|x| = —2+ x? che si annulla per
x = /2 (oltre a x =—+/2 che non appartiene a ]1,4+00[ ). Pertanto, con I’esclusione dei

punti —1 e 1 in cui non abbiamo studiato la derivabilitadi £, f/(x)=0 seesolo x = +/2.
Studiamo il comportamento di f negli estremi degli intervalli che costituiscono il suo

dominio e in v/2.

lim f(x)= lim <2arcsen< >+\/— z>

X——00 X——00

f(=D)= 2arcsen< 11>+ (—1p—1—2= 2<_3>+0 2=—p—2,
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1
f(l):Zarcsen<I>—|—\/12—1—2:2§+O—2:7r—2,

f(ﬁ):Zarcsen<%>+v(ﬁ)2—1—2:2§+1—2:§—1,
lim f(x)= lim <2arcsen<%>+\/m-2>:+oo.

x—+00 X——00
Quindi 2(f) ¢ I'unione degli intervalli ]—o0,—1], [1,1/51 e [ﬁ,—}—oo[ e nell’in-
terno di ciascuno di essi f ¢ derivabile con derivata non nulla. In particolare, poiché
lim, , . f(x)>0e f(—1)<0,lafunzione f siannullaunavoltain ]—oo,—1[, mentre

stha f(1)>0, f(ﬁ)>o e lim . f(x)>0, quindi f non si annulla né in :|1,\/§[
né in 11/5,+oo|:.

Pertanto f siannulla in un punto che appartiene all’intervallo ]—oo,—1].

35) 1l dominio naturale di f ¢ costituito dagli x reali tali che il denominatore dell’ar-

gomento dell’esponenziale ¢ non nullo, cio¢ x?—4 # 0, che equivale a x #—2 e x #2.
Pertanto

@<f> = ]—OO,—Z[ U ]_2’25 U[]za +OO[ .
La funzione f ¢ derivabile e, per x € 2(f), si ha

o525 B

:<1+<x+2) —2x2+4x—8>exp<2x—2>:

(x+2)2(x—2)2 x2—4
C(x+2)(x—2)*—2x+4x—38 2x—2\
B (x+2)(x —2)? <x2—4>
_x3—2x2—4x+8—2x2+4x—8 2x—2\ x> —4x2 2x—2
- (x+2)(x —2) <x2—4>_(x+2)(x—2)2eX <x2—4>’

quindi f’(x) =0 se e solose x =0 o x = 4. Inoltre il segno di f* risulta dal seguente
schema

-2 0 2 4
=4 — == == == === = === = = ++ + 4+
x+2 —— — — |+ A+t |+ [+t
f(x) R e e el i + 4+ + +
Si ha
—2 12 12
f(0)=2exp — —3e/f=—e'/",
6 12 12
f(4)=6exp o —3e/ =3e /"
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I limiti di / negli estremi degli intervalli che costituiscono il suo dominio si calcola-
no facilmente studiando il segno dell’argomento dell’esponenziale e ricordando che in una
forma indeterminata del tipo 0- oo se la funzione convergente a 0 ¢ di tipo polinomiale e
quella divergente ¢ un esponenziale, allora il prodotto ¢ divergente. Quindi risulta

lim f(x)=—oo0, lim_f(x)=—¢"?, lim f(x)=+o0,
lim f(x)=—e2, lim f(x)=+o0, lim _f(x)=+oo.

Nell’intervallo ]—o00,—2[ lafunzione f ¢ derivabile con derivata positiva, quindi stret-
tamente crescente, pertanto per x in tale intervallo siaha f(x) <lim, , , f(x)<0, quin-
di f nonsiannulla. Siha lim,__,. f(x)>0 e f(0) <O0; per il teorema di Bolzano f si
annulla almeno una volta nell’intervallo ]—2,0[; poiché f ¢ derivabile con derivata ne-
gativa in tale intervallo, ¢ strettamente decrescente, quindi si annulla una volta sola. In
10,2[ la funzione f & derivabile con derivata negativa, quindi per x in tale intervallo si ha
f(x) < f(0) <0, pertanto f non si annulla. Nell’intervallo ]2,4[ si ha f/(x) <0, men-
tre nell’intervallo J4,4o00[ si ha f/(x) >0, pertanto in ]2,4+00[ si ha f(x)> f(4) >0,
pertanto f non si annulla in tale intervallo.

Quindi f si annulla in un solo punto che appartiene all’intervallo ]—2,0[ .

36)
a. f nonsiannulla

0] 2]

b. f siannullain 3 punti, uno in ognuno degli intervalli }—oo,— —

5
e

g

f stannullain 2 punti, uno dei quali ¢ 2 e l’altro appartiene all’intervallo 1—2,1[

d. f siannullain 2 punti, uno in ognuno degli intervalli ]—1,0[ e 10, 1]

e. f siannullain un punto che appartiene all’intervallo |- \/3,2[
f. f siannulla in un punto che appartiene all’intervallo J—oo,—1]
g. / stannullain 4 punti, uno in ognuno degli intervalli ]—oo,—1[, ]—1,0[, 10,1[ e

1,400

. . . . 1
h. f siannulla in un punto che appartiene all’intervallo }— > 1|:
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NUMERI COMPLESSI

2.1 Esercizi

FOrRMA ALGEBRICA

La forma algebrica di un numero complesso z ¢ la forma Rez+:Imz, o, equivalen-
temente, a +:b,con a,b €R.

Scrivere in forma algebrica la somma o il prodotto di numeri complessi espressi in forma
algebrica non presenta alcuna difficolta. Non presenta difficolta neppure scrivere in forma
algebrica il quoziente di un numero complesso con un numero reale, perché se z € C e
ceR,allora Re(z/c)=(Rez)/c e Im(z/c)=(Imz)/c. Non ¢ invece immediato scrivere
in forma algebrica il quoziente di due numeri complessi, quando il divisore non ¢ reale;
per fare questo occorre ricondursi al caso in cui il divisore ¢ reale. A tal fine ¢ sufficiente
moltiplicare i due numeri complessi di cui si fa la divisione per il complesso coniugato del
divisore. In questo modo il divisore diventa il prodotto di un numero complesso per il suo
coniugato, che ¢ il quadrato del modulo e quindi ¢ reale.

2.1.1 Esempio. Determiniamo la forma algebrica del numero complesso

14
1—2i°
St ha
1+i  (1+0)(1+2) 1+i+2i—2 —1+3i _ 1,3 <
1—2i  (1—=2i)(14+2:)  12—Q2i2 5 5 5

2.1.2 Esempio. Determiniamo la forma algebrica del numero complesso

V3+2i
243
St ha
V3+2i | (V3+2i)(=2—ivV3)  —2\3—4i—3i+243  —7i

St (2rid) i) Gy 7T
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1) Scrivere in forma algebrica il numero complesso
2+
3—2

—(2+3i).

2) Scrivere in forma algebrica i seguenti numeri complessi:

, 3 b 2 (., A e
—; ; 2 .
4—; 241 (2+2) N

FORMA TRIGONOMETRICA E FORMA ESPONENZIALE

Ogni numero complesso z # 0 puo essere scritto nella forma
p(cosf+isinb),

che ¢ detta forma trigonometrica. In tal caso p ¢ il modulo e & ¢ uno degli argomenti
di z.
Il modulo di z, indicato con |z], € il numero reale non negativo 4/(Rez)?+(Imz)?.
Chiamiamo argomento di z € C* qualunque € € R tale che z =|z|(cos€ + isen0).
Ogni numero complesso z non nullo ha infiniti argomenti. Se & € R ¢ un argomento
di z, allora I'insieme degli argomenti di z ¢ {9 € R|Ik € Z: ¢ =+ 2kr}: sono argo-
mento di z tutti e soli i numeri che si ottengono sommando a ¢ un multiplo intero di 27.
La forma trigonometrica ¢ utile calcolare il prodotto di numeri complessi, perché il
prodotto dei moduli ¢ il modulo del prodotto e la somma di argomenti dei fattori ¢ un
argomento del prodotto. In formule

z, = p,(cosO; +isent,) 0. 40\ sonlB. 4.6
2, = p,(cost, +isent,) = mn=pipy(cosby+ 6+ isenldy +63).
Immediata conseguenza di questa formula sono la formula per il quoziente di numeri com-
plessi non nulli:
z,=p,(cosb, +isenl
1= el ! 1)} — 4 :&(005(91—6’2)+isen(@1—92)),
% P2

e la formula di De Moivre relativa alle potenze:

2, = p,(cost, +isenl,)

z=p(cost+isent) => 2" = p"(cos(nt) +isen(nb)).

Un argomento del numero complesso non nullo z é:

I

arctan<ﬂ> , se Rez>0,
Rez
I

arctan(iZ)—i—n, se Rez <0,
Rez

seRez=0eImz >0,

N1

seRez=0elImz <O0.

|
N A
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2.1.3 Esempio. Determiniamo la forma trigonometrica del numero complesso —+/3+3i .
Si ha
|—V3+3i|=/(=V3) +32=V12=2V3.

Poiché —+/3 4+ ha parte reale negativa, un suo argomento &

arctan<w> +mT= arctan<
Re(—+/3+3i) B

3 T 2
+r=—arctan(vV3)+r=——+m="1.
3> - (VA)r=—Zin=ln

Pertanto

—\/3+3i:2\/3<cos<§ﬂ>+isen<§n>>. <

Definiamo I’esponenziale in base e di un numero immaginario puro ponendo, Y0 € R,

¢! =cos@+isenb.

Questa notazione consente di scrivere in modo pitt compatto la forma trigonometrica
di un numero complesso non nullo. Il numero complesso di modulo p e argomento ¢

pud essere scritto come pe’? , anziché p(cos@ +isend). Questa scrittura & detta forma
esponenziale di un numero complesso.

2.1.4 Esempio. Nell’esempio 2.1.3 abbiamo espresso in forma trigonometrica il numero
complesso —+/3 + 3, ottenendo

2 2
—V343i=2 \/§<cos<3 7r> +1 sen<§ n>>
Passando alla forma esponenziale si ha
. .2
—\/3+3z:21/§exp<137t>. D
3) Scrivere in forma trigonometrica il numero complesso
—4—2;.

4) Scrivere in forma trigonometrica il numero complesso

(1—ip
(—V3+i)
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5) Scrivere in forma trigonometrica i seguenti numeri complessi:

a. V3—i d. —1+3i g. (1+4:) jo (—14+0)8(V3—i)
\5
. o 12 h. (—1—2i)° k. L‘)}
—14i+/3 T4 (1—i+3)
1—: (142i)(1+i)°

c. —1-3: f. (—\/5+i)7 " (ﬁ—i)4 L (4i)2

RADICI 7 -SIME

Per calcolare le radici 7-sime di un numero complesso non nullo ¢ utile scriverlo in
forma trigonometrica. Infatti se w = p(cost +isenf), con p € RT e 6 € R, allora
I'insieme delle radici 7 -sime di w ¢

< t9+2k7t

{\”/ﬁexp ‘/e 0,1,. ,n—l}

2.1.5 Esempio. Determiniamo le radici quadrate di —1+2:.

Il modulo di —14-2i ¢ +/5 e un suo argomento & —arctan2 . Quindi le radici quadrate
di —1+42: sono

- ‘yg<cos<n—arctan2+2/e7r> +isen<ﬂ_arcmn2+2kﬂ>>, k=01,

2 2

Le due radici quadrate hanno argomenti che differiscono di 7, quindi sono una I'opposto
dell’altra, pertanto possiamo scriverle nella forma

iﬁ<cos<n—a§cmn2>+isen<n—a;ctan2>>. <

2.1.6 Esempio. Determiniamo le radici quarte di —16.
Il modulo di —16 ¢ 16 e un argomento ¢ 7. Pertanto le radici quarte sono

2k ) 2k
z, :m<cos<¥>+zsen<¥)>, k=0,1,2,3.

E facile determinare esplicitamente seno e coseno degli argomenti dei numeri trovati;
quindi scriviamo tali numeri in forma algebrica.

2y :2<cos<§> +isen<§>> = <% +i 7) V2+iv2,

zl:2<cos<%n>+isen<%n>>:2<—7+z\/_> —V2+iv2,
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S N TR | R I R

. :z<cos<§n)+isen<§n)> <%_ %) Vi—iva, <

6) Determinare le radici quadrate e cubiche del numero complesso

—34/349i.

7) Determinare le radici seste del numero complesso

—2—4:.

8) Determinare le radici quadrate e cubiche dei seguenti numeri complessi:

a. =3 b. —i c.1—iv/3  d 1—i e. —1+2i f.2+i

EQuAZIONI ALGEBRICHE
Le equazioni algebriche di primo grado in campo complesso si risolvono come quelle

in campo reale. Infatti, se 2 € C* e b € C, allora si ha

b
az+b=0<= z=——.
a

2.1.7 Esempio. Risolviamo I’equazione
(142)z+2—7=0.
Siha (1+:7)z=—2+1, quindi

—2+1 (24i)(1—i) —2+i+2i+1 1+.3 <
= = = =——= 1—.
142 (1+2)(1—12) 2 2 2

Per le equazioni algebriche di secondo grado in campo complesso c’e una formula riso-
lutiva simile a quella valida in campo reale. Infatti, se 2 € C* e b,c € C, allorasi ha

4a(az* + bz +c)=4a’2* + 4abz +4ac =44’z + 4abz + b* — b* 4+ 4ac =
=(2az+ b)* —(b*—4ac).

Quindi az’+bz+c =0 seesolose 2az+5 ¢ unaradice quadrata di b?—4ac . Osserviamo
che b*—4ac ¢il discriminante del trinomio az?+bz+c. Se il discriminante & nullo, allora
I’'unica soluzione dell’equazione ¢ —b/2a . Se il discriminante ¢ non nullo, indicando con r
una delle radici quadrate complesse di 52 —4ac, deve essere 2az+b = +r , da cuisi ottiene
z=(—b+r)/2a.

La formula ¢ analoga a quella per la soluzione delle equazioni di secondo grado in campo
reale; il calcolo esplicito delle soluzioni richiede in pitt di determinare le radici quadrate del
discriminante.
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2.1.8 Esempio. Risolviamo I’equazione
iz’ 4+(2—i)z—1—-7i=0.
Il discriminante ¢

(2—i)? —4i(—1—7i)=4—4i —144i —28 = —25.

Poiché i? =—1, una radice quadrata di —25 & 5i. Pertanto
24 .
a4idsi | T =Tt
T T 246 <
! —— =343,
2:

9) Risolvere la seguente equazione in campo complesso
22° +(2/3+6i)z+1—iv/3=0.

10) Risolvere la seguente equazione in campo complesso
1 . ’ . 3
— —i44/3 :<1—z3 1/3) .
22

11) Risolvere la seguente equazione in campo complesso

. 2
(—l+i)z—1—i\"
< z2242iz—1 =1+

12) Risolvere le seguenti equazioni in campo complesso:

a. 22+z+8=0 h. 22+iz=0

b. 22 +iz—2=0 izt —47224442i=0
. 6 3 o

c. Z24224142i=0 Jo 22 —7z"—8=0

N
d G432 445(2—2i)z414i=0 K (z—i)=-8

L (z4+4)°=(z—4)°
e. 222+2(\/§+3i)z—1+i\/320

m. (zz—|—i21/§z—1)2:—1
f.22—i2v/6z—i=0

2
zZ—1 .
g iz’ —4z+2—4i=0 . <Zz—|—i> =8
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22437\ 1 3 3
0-( > =1 r. <zz+2iz—§+i£> =1

z242 2

p. <z 4 %)2 =(1—i)* . <(3 +3i)z+ 1%)2 =5(1+i)°

NI A \2
q. <22+7—l§> =—1 t. <ZZZ— 1+21> :<6—21)2
VA

ESPONENZIALE
Estendiamo la funzione esponenziale in base e al campo complesso, ponendo, Yz € C,
z eRez 1Imz .

e e

iImz

Poiché abbiamo definito e'"™# = cos(Imz) 4 i sen(Im z), si ha

el = eReZ(cos(Im z)+ 1 sen(Im Z)) .

Quindi |e?| = e®¢* e un argomento di e* & Imz.

Se z€ R, allora z=Rez e Imz =0, percio da questa definizione si riottiene e in
senso reale.

Anche per ’esponenziale in campo complesso vale la proprieta che I’esponenziale del-
la somma ¢ uguale al prodotto degli esponenziali. Infatti, per le proprieta della forma
trigonometrica, Vz,w € C, si ha

ee” = eReZ(cos(Im z)+ 1 sen(Im Z))eRew(cos(Im w)+ 7 sen(Im w)) =
= eRe”Rew(cos(Imz +Imw)+isen(Imz+Im w)) =
= eRe<Z+w)(cos(Im(z +w))+isen(Im(z + w))) =™t
2.1.9 Esempio. Calcoliamo e**'. Si ha
2 = ¢%(cos1+isenl). <

e

2.1.10 Esempio. Calcoliamo e?7/2. Si ha
ei"/zzeo<cosz+isenz>:i. <
2 2

13) Scrivere in forma algebrica il numero complesso

exp((Z — i)z) ‘

i
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14) Scrivere in forma algebrica i seguenti numeri complessi:

a. e 2 b. eXp((2+i)3) c et d. exp((l—i)6>
32

15) Scrivere in forma trigonometrica il numero complesso

(—344i)e't’.

16) Scrivere in forma trigonometrica i seguenti numeri complessi:

a. 3e* 4 b. (eS_Zi)Z c. eB2) d. (1—i)e**

LoGgArRITMO

In campo reale la funzione esponenziale ¢ iniettiva e la sua inversa ¢ la funzione loga-
ritmo: se y € Rt equazione ¢* =y ha come unica soluzione x = logy. In campo
complesso invece la funzione esponenziale non ¢ iniettiva, infatti Yz € C, Yk € Z, risulta

ertizkr — eR”<cos(Imz +2km)+isen(Imz + 2k 77)) = eR”<cos(Im z)+1sen(Im z)) =é”.

Sia w € C. Cerchiamo z € C, soluzione dell’equazione ¢* = w. Poiché e” ha una
forma trigonometrica semplice, per risolvere ’equazione uguagliamo modulo e argomenti
dei due membri. Qualunque sia z € C si ha |e?| = eR¢# #£ 0, quindi I’equazione non ha
soluzione se w = 0. Sia w # 0; indichiamo con ¢ € R un argomento di w. Allora
w = |w|(cos@ +isenl) e 'equazione e* = w equivale a

e"¢*(cos(Imz) + i sen(Im z)) = |w|(cos @ + i sen§),

Rez

che ¢ verificata se e solo se €®¢? =|w| e cos(Imz)+isen(Imz)=cosf +isend.

Da qui segue Rez =log|w| e Imz =60+ 2k7 perun k€Z.

2.1.11 Esempio. Risolviamo I’equazione
e =—1.
Il numero —1 ha modulo 1 e un argomento ¢ 7. Pertanto
z=logl+in+2xn=12k+1)r, keZ. <
2.1.12 Esempio. Risolviamo I’equazione
ef=—3+1.
Siha |3+4i| = v/32+ 12 = v/10 c un argomento di —3+4i & —arctan(1/3)+ 7. Pertanto

Z:log(«/ﬁ)+i<—arctan%+(2/e+1)7'c>, kel. <

17) Risolvere la seguente equazione in campo complesso:

et =—1-2;.
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18) Risolvere la seguente equazione in campo complesso:

1Y
<ez+zi> =1i.

19) Risolvere la seguente equazione in campo complesso:

e? —2ie T  =—/2+i4/2.

20) Risolvere le seguenti equazioni in campo complesso:

A of = 4 e. ¢2 +6e” +942i =0 iL(e7+1)y=—1

b ef =342 £ e 4 e =2 j. e (1) —i+2=0
. . z —z _ =z ;

c. eit=2_2; g.e'+e =1 +1-2 k. M2 =14

d. etz —1 h. (ezz +4>2 = (iezz —4)2 L e"” +(1—i)e**—i=0

EQUAZIONI NON ALGEBRICHE

Un’equazione in campo complesso nell’incognita z in cui compaiono |z|, Rez o Imz
puo talvolta essere risolta scrivendo z in forma algebrica o in forma trigonometrica.

Infatti, scrivendo I'incognita z nellaforma x+:iy, dove x e y sono due incognite reali,
imponendo che siano uguali parte reale e coefliciente dell’immaginario dei due membri
dell’equazione, si ottiene un sistema di due equazioni reali nelle due incognite reali x e y.

2.1.13 Esempio. Risolviamo I’equazione
2z —47Z+|z]* +6i =0.
Posto z=x+iy,con x,y €R, ’equazione diventa, successivamente,
2(x +iy)—4(x —iy)+ (x> + %) +6i =0,
—2x +6iy+x>+y*4+6i =0.

Imponendo che siano nulli parte reale e coefliciente dell’immaginario del primo membro
otteniamo il seguente sistema in R.

—2x+x*+y*=0,

La seconda equazione hala soluzione y =—1. Sostituendo nella prima equazione si ottiene
x*—2x+1=0;cio¢ (x —1)*=0, quindi si ha la soluzione x =1.
Pertanto ’equazione ha la soluzione 1—1. <
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In modo analogo si puo risolvere un’equazione uguagliando modulo e argomenti dei
due membri dell’equazione.

2.1.14 Esempio. Risolviamo I’equazione
z|z|=1—i /3.
Uguagliando 1 moduli dei due membri dell’equazione si ottiene
|22 =/ 12+ (—V3) =2.

Pertanto |z| =+/2.
Si ha arg(z|z|) =argz, quindi argz = arg(1—i \/3) Un argomento di 1—i+/3 ¢

arctan(— \/3) = —g .

Quindi ’equazione ha la soluzione

«/§<cos<—§)+isen<—§>>:«/§<1—z‘ﬁ):i—z“/—i. <

2
21) Risolvere la seguente equazione in campo complesso:
2Z2+Z 4z =1.
22) Risolvere la seguente equazione in campo complesso:
2° +272° +3ZImz +2Rez =0.

23) Risolvere la seguente equazione in campo complesso:

z4:(1+iﬁ)22.

24) Risolvere le seguenti equazioni in campo complesso:

a. 22z + 22" —(3+1)|z]* =32 =0 d. 22+ |z =8—2i
2.1 2 12
b. —+==3 e. z2Rez—z+1|z|"=0
z z
24 3
—4 1z
.z L=3 i




2.2. Soluzioni e risultati

95

2.2 SOLUZIONI E RISULTATI

4471 +13(5—12:1) 69 149 .

1) Siha
2+1 v 24+)(3+20) ) . 2
-— (243 = —F————(2°42-2-3:1+(31)" ) =
3—2; ( ) (3—2:)(3+2i) ( ()>
64+41+31—2
oM TS sy2i)=
32 (2i) 13
2)
13 1
A o c. —i
17 17
3 4 19 5343 .
b. =—=i d —+ [z
5 5 4 4
3) Siha

|—4—2i| = /(—4)? + (=32 = V20.

Poiché —4 —2i ha parte reale negativa, un suo argomento ¢

+ 7.

<Im(—4—2i)> (—2> 1
arctan| ———— = |+ w = arctan{ — )+ 7T = arctan —
Re(—4—21) —4 2
Pertanto
. 1 . 1
—4—21 =420 <cos<arctan 5 + n> +1 sen<arctan 5 + n>> .
4) Siha

1—i|= V1 + (=12 =V2;
poiché 1—i ha parte reale positiva, un suo argomento ¢ arctan(—1)
—V3+i|= (V3 =2

un argomento di —+/3 41 ¢ arctan(—l/\/g) +r=(5/6)r.
Pertanto

=(V2) 2 =2

(—v3+i)

un argomento del numero (1— i)5/<— V3t i)3 ¢

5 —5—10 15
5<_z>—3—7t: T=——7T.
1) 76 4 4

‘ (1—iy

Poiché —(15/4)t = (7/4)—4m, anche 7/4 ¢ un argomento. Pertanto

(1—zy 1 <

(—v3+i) V2

7'c+_ 7'c>
cos— +isen— ).
4 4

=—mn/4. Inoltre

= l.
13 13
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5)

o o) i)
o Yol 2o 20)

c. m(cos(arctan 3+ 1)+ isen(arctan3 + 7'[))

d. V10 (cos(ﬂ —arctan3)+ 7 sen(7r —arctan 3))

V5 < 1 > . < 1 >
e. —| cos| arctan — |4z sen( arctan —
4 2 2
f. 128 <— 5> ' <— f)
<cos . +zsen o

g. 17°/ (cos(S arctan4)+ 7 sen(5arctan 4))

h. 53(005(6 arctan2 + 7t) + i sen(6arctan2 + n))

. cos( — 7 sen( — 7
842 12 12
jo 64(cos0+1isin0)

1 < 7T+. 7'c>
—( cos— +12sen —
2\ 4 4

L. \/g(cos(arctanZ + )+ isen(arctan2 + 7'5))

6) Siha
|-3V3+9i| =3|—V3+3i| =31/ (=3 +32=3V12=6 3.

Poiché —3 /3 +9i ha parte reale negativa, un suo argomento &

i <Im(—3 V3+9i) 9
e Re(—3+/3+9:) —34/3

Pertanto le radici quadrate di —3 /3 +9; sono

>+n:arctan +7r:n—arctan(1/3):—n.

1 3
:I:\/€31/4<cos§+isen§>::|:\/€31/4<§+i£>::|:<

33/4 ) 35/4
2 >

Vi
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Le radici cubiche di —3 /3 +9: sono

2+6
61/331/"exp<i J;’%), k=0,1,2.

7) Siha
|—2—4i| = v/(—=2)2 + (—4)2 = ¥/20.

Poiché —2—4: ha parte reale negativa, un suo argomento ¢

t Im(=2—4i) + t <_4>+ tan2 +
arctan| ———— 7T = arctan{ —— 7T = arctan TT.
Re(—2—41) -2

Pertanto le radici seste di —2—4: sono

Sol/i2 exp(i arctan2+ (2k + )7

>, k=0,1,2,3,4,5.

6
8)
35/ 33 35/6
a. +iv/3; \/_ ,_%,ﬁ_i_
2 2 2
B
2 2 2

7 7
d. :l:21/4<cos<— n> +1 sen<— 7'c>> ;
8 8
7 7 1 1 23 ) 23
21/6 cos(— 7'c> +1 sen<— 7'E> , —— — 21/6 cos(— n) +1 sen<— 7'c>
12 12 J2 \/— 12 12

e. :|:51/4exp<i %W); 51/Gexp<i w> , k=1,3,5

[ st/ exp(i arctar21(1/2)>; 51/6exp<i arctan(1/32)+2/e7'c> k=0.1.2

9) Lequazione ¢ di secondo grado, per risolverla occorre innanzitutto calcolare le radici
quadrate del discriminante (che indichiamo con A), o meglio, poiché nel coefliciente del
termine di primo grado si puo raccogliere il fattore 2, le radici quadrate di A/4. Si ha

=(V3+3i) —2(1—iV3)=3+i6v/3—-9—2+i2/3=—8+i8+3.
Per calcolare le radici quadrate di A/4 dobbiamo trovarne il modulo e un argomento.

'%‘:\/ +(8v/3) —8\/ V3) =8v4=16.
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Poiché A/4 ha parte reale negativa, un argomento ¢

Im(A/4 843 2
arctan(%ﬁz‘o—i—n:arctan<—‘/8_>—i—n:—arctan(ﬁ)%—n:—g—|—7r:gn.

Percio le radici quadrate di A/4 sono
+4/16 cos<1 2—7T>+isen<1 2_7'c> —:b4<cos£+isen£>—:|:(2+i2\/3>
23 23)) 3 3) '

Le soluzioni dell’equazione sono quindi

—V3-3i—2—i23 2443 24343
—_ — —1 s

—\/3—3i:‘:<2+i21/3> 2 2 2
2 T —v3—3i+24i243 2-+3 , .2V3-3
= I3 .
2 2 2

10) Se due numeri complessi elevati al cubo sono uguali, allora o sono entrambi nulli,
oppure il cubo del loro quoziente ¢ 1, quindi il quoziente ¢ una radice cubica di 1. In
ciascuno dei due casi ognuno dei due numeri ¢ uguale all’altro moltiplicato per una delle
radici cubiche di 1. Le radici cubiche di 1 sono

7, = cos<% 7'C> +isen<% n>
kT 3 30 )

ro=cosO+isen0=1,

per k=0,1,2, quindi

2 (2 1 .43

rl—cos<§ﬂ>+zsen<§n>——z+z7,
<4 > : <4 ) 1 .43
r,=cos| -7 |+zisen| -7 | =——-—1—
3 3 2 2

Percio le soluzioni dell’equazione si ottengono risolvendo le tre equazioni
1 . .
—2—14\/3: 1—i34/3,
z
1. 1 .43 .
;—141/32 <_E+l 7)(1—13\/3),

La prima equazione equivale a

1 ) . .
——14\/§+1—13\/5:1+1\/3,

72
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dacui z2= 1/(1 +1 \/3) . Determiniamo le radici quadrate di 1/(1 +1 1/3) Si ha

1 1 1
1+iv/3] JE+(3) 2

e un argomento di 1/ (1 +i4/3 ) & 'opposto di un argomento di 14 i +/3, cioé I'opposto
di arctan /3, quindi ¢ —7/3. Percio si ha

z::l:\/g<cos<—%>+isen<—%>>::|:\/g<§—i%>::t<%—iﬁ>.

La seconda equazione equivale a

1. 1 .43 : : 1 V3 343 9 .

dacui z2= 1/(4 +16 \/3) . Determiniamo le radici quadrate di 1/(4 +16 \/5) Si ha

1
441643

1 1
CJer(eva) Vi

e un argomento di 1/ <4 +i64/3 ) ¢ Popposto di un argomento di 4+i6+/3, cio¢ opposto
di arctan(6 V3/ 4), quindi —arctan(3 v/3/2); percio si ha

1 1 343\ . 1 343
zZ = :|: COSs| — arctan —18en| — arctan .
/124 2 2 2

La terza equazione equivale a

1 1 .43 . . 1 .v/3 343 9 .
;:l4\/3+<—§—l7)(1—l3ﬁ)214ﬁ—5—l7+17—5:—5+15\/3,
da cui 22:1/<—5+i5ﬁ).Determiniamo le radici quadrate di 1/(—5+i5\/§).3i ha
1] 1 1
—5+i54/3 1/(_5)2_,_(5\5)2 10

mentre un argomento di 1/(—5+:5 V3 ) ¢ Popposto di un argomento di —5+i5+/3, cioe
Popposto di arctan(—5+/3/5)— 7, quindi (4/3)7 ; percio si ha

=i ({22 B (i) i )
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Percio I’equazione ha le sei soluzioni

z

L 1 <1 ) n3ﬁ> ; 1 <1 . 3ﬁ>
= —— COS| — arcta — 1l ——— seén| — arctan s
V124 2 2 V124 2 2

< 1 .3 >

z=%( ——1——).

24/10 2410

11) Per risolvere 'equazione si pud evitare di sviluppare il quadrato a primo membro,

perché la sesta potenza ¢ il quadrato di un cubo, quindi ’equazione si puo riscrivere come
uguaglianza tra potenze con esponenti uguali. Otteniamo I’equazione

Atiz—1—i\ ,
(S =y

Poiché
(4P =143 432+ =143/ —3—i =—2+2i,
’equazione equivale a
(—1+i)z—1—i\* ,2
< z24+21z—1 >_(_2+21)'

Il numero complesso z ¢ soluzione di questa equazione se e solo se ¢ soluzione di una delle
seguenti equazioni

g1
Clrizz17i 4o,
z2421z—1
g1
(Cltiz—i—i_, o
z2+4+21z—1

La prima equazione equivale, successivamente, a

(—1+i)z—1—i—(22+2iz—1)(—2+2i)

. =0,
z24+2iz—1
(—14+i)z—1—i+(2—2i)2"+(4i +4)z—2+2i 0
z2421z—1 ’
(2—2))2+(3+51)z—3+i 0
z24+2iz—1
Il denominatore ¢ il quadrato di z + 7, percio si annulla se e solo se z=—:i. Quindi z ¢

soluzione se e solo se annulla il numeratore ed ¢ diverso da —i . Risolviamo I’equazione
(2—2i)z* +(3+5i)z—3+i=0.
1l discriminante del polinomio di secondo grado di cui cerchiamo gli zeri ¢

A=(3+5i—4(2—2i)(—3+i)=9+30i —25+24—8; —24; —8 =—2i.
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Poiché —27 ha modulo 2 e un suo argomento ¢ (3/2)7, le sue radici quadrate sono

iﬁ<cos<%n>+isen<% 7r>> :iﬁ(—% +i%> =4(—1+41).

Pertanto si ha
—2—61 —1—3;

 —(+5i)E(—1+i) | 22—2i) 2-2
B 2(2—2i) ) —4—4 22—
22—-2i) 2—-2

bl

percio vi sono le due soluzioni

—1—3i _ (—1—3i)2+2i) —2—2i—6i+6 4—8i 1

2—-2i  |2—2i2 24(=22 8 2
C22i  (—2-2i)242i) —4—4i—ditd —8i
= = = —=—1.
2-2 2—2i]2 224 (—2)2 8
La soluzione z = —: va scartata perché, come visto sopra, annulla il denominatore.

In modo analogo si procede per risolvere la seconda equazione, cioe

che ¢ equivalente a

(—14i)z—1—i— (22 +2iz—1)(2—2i)

- =0,
z2421z—1
(—1+i)z—1—1—(2—20)2>—(4i +4)z+2—2i .
z224+2iz—1 ’
(—2+42i)z2 —(543i)z+1—3i _
z224+212—1 N

Risolviamo I’equazione
(—2+2i)z* —(5+3i)z+1—3i =0.
Il discriminante del trinomio ¢
A=(543i) —4(—242i)(1—3i)=25430i —9 48 —24i — 8 —24 =2

sappiamo che le radici quadrate di —27 sono £(—1+:) e quindi I’equazione ha le soluzioni

64+2i  3+i
C543ik(—14i) | 22-2i) 2-2
C2=2+42i) | 444 242

22—-2i) 2-2i°
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cio¢
(B3+i)(—2—2i) —6—6i—2i+2 448: 1.
= = — =——-—1,
—2+2i]2 (—2) 4+ 22 8 2
(+i)—2-2i) _ —6—6i—2i+2_ _4+8i __1__
|—2+2i2 (=242 8 2
La soluzione z =—i ¢ da scartare.
Quindi I’equazione ha le due soluzioni
1 1
Z=—=—1, =1
2 2
12)
1 . 4/31 V31
a ———1—, ——+i—
2 2 2
V71 W7
b ——i-, ———i—
2 2 2 2
c. 241, —1
d AB542v2 /5242
.1 )
3 3
ﬁ—ﬁ+.1/g—3 V2443 V643
e. ) , — —1
2 2 2 2

1 1 } 1 1
f. 3714 cos(z — — arctan —> +1: Vo374 sen<E — — arctan —>
2 2 6 2 2 6

g 1—i,—1-3:

1 1 1 .1
0, ==, ——+i—
V2. V2 V2 W2

. 3
i :|:21/4exp<i %), :|:101/4exp<z arctzan >

. —1, %+i?, %—i?, 2, —1+4iV3, —1—i+/3

i(1++2), i(1—v2)

4 .
l. 0, +i—, +i44/3
V3
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m. Veos( D7)+ < V24 isen( )),_yzcos<§n>+i<_ﬁ_ﬁsen<§n>>,
Vacos( 2 x) + < V24 2sen( )) ﬁcos<§n)+i<_ﬁ_ﬁsen<§n>>

6 .13 6 .17

n —i—,———1—
41 41 25 25
1 2
o —2i,1—-,—1~—
2 3

p. +i(V2+1), £i(vV2-1)

" \73 N 31/4 "y 33/4
bl l_’ - l_
72\ 2 T
3
2

3 0.3 1 1 3 1 3
r. £—i—,—£—i—,o,—2i,——i 1+‘/—— ,———+i —1+‘/—_
2 2 /2

q.- O

2 V2 V2 V2
S A542V2 =5 42v2  V5—24/2 . —/5-242
.2 3 , 1 3 , 1 3 , 1 3

I Y 0 RS 0 O e 30
el 3l )) o)

13) Siha

w =exp(4—2i—1)e™ =exp(4—4i—1—3i) = exp(3—7i) = e’ sen7—ie’ cos7 .
14)

a. e ?cos3+ie?sen3 c. e 'cos34ie'sen3

b. e’cos1l+ie?senll d. cos8+isen8

15) Siha

(=3 +4i) et | = |3 +4i||e* | = /(=32 + 42 ReUH) = /25 ¢! = 5¢.
Poiché —3+4: ha parte reale negativa, un suo argomento ¢ t—arctan(4/3); un argomento
di et ¢ Im(14:)=1. Quindi un argomento di (—3+4)e'™* & m—arctan(4/3)+1. Si
ha quindi

. ; 4 . 4
(=3 4+4i)e'™ = Se<cos<rc—arctan 3 + 1) +1 sen(n—arctan 3 + 1>> .
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16)
a. 362(COS(—4> +1 sen(—4)) c. es(cos(—12) +1 sen(—lZ))

b. e(’(cos(—4) +1 sen(—4)) d \/§e2<(cos<1 B %) e sen(l B %))

17) Se e/ =—1—2i,allora 1/z haparte reale uguale a log|—1—2:| e coefficiente dell’im-
maginario uguale a uno degli argomenti di —1—2; . Siha |[—1—2i| = y/(—1)2 + (=22 =+/5

eunargomento di —1—2i ¢ arctan2+7, quindi gli argomenti di tale numero sono i numeri
reali della forma arctan2+ (2k + 1)7 con k € Z; percio

1
- =log 5+ i(arctan2 + (2k + l)n) .
z

Quindi si hanno le soluzioni

1 _ log v/5—i(arctan2 + (2k + 1))

z= - = 3 5> kelZ.
logv/5+ z(arctan2 +(2k + 1)7'5) (log \/3) + (arctanZ +(2k + 1)7'5)

18) Ilnumero z ¢ soluzione dell’equazione se e solo se e”+i/2 ¢ una delle radici cubiche
di i. Poiché i ha modulo 1 e un suo argomento ¢ 7t/2, le sue radici cubiche sono

<(n/2)3+ 2/en) +isen<(n/2)+2/e7'c>’

CoS

3

con £=0,1,2; st ha 7T_|_- - \/3+.1
cos—+isen—=—+41—,

6 6 2 2
5 . 5 N
cos<gﬂ:>+zsen<gn>_—7+zi,

() risnlm)=—
cos| —m |+zsen| -7 | =—1.
2 2

Quindi abbiamo le seguenti equazioni:

1 V3o 1 .
, efti—=——+i-, ef4+i-=—1,
2 2 2 2
cioe¢:
3 3 3
eZ:\/_, eZ:—£, el =—1—.
2 2
Le soluzioni sono

z:log?+i2kn, keZ,
Z:log?+i(2/€+1)ﬂ:, keZ,

z:log%—}—i(Zk—%)n, kel.
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19) Moltiplicando entrambi i membri per e??, ’equazione diventa
e¥* —2i = (—\/E+ z ﬁ)eiz ,
%% 4 (ﬁ—i \/E)eiz —2:=0.

Ponendo w =e'? si ottiene ’equazione di secondo grado

w2+(\/§—i\/§)w—2izo.

[
C10¢€

Il discriminante del trinomio a primo membro &
A=(V2—iV2) —4-(—2i)=2—4i—2+8i =4i.

Poiché [4i| =4 e un argomento di 47 ¢ 7/2, le radici quadrate del discriminante sono

iﬁ(cos%+isen%>:j: <7+17>— +(vV2+iv2),

quindi st ha
_2‘/_
i) |y

2 i24/2
2

=142.

Percid deve essere e’ =—+/2 0 e'* =i /2.
Poiché —+/2 ha modulo +/2 e un suo argomento ¢ 7, la prima equazione ¢ verificata

NS
iz=log(V2)+in+i2kn, ke,

[
C10¢€

1
Z:7‘C+2/€7‘C—l§10g2, kel.

Poiché i /2 ha modulo /2 e un suo argomento ¢ 77/2, la seconda equazione ¢ verifi-
cata se .
iz:log(ﬁ)—i—zi—l—iﬂen, keZ,

[
C10€

1
z:%—i—Zkﬂ—zElogZ, kel.

20)
a. log4+i<2k—%>n, kez

b. % log13 + i((Z/e + 1)7t—arctan§> , k€Z
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(g}
N
N
&~

|
el e
S~
|

|

~

|
—_
o
o]
[~}
&~
m
N

e. % log5+ i<arctan % +(2k+ 1)7'c> , % log17+ i<—arctan‘—1‘ +(2k+ 1)7r> , keZ
2 . 2 .
f. 3ﬁ+2/e7r—zlog2,—§n+2k7r—zlog2, kel
. 1 /3
g i2k+1)r, Elog2+z<1+2k>n, kel
1 (5
h. Zlog32+z<§+/e>7f, kez
. . (2 /2
i —log2—z(7‘c+2k7'c),z<§ﬂ+2kn>,z<—5n+2kn>, keZ
. 3 1
jo w2k, Zﬂ+2kﬂ_l§10g2’ kel
koL 2+</€+1> (=21 2+'</e+1> ke
. =lo - —-1lo i = , .
4 8 §)" T\ 48 s)"

1. §+/m, §+lm, keZ

21) Poiché nell’equazione compaiono il modulo e il coniugato dell’incognita z, ¢ uti-
le esprimerla tramite parte reale e coeficiente dell’immaginario di z. Poniamo quindi
z=x+1y,con x,y € R. Lequazione diventa, successivamente,

(x+iy)Y+x+iy+|x+iy)' =1,
x4 2ixy—y Fx—iy+xP 492 =1,
20 Fx+i(2xy—y)=1.

Uguagliando la parte reale e il coefficiente dell’immaginario dei due membri dell’equa-
zione, otteniamo il seguente sistema di due equazioni in campo reale

2P +x=1,
2xy—y =0.

La prima ¢ un’equazione di secondo grado nella sola variabile x, che ha soluzione

—1
—144/12—4.2.(—1) —143 ’
X = = =

4 4 —.
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Per x = 1/2 la seconda equazione diventa y —y = 0, quindi I’equazione ¢ soddisfatta
qualunque sia y. Per x =—1 si ha invece —2y —y =0 che ¢ soddisfatta per y =0.
Quindi le soluzioni sono

1 .
z=—1, z:z—l-zy, yeR.

22) Risolviamo I’equazione esprimendo z in forma algebrica e trasformando ’equazio-
ne nel campo complesso in un sistema di due equazioni in campo reale. Posto quindi
z=x+1y,con x,y €R, equazione diventa, successivamente,

(x+iy) 4+ (x+iy)(x —iy)* +3(x —iy)y +2x =0,
x® +3ix?y —3xy? — iy’ + (x? + 9P (x —iy) +3xy —3iy’ +2x =0,
P4 3ix?y —3xy* —iy’ + 27 Fxy? —ix?y —iy’ +3xy—3iy? +2x =0,
25 4 2ix%y —2x9? —2iy’ 4+ 3xy —3iy? 4+ 2x = 0.

Uguagliando a O parte reale e coefliciente dell’immaginario del primo membro si ottiene
il sistema di due equazioni in campo reale

2% —2xy? 4+ 3xy +2x =0,
{szy —2y° —3y?=0.
Questo sistema puo essere scritto come
x(2x*—2y* +3y+2)=0,
{y(sz —2y*—3y)=0;
clascuna equazione ¢ verificata se e solo se almeno uno dei fattori a primo membro si annul-
la, dunque si puo scomporre in due equazioni. Quindi, considerando 1 vari casi possibili,

otteniamo quattro sistemi; I'insieme delle soluzioni del sistema ¢ uguale all’'unione degli
insiemi delle soluzioni dei quattro sistemi. Tali sistemi sono

x =0,

b

x =0,
{2x2—2y2—3y:O,
{2x2—2y2+3y+2:o,
y=0,

2x*—2y*+3y +2=0,
{2x2—2y2—3y:O.

Il primo sistema ha soluzione x =0, y =0, cio¢ z=0.

Ponendo x =0, la seconda equazione del secondo sistema diventa —2y*—3y =0, che
hale soluzioni y =0 e y =—3/2. Quindi si ha z =0 (soluzione gia trovata) e z =—13/2.

Ponendo y =0, la prima equazione del terzo sistema diventa 2x*+2 =0 che non ha
soluzioni reali.
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Infine nell’ultimo sistema, sottraendo membro a membro la seconda equazione dalla
prima, si ottiene 6y +2 = 0, quindi y = —1/3. Sostituendo nella prima equazione si
ottiene 2x%+7/9=0 che non ha soluzione.

Perci6 ’equazione ha le due soluzioni

Z:O, Z:——i.
2

23) Uguagliando i moduli dei due membri dell’equazione si ha

lz[* = |1+ V3| 2],
cioe
|z|* =2|z|*.
Pertanto o z =0, oppure |z[|> =2, cio¢ |z| = /2.
Se |z| = /2, allora esiste § € R tale che z = +/2¢'? . Poiché un argomento di 1+ /3
¢ arctan(ﬁ ) = /3 e un argomento di z ¢ —0, I’equazione diventa

1460 /3 —i260 1 i(m/3—-20
46 — 26 / 26 = 4e€ ( / ),
C10¢

o — oiln/3-20)

Questa ¢ soddisfatta se e solo se esiste k& € Z tale che

46 = %—25+2/€7r,
ciod A
6= i +—-.
183"
E sufficiente considerare £ =0,1,2,3,4,5, perché per altri valori di & si ottengono valori
di @ che differiscono per un multiplo intero di 27t da valori gia ottenuti.

Pertanto ’equazione ha le soluzioni

k . k
z=0, z=+/2 cos<£+—rc>+zsen<£+—n> , k=0,1,2,3,4,5.
18 3 18 3
24)
1 1
a0 3F2V2_103-2V2 1 g ol oyl
2 2 2 2 2 2
2 . . 3 —1, — —1
b g-l-l— e o,;,«/i z, V2—i

5
LT .5 )
o 1—i, —14i f. exp ZZ , eXp zgrc , eXp 157'5
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INTEGRALI

3.1 EsEercizi

PrRIMITIVE

Per il teorema di Torricelly, il calcolo degli integrali di funzioni continue si riduce alla
ricerca di una primitiva. Infatti, se : f[4,6]— R ¢ continuae F ¢ unasua primitiva, allora

Quindi I’integrale ¢ uguale alla differenza tra i valori assunti dalla primitiva negli estremi del
dominio di integrazione. Per indicare tale differenza si utilizza una notazione particolare.

Poniamo

Riportiamo una tabella di primitive che si ricava facilmente conoscendo le derivate delle

funzioni elementari.

fbf(x)dx:F(b)—F(a).

[F(x)]) = F(b)—F(a).

Funzione Primitiva Funzione Primitiva
c (c IS R) cx e* e*
1 1
b b+1
sen x —cosx senh x coshx
cosx sen x coshx senh x
tan x —log|cos x| tanh x log(cosh x)
cotx log|sen x| cothx log|senh x|
1 1 h
cos2x ranx cosh’x R
1 1 h
sen2x oot senh’x Teonx
1 1
—— arcsen x Wi settsenh x
1—x x24+1
1 1
_ arctan x settcosh x
x2+1 x2—1




110 Capitolo 3. Integrali

Sia f: 1 — R, con [ intervallo di R, indichiamo I’insieme delle primitive di /" con

J F(x)dx

Se tale insieme € non vuoto ha infiniti elementi; due primitive qualunque differiscono per
una costante ¢ sommando una costante a una primitiva si ottiene ancora una primitiva.
Pertanto, se F ¢ una primitiva di f, allora

Jf(x)dXZ{XHF(x)+c|ceR}.

Solitamente si utilizza una notazione meno precisa, ma piu semplice, scrivendo:

Jf(x)dx:F(x)-l—c.

E utile ricordare che la derivata della somma di due funzioni & la somma delle derivate,
quindi la somma di primitive di due funzioni ¢ una primitiva della somma. Analogamente
la derivata del prodotto di una costante per una funzione ¢ il prodotto della costante per la
derivata della funzione, quindi un fatto analogo vale per le primitive. In formule si ha

[+ gwax= [ s+ [ gwax.

f Af(x)dx = A J fx)dx

f(3cosx +2e*)dx.

3.1.1 Esempio. Calcoliamo

Una primitiva della funzione coseno ¢ la funzione seno, pertanto una primitiva della
funzione x — 3cosx ¢ la funzione x — 3senx. Una primitiva della funzione esponen-
ziale ¢ la funzione esponenziale stessa, pertanto una primitiva della funzione x — 2e* ¢ la
funzione x — 2¢*. Quindi

f(3cosx +2e")dx =3cosx+2¢* +c.
Possiamo esprimere in formule questo ragionamento come segue:

J(3cosx+2ex)dx = J 3cosxdx+f 2e*dx = 3Jcosxdx+2J e*dx =3senx+2e"+c.
<

Utilizzando la tabella ¢ facile ricavare altre primitive.

Ad esempio, sia F una primitiva della funzione f e siano 2 € R* ¢ b € R; poniamo
G(x)=F(ax+b), per gli x per cui tale scrittura ha senso. La funzione G ¢ derivabile e st
ha G'(x)=F'(ax+b)a=af(ax +b). Pertanto la funzione x — G(x)/a ¢ una primitiva
di x— f(ax+b).
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3.1.2 Esempio. Calcoliamo

J cos(3x +m)dx.
0

Una primitiva della funzione coseno ¢ la funzione seno, quindi ¢ facile verificare che una
primitiva della funzione x — cos(3x+ ) ¢ la funzione x — (1/3)sen(3x+ ), percio si ha

/2 1 /2 1 5 1
J cos(3x + m)dx = [— sen(3x + n)] = —<sen<— 7'c> —sen 7'c> =-. <
. 3 3 2 3

0

Inoltre, se f € C([a,b],R), F ¢ una sua primitiva e g € C1<[a,ﬂ],R) ¢ tale che
g([a, B ]) C[a,b], allora, dal teorema sulla derivata della composizione, segue immediata-

mente che Fog ¢unaprimitivadi (fog)g’.

*4+1
J e+ dx.
ex +x
La funzione integranda ¢ della forma (1/g)g’, con g la funzione x — e* + x . Poiché
una primitiva della funzione y +— 1/y ¢ la funzione y — log|y|, risulta

3.1.3 Esempio. Calcoliamo

41
Je + dx =logle* +x|+c. <
e*+x

INTEGRAZIONE PER PARTI

Un importante strumento per il calcolo degli integrali ¢ la formula di integrazione per
parti.
Date f,g € C'([2,b],R), si ha

Jf(x x)dx = f(x)g(x)— Jf x)dx, (3.1.1)

oppure, per gli integrali definiti,

b b b
| rogeax=[wsell - | rwgtds. (.12)

Per utilizzare la formula la funzione integranda deve essere espressa come prodotto di
due funzioni, di una delle quali si conosce una primitiva; si ottiene la somma di due adden-
di, uno dei quali ¢ ancora un integrale. Lapplicazione della formula risulta utile quando
Iintegrale che rimane da calcolare ¢ pit semplice di quello di partenza.

fxcosxdx.

Una primitiva della funzione coseno ¢ la funzione seno, pertanto si puo6 applicare la
formula di integrazione per parti (3.1.1), con f(x)=x, g(x)=senx . Risulta quindi

3.1.4 Esempio. Calcoliamo

fxcosxdx:xsinx—fsinxdx:xsinx+cosx+c.
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Osserviamo che ¢ nota anche una primitiva della funzione x — x, quindi si puo appli-

care la formula di integrazione per parti anche con f(x)=cosx, g(x)=x?*/2. Intal modo
si ottiene

x? x?
fxcosxdx: 5 cosx+f 5 sinxdx.

Lapplicazione della formula in questo modo non ¢ di alcuna utilita, perché resta da calcolare
un integrale piu complicato di quello assegnato. <

La formula di integrazione per parti risulta in alcuni casi utile anche per calcolare inte-
grali in cui la funzione integranda non ¢ sotto forma di prodotto, come mostra il seguente

esempio.
j logxdx.

Per la formula di integrazione per parti (3.1.1) con f(x)=logx e g(x)=x si ha

3.1.5 Esempio. Calcoliamo

flogxdx:J l-logxdx:xlogx—fxldx:xlogx—f ldx=xlogx—x+c. <
x

INTEGRAZIONE PER SOSTITUZIONE

Un secondo fondamentale strumento per il calcolo degli integrali € la formula di inte-
grazione per sostituzione.

Date f € C'I,R, g€ C(J,R), con I,] CR intervalli tali che f(I)C],siha

f g(f(x))f'(x)dx :f g0y s (3.1.3)
oppure, per gli integrali definiti, per 4,5 €1 si ha
b , f()
|, strensea= Ceorar. 614
Se inoltre f ¢ iniettiva, per @, 3 € f(I) si ha
B 7B ,
[ sar=] | s 6.15)

Con la formula di integrazione per sostituzione non si calcola direttamente 'integrale,
ma questo viene trasformato. Risulta utile solo quando si sa calcolare I'integrale ottenuto.
Nella forma (3.1.4) puo essere utilizzata quando la funzione integranda ha una struttura
particolare: ¢ il prodotto di una funzione in cui la variabile x compare solo come argo-

mento di una funzione f per la derivatadi f . E evidente che in questo modo la funzione
integranda si semplifica.
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3.1.6 Esempio. Calcoliamo
¢ 1
J cos(logx) —dx.
1 x

Possiamo applicare la formula di integrazione per sostituzione (3.1.4), con f(x)=logx
e g(y)=cosy.Siha

e 1 loge 1
J cos(logx)—dx:f cosydy:J cosydy:[seny]é:senl. <
1 I 0

x og1

La formula di integrazione per sostituzione (3.1.5) ¢ pit facile da applicare, perché non
¢ richiesta una particolare struttura della funzione integranda, ma solitamente I'integrale
viene trasformato in uno piu complicato. Vi sono tuttavia numerose situazioni in cui, con
una opportuna scelta della funzione f°, ¢ possibile calcolare Iintegrale trasformato.

2
Jeﬂdy.
1

Sia f:[0,400[ — R tale che f(x) = x*. La funzione f ¢ di classe C', e si ha
F'(x)=2x; inoltre f ¢& iniettiva, con inversa f':[0,+00[ — R tale che f~'(y)=,/y.

Quindi si ha
2 V2 V2
f eﬁdy:f em2xdx:J 2xe“dx.
1 Vi 1

Si puo facilmente calcolare questo integrale per parti:

3.1.7 Esempio. Calcoliamo

Y et dn e Vo [ 2% dy — [2net —20¥ V% — :
xe x_[er Jl — 2e dx_[er —2e ]1 _2<x/§—1)e . |
1 1

Nel seguito studieremo varie situazioni in cui ¢ utile applicare la formula di integrazione
per sostituzione (3.1.5).
INTEGRALI DI FUNZIONI POLINOMIALI

E facile calcolare integrali di funzioni polinomiali, perché un polinomio ¢ somma di
monomi, di cui si conosce una primitiva.

3.1.8 Esempio. Calcoliamo

J(3x4—6x2+5x)dx.

Una primitiva di xte xs/ 5, una primitiva di x3 e x3/ 3 euna primitiva della funzione x
¢ x%/2, pertanto

3 5
f(3x4—6x2+5x)dx:gx5—2x3+§x2+c. <
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INTEGRALI DI FUNZIONI RAZIONALI

Studiamo un metodo generale per I'integrazione delle funzioni razionali fratte. Tale me-
todo richiede di conoscere una scomposizione del denominatore nel prodotto di polinomi
di primo grado e polinomi di secondo grado irriducibili (cioe privi di radici reali).

Osserviamo anzitutto che, se N e D sono polinomi tali che gr(N) > gr(D), allora,
effettuando la divisione tra polinomi e indicando con Q il quoziente e con R il resto, si ha

N(x) _ Q(x)D(x) + R(x) R(x)
D(x) D(x) D(x)’

e gr(R) < gr(D). Poiché conosciamo una primitiva di ogni funzione polinomiale, se cono-
sciamo una primitiva di R/D , allora conosciamo anche una primitiva di N/D . Quindi ¢
sufficiente trattare il caso delle funzioni razionali in cui il grado del numeratore ¢ minore
del grado del denominatore.

=Q(x)+

3.1.9 Esempio. Calcoliamo

3
J *_dx.
x+2
Il numeratore ha grado maggiore di quello del denominatore, che € di promo grado e s
annulla per x =—2; effettuando la divisione con la regola di Ruffini abbiamo

1 0 0 0
2| 2 4|-s
1 —2 4|-s

quindi il quoziente ¢ x* —2x +4 e il resto ¢ —8. Percio si ha

3 8 1
J a dx:J<x2—2x+4— >dx:—x3—x2+4x—810g|x+2|+c. <
x+2 x+2 3

Siano N e D polinomi tali che gr(N) < gr(D). Sia x, uno zero di molteplicita r del
polinomio D . Allora D puo essere fattorizzato come

D(x) = (x —x0)" P(x),
con P polinomio tale che P(x,)#0 e » € N*. Si ha
N N N N PN —N(x)P)
D(x)  (x=x)"P(xo) (x=x)"P(x) (x=x)"P(xg)  (x—=x0)"P(x)P(xo)

Il polinomio P(x)N(x)—N(x,)P(x) siannulla per x = x,, quindi esiste un polinomio R
tale che P(xy)N(x)—N(xq)P(x)=(x —xy)R(x). Pertanto

N _ NG PN —N()P() _
D(x)  (x=x)P(xy) (s P()P(xo)
N, R@)

T () P(xy) | (x—x0) 1 P(x)P(x)

Poiché il polinomio (x—x,)R(x) ¢ combinazione lineare dei polinomi N e P, il suo grado
¢ minore o uguale al massimo tra gr(N) e gr(P), pertanto ¢ minore di gr(D), quindi nella
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funzione razionale R(x)/ ((x —a)rflp(x)P(a)) il numeratore ha grado minore di quello
del denominatore. Quindi si puo ripetere il ragionamento fatto sopra per questa funzione

razionale. Proseguendo, si prova che esistono » numeri a,,4,,...,4, e un polinomio §
tale che gr(§) < gr(P) per cui
Nw 4
D(x) 2+ (x—x)

_|_

vl %)
—~ |
x|
~ I~

Se P ¢ costante, cioe di grado 0, I'ultimo addendo ¢ nullo, in caso contrario si puo ripetere
il ragionamento con uno zero del polinomio P. Pertanto, se D puo essere fattorizzato
come

D)= C[ Jtx—x)",
(=1

con r, €N*, x, €R taliche x;, #x;, per { £k, alloraper { =1,2,....n e j=1,2,...,7,
esiste a; €R tale che

Nx) st %
D) _;g rEe (3.1.6)

Abbiamo cosi scomposto la funzione razionale nella somma di funzioni di ciascuna delle
quali conosciamo una primitiva.
La determinazione dei coefficienti 4,; nei casi concreti puo essere fatta ripetendo il

ragionamento fatto sopra, alternativamente si pud scrivere ’'uguaglianza (3.1.6) con dei
coefficienti 4;; incogniti e ridurre a denominatore comune il secondo membro; si ottiene

cosi una uguaglianza tra funzioni razionali con lo stesso denominatore (a meno di costanti
moltiplicative), imponendo I'identita tra i polinomi a numeratore si ottiene un sistema di
equazioni da cui si ricavano i coefhicienti a;; .

3.1.10 Esempio. Calcoliamo

4 2
J;d*
x3+x2—x—1

Risulta
A —x—1=x x4+ 1)—(x+ 1) =2 =D(x+1)=(x—1)(x +1)°.
Come visto sopra, esistono 4,b,c €R tali che

4x? a b c

= + + .
+x2—x—1 x—1 (x+12 x+1

Per determinare @, b e ¢ riduciamo a denominatore comune il secondo membro. Si ha
“_ . b 4 ¢ Calx+ 17+ b(x—1)+c(x—1)(x+1)
x—1 (x4+12 x+1 (x—1)(x+1)?
ax*+2ax+a+bx—b+cxt—c  (at+c)x*+Q2a+b)x+a—b—c
B (x—1)(x +1)? B (x—1)(x +1)?
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Deve essere
4x? =(a+c)x*+Q2a+b)x+a—b—c,

quindi, per il principio di identita dei polinomi, 2, & e ¢ sono soluzione del sistema

atc=4,

2a+b=0,

a—b—c=0.
Sommando membro a membro le tre equazioni si ottiene 4a =4, pertanto @ = 1. Dalla
prima equazione segue ¢ =3 e dalla seconda b =—2. Pertanto

4x? 1 2 3
= | (- b )dx=
Jx3+x2—x—l f x—1 (x+172 =x+1
2
=log|x — 1|+ —— +3log|x + 1| +c. <
x+1

Abbiamo visto come determinare una primitiva di una funzione razionale N/D quan-
do D ha solo zeri reali. Se D ha zeri complessi, allora non puo essere fattorizzato in
polinomi di primo grado in campo reale; in tal caso la procedura illustrata sopra consen-
te la scomposizione di N/D solo passando in campo complesso. Dalla scomposizione in
campo complesso si puo ottenere una scomposizione in campo reale con funzioni razionali
1 cui denominatori sono potenze det fattori di secondo grado irriducibili di D

Infatti se zy€ C\ R ¢ una radice di D di molteplicita 7, allora anche Z, ¢ una radice
di D di molteplicita r . Quindi si ha la scomposizione

D(x) = (x—2)"(x =2%)" P(x),

con P polinomio a coeflicienti reali che non si annulla per x = z, né per x = z,. Per
quanto gia visto si ha

NEx) <~ % S S(x) _ R(x) S(x)
D(x) _;: =z +]Z:1: (=7 | P(x) (P 2Rezoxt[nf) | P(x)’

con R e § polinomitali che gr(R) < 27 e gr(§) < gr(P). Proviamo che R e § hanno coef-
ficienti reali. Semplifichiamo la notazione ponendo @ =—2Rez, e 3 =|z|*. Passando al
complesso coniugato si ha

N6 Rw S
D(x) (x*4ax+p)  P(x)’

dove R e § sono i polinomi ottenuti da R e S prendendo i complessi coniugati dei
coeflicienti. Sottraendo membro a membro si ha

R(x)—R(x) N S(x)—S(x)
(x2+ax+ B) P(x)

(R(x)—R(x))P(x)+ (S(x)—S(x))(x* + ax + ) =0.

. \
C10€
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Poiché P(x) e (x*+ax+/)" non hanno fattori comuni, (x?+ax+43)" divide R(x)—R(x),
ma questo polinomio ha grado minore di 27, quindi ¢ identicamente nullo, percid R ¢ un
polinomio reale. Per motivi analoghi anche § ¢ reale.

Scomponiamo R(x)/(x*+ ax + )" . Dividendo R(x) per x*+ax+ 3 si ha

Re)  _QWtartfIT_ QW T
(x24+ax+ B)" (x24+ax+ B)" (x24+ax+B)—1  (x24+ax+ )

con T polinomio di grado al piu 1. Ripetendo il discorso si ottiene la scomposizione

R(x) & bix+g
<x2+ax+,8>f_z(x2+ax+,6>f'

j=1

Sia quindi
D(x)=C l_I(x —x) | [+ apx+ Bo)*
/=1 k=1
dove C €R*, gli x; €R sono gli zeri reali di D, oy, €R sono tali che a; —43, <0
e sia N un polinomio tale che gr(N) < gr(D). Allora esistono a;;, by, ¢;; € R tali che

N(x) I - byix +cy;
x Z;]Z; ZZ x2+a/€x+,3/€

x—xg =1 =1

Questa scomposizione di una funzione razionale si chiama scomposizione in fratti
semplici.

Conosciamo una primitiva di ciascuno degli addendi della prima sommatoria. Vediamo
come determinare una primitiva degli addendi della seconda sommatoria. Consideriamo
anzitutto il caso 7 =1. Si ha

bx+c b 2x+a c—(ab/2)
2

x2+ax+/3: x24+ax+f  x2t+ax+f

Una primitiva del primo addendo ¢ (4/2)log(x? 4 ax + 5). Inoltre
o 1 1 ~
2 tax+ B x2tax+(aj2R+ B—(a24) (x+(@/2)) + B—(aY4) -
1

1
- B—(2¥Y4) ((2x+a)/\/4,6’—a2)2+1'

Si verifica facilmente che una primitiva di questa funzione ¢

1 . < 2x +a >
———— arctan
P \Jap—a
Nel caso in cuisia z>1 si ha

bx+c b 2x+a c—(ab/2)
(2tax+B) 2 ((2+ax+B)  (2tax+ )
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Una primitiva del primo addendo ¢

b 1 1
2i—1(x24ax+ B)—1

E possibile determinare una primitiva del secondo addendo con lo stesso metodo usato nel

caso i = 1 se si conosce una primitiva di 1/(x? +1)'. Determiniamo una primitiva di
questa funzione. Per i € N\ {0,1}, st ha

1 14+x2—x2 1 x
_— = —d = _— — _—
f x4 f 2+ f Y f “Ery

—J ! dx +x ! ! — ! ! dx =
) (x241)t 20 —1) (x24 1)1 2(i—1) (21—t

21—3 1 X
T 261 f (x2+ 1)t dx+2(z'—1) (2411

Questa formula consente di determinare una primitiva per 1/(x? 4 1)" se si conosce una

primitiva di 1/(x? +1)'"!. Poiché conosciamo una pr1m1t1va di 1/(x*+1), applicando
ripetutamente la formula si pu6 determinare una primitiva qualunque sia z .

In particolare

f ! d 1f ! d +1 a ! t +1 S (3.1.7)
—_—ax = - X - —= — arctan x — C. .
(x2+1)2 2 ) x2+1 2x24+1 2 2 x2+1

3.1.11 Esempio. Calcoliamo

x’ 4
j (x242x+5)? g

Si ha
x? _x3+2x2+5x—2x2—5x_ X +—2x2—4x—10—x+10_
(x242x+5)2 (x242x +5)? C x242x+5 (x2 4 2x +5)? B
_ x—2 n —x+10
X242 45 (R242x 452
1 2x+2 3 1 2x 42 11

=3 - —- + .
2x242x+5 x242x+5 2 (x242x+5)2  (x2+42x+5)?

Si ha, osservando che il trinomio x? 4 2x +5 & sempre positivo,

2x 42
——— = dx=log(x*+2x+5)+c¢
Jx2+2x+5 8 )

Inoltre

1 1 1 1 1 X+
———dx=| ———dx=| -————————dx = —arctan(
x24+2x+5 (x+1)2+4 4((x+1)/2>2+1 2

J 2x+2 1 N
—— —dx=—————+c¢
(x242x+5)?2 x24+2x+5

)
+c;
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Poiché

J

1 1 1
—dx fnd J—
(x242x +5)? J 16 (((x I 1)/2)2 N 1>2

X

effettuando la sostituzione ¢ = (x 4+ 1)/2, quindi x =2t —1, da (3.1.7) segue

1
J (x242x+5)?2

1 t
= —\(arctant + ——+4¢
fo (st + 57 +)

x+1

L S
16 (124 1)2

t=(x+1)/2

ST

x+1

dt

1
=— arctan<
16 2

Pertanto

J 2x+2 4
(x2+2x+5)?2

1) Calcolare

2) Calcolare

1 3
3 log(x? +2x +5)— 5 arctan<

1 13
~log(x® 4+2x +5)— — arctan<
5 8( ) T

x24+2x+5

x+1>+1 1 +
2 2 x242x+5

+11 . <x+l>+11 x+1 +
— arctan — c=
16 2 8 x2+2x+5

x+1> 1 11x+15
2 8 x24+2x+5

4
3
f _x+3
1 4x2+43x

Jl x?—2
dx
o X3 +5x2412x +8

3) Calcolare i seguenti integrali:

2.2
1
a.fx_'_ dx
1 x+1

5
b.f *+3 e
2

x2+9

2
c. f ———dx
0 x2+4x+3

fz x+x4+1

0 4x24+4x+1

3
1
e.f dx
, X3—x
3
2
L S
0 x2—x+2
2
5
g,f _x+5
| x244x+4

2 .2
1
h.f x dx
0 3x245
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6 3 3
5 10
f ——dx k.f — T dx
1 x3+5x o x*+4x2+4+4

'f34—xdx 1J3Llodx
s o x*+5x246 "), x3—25x

INTEGRALI CONTENENTI SENI E COSENI

Consideriamo integrali del tipo

f sin”x cos"xdx,

con m,n €N.
Se n ¢ dispari, cio¢ 7 =2k +1 con k €N, allorasi ha

. . . . 2
sin” x cos”x = sin™ x (cos?x )¥ cos x = sin” x (1 —sin’x)* cos x..

Lafunzione integranda risulta quindi essere il prodotto di una funzione polinomiale rispetto
al seno per la derivata della funzione seno. Con la sostituzione ¢t =senx si ottiene

dx:J t”‘(l—tz)kdq

, dsenx

r=senx

J sin” x cos"x dx = J sin” x (1 —sin’x)

X

Abbiamo cost ottenuto I'integrale di una funzione polinomiale.
Se m e dispari si procede in modo analogo, scambiando il ruolo di seno e coseno.

fcos3xdx.

Poiché si ha cos’x = (1—sen’x)cos x , risulta evidente, anche senza effettuare esplicita-
mente una sostituzione, che si ha

3.1.12 Esempio. Calcoliamo

1
Jcos%cdx:J(l—senzx)cosxdx:senx—gsen3x+c. <

Se sia m che n sono pari, cioe¢ m = 2h e n = 2k, con h,k € N, allora, dalle
uguaglianze
1—cos(2x)
2

1+ cos(2x)
2

SCHZX = s COSZX =

bl
segue

(1 — cos(2x))h (1 + cos(2x))k .

m n
sin"x cos”"x =
Sviluppando le potenze dei binomi, si ottiene una somma di potenze di cos(2x). Con il
metodo esposto sopra si trova una primitiva delle potenze con esponente dispari. Le potenze
con esponente pari possono essere trasformate ulteriormente esprimendole in funzione di
cos(4x). Il passaggio a cos(2x) dimezza I’esponente massimo presente, passando a cos(4x)
’esponente viene ulteriormente dimezzato. Ripetendo il ragionamento, dopo un numero
finito di passi I’esponente massimo diventa 1 e quindi si puo trovare una primitiva.
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J cos*xdx.

3.1.13 Esempio. Calcoliamo

Si ha
2
1 2 1 1 1
cos*x = (cos’x )’ = <—|—c%(x)> =3 + > cos(2x) + 1 cos?(2x) =
11 4 3 01 1
= -+ = cos(2x)+ - + CCZ)S( *) =3 + > cos(2x) + 3 cos(4x).

Pertanto si ha
cos*xdx = <z + 1 cos(2x) + 1 cos(4x)> dx= zx + 1 sen(2x) + L sen(4x)+c. d
8 2 8 8 4 32

Se nell’integrale di una funzione che dipende da funzioni trigonometriche si riesce a
esprimere la funzione integranda solo mediante la funzione tangente (o cotangente) la so-
stituzione ¢ = tanx (o t = cotx) solitamente semplifica I'integrale. Supponiamo, in
particolare, che R sia una funzione razionale. Se si pone x = ¢(t) = arctant, quindi

@'(t)=1/(t*+1), allora si ha

f R(tanx)dx = J R(t)

quindi I’integrale si trasforma nell’integrale di una funzione razionale.

Nel caso che si calcoli un integrale definito, potrebbe non essere corretto effettuare la
sostituzione individuata sopra. Infatti questa comporta che x appartiene all'immagine della
funzione arcotangente, cio¢ a |—7/2,7t/2[ . Se 'intervallo di integrazione non ¢ contenuto
in J—m/2,7t/2[, la sostituzione corretta € x = ¢(t) = arctant + k7 per un opportuno
k € Z, in modo che 'immagine di ¢ contenga I'intervallo di integrazione.

1
dr .
t2+1 t=tanx

3.1.14 Esempio. Calcoliamo

* senx
—dx.
o senx - cosx

Dividendo numeratore e denominatore per cosx, che non si annulla nell’intervallo di
integrazione, si ottiene

sen x

/4 sen x J /4 cos X 4 * tanx d
—_—ax = —_—ax = —ax
o senx-+cosx o senx +cosx o tanx+1

COs X COs X

Con la sostituzione ¢t =tanx, cio¢ x = ¢(t) =arctant, si ha

/4 tan(7/4) ¢ 1 1 ¢
| [ s
o tanx+1 ang L F1 241 o (t4+1)(t2+1)

Dobbiamo integrare una funzione razionale con numeratore di grado minore del deno-
minatore, che ¢ gia scomposto in fattori irriducibili. Per scomporre la funzione in fratti
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semplici determiniamo 4, b,c €R tali che

t _a +19t+c
(t+1)(241) t+1 241
Poiché
a +bt+c_a(t2+1)+(bt+c)(t+1)_(a—}-b)tz—i-(b—l—c)t—%-a—}-c
t+1 0 241 (t+1)(2+1) B (t+1)(2+1) ’

deve essere
t=(a+b)t’+(b+c)t+a+c,

quindi 4, b, ¢ devono verificare il sistema

a+b=0,

b+c=1,

a+c=0.
Dalla prima equazione risulta b = —a e dallaterza ¢ = —a . Pertanto dalla seconda si ricava
—2a=1,dacuia=—1/2e b=c=1/2.

Quindi si ha

J‘lédt—lfl<_L+t+l>dt_
o (1241 2)o\ 41 241/
1

1 1,
=3 —log|t+1|+zlog|t + 1| +arctanz | =
0

1 1 1
:5<—10g2+z log2+arctan1>:—‘—}log2+%. |

Utilizzando P’identita sen®x + cos’x = 1, si puo di esprimere la funzione integranda
mediante la funzione tangente anche in situazioni in cui questa possibilita non ¢ evidente.

/3 1
f LS
o 1+cos?x

senzx COSZX

3.1.15 Esempio. Calcoliamo

Si ha

1 sen?x + cos®x cos?x  cos?x tan?x + 1

1+cos?x  sen?x +2cos?x  sen’x ) cos?x  tan2x +2

cos2x cos2x

Con la sostituzione t =tanx, cio¢ x = ¢(t) =arctant, si ha

/3 2 1 tan(rt/3) 2 1 1 V3 1
J dezj 241 dt:f dt =
o tan?x 42 ano 221241 o 242
V3
Jﬁ1 L [1 i <t>:| Lo <ﬁ> <
— - = | — arctan| — = —— arctan{ — |.
o 2 (t/\/i)z-l-l V2 V2 V2 V2

0
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Consideriamo integrali del tipo
f R(senx,cosx)dx,

con R ¢ una funzione razionale di due variabili.
Effettuiamo la sostituzione ¢ = tan(x/2). Da tale uguaglianza si ricava, se x € ]—m, [,
x = o(t)=2arctant , quindi ¢’(t)=2(1+t%). Si ha, per x € ]—m, 7[,

sen(x/2) cos(x/2)

senx — 2sen(x/2)cos(x/2) _ cos(x/2) cos(x/2) _ 2tan(x/2)
cos?(x/2) +sen?(x/2)  cos’(x/2) sen’(x/2) 1+4tan?(x/2)’
cos?(x/2)  cos(x/2)
cos?(x/2) B sen®(x/2)
cosx — cos?(x/2)—sen®(x/2) _ cos?(x/2)  cos:(x/2) _ 1—tan?(x/2)
cos?(x/2)+sen?(x/2)  cos’(x/2) sen’(x/2) 1+tan(x/2)
cos?(x/2)  cos?(x/2)
Pertanto

t=tan(x/2) ’

2t 1—1t%\ 2
JR(%nx,cosx)dx:JR( , > dt
14+12 1412/ 1412

in quest’ultimo integrale la funzione integranda ¢ razionale.

/2 1
J dx.
x/3 Senx

Effettuiamo la sostituzione ¢ = tan(x/2), da cui si ricava x = ¢(¢) =2arctanz. Si
ha ¢'(t) = 2/(1+ %), per x = /3 si ha t = tan(/6) = 1/4/3, per x = /2 si ha
t =tan(7t/4) = 1. Pertanto

F/Z L4 f L2 4 f Lt =[loglt[]'
X = = - =110 =
=3 senx 1/v3 2t/(1+12) 1+ ¢2 143t Bt

:—log—:%logl |

3.1.16 Esempio. Calcoliamo

Se l'intervallo di integrazione non ¢ contenuto in ]—, 7z[ , ma ¢ contenuto in 0,27,
st puo effettuare la sostituzione ¢ = cot(x/2). In tal caso si ha x = ¢(t) = 2arccott,
@' (t)=—1/(1+ %), sinx =2t /(14+t%) e cosx = (t*—1)/(1+ 7).

In generale se in tutto I'intervallo di integrazione ¢ definita una delle due funzioni
tan(x/2) o cot(x/2), allora si utilizza tale funzione per la sostituzione. Se invece c’¢ sia
un punto in cui non ¢ definita tan(x/2) che un punto in cui non ¢ definita cot(x/2), allora
st puo spezzare I'integrale nella somma di pit integrali per ciascuno dei quali si puo fare
una delle due sostituzioni.
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4) Calcolare

2
/2 sen x cosx
— —dx.
0

cosx +2

5) Calcolare

dx.

Jn/z 3cosx +2sinx
0 24 cosx

6) Calcolare

/4 1
J ) N dx.
o sin“x +6sinxcosx + 8cos?x

7) Calcolare i seguenti integrali:

/2 n/4
a. J (sen*x +cos*x)dx e. J LA
/4 o senx+2cosx
n/2 /2
b [ o
o 1l4sen?x o senx—2
/2 cosx */* senx 4 senx cosx
C. dx g. dx
=6 2sen’x 4 cos?x —5 o —2cosx 4+ cosx sen?x

3 senx —2cosx /3 sen x
d. f — T T dx h. f dx

2senx + cos x /4 sen’x +cos’x —cosx

INTEGRALI CONTENENTI ESPONENZIALI

| ey,

Per semplificare I'integrale effettuiamo la sostituzione t = e*, cioe x = ¢(t) = logt .
Siha ¢'(t)=1/t, quindi risulta

fR(ex)dx:fR(t)%dt

Abbiamo cosi ottenuto I'integrale di una funzione razionale.

Consideriamo integrali del tipo

con R funzione razionale.

t=e*
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1
J dx.
62x+ex

Ponendo t =e*, quindi x =log¢, otteniamo

1 1 1 1
f dx:f__dt :f—dt .
2 4 e¥ P24t t fe 2t +1) =

Scomponiamo la funzione integranda in fratti semplici. Si ha

3.1.17 Esempio. Calcoliamo

1 _1—|—t—t_1 1 1 1+t—t_1 1 1

= = — ____|_ .
t2(t+1) 2t +1) 2 t(e+1) 2 t(e+1) 2 ot 41

Pertanto

1 1 1 1 1
———dt= <———+—>dt:———l t|+loglt + 1| +¢,
ftZ(t+1) J 2t 41 ; og|t|+log| |+c

quindi

f ! dx=—e"*—x+log(e"+1)+c. <

62x+ex
fzcoshx dr.
0 €542

1 x —x
2
f etz dx
o eX+4e>

8) Calcolare

9) Calcolare

10) Calcolare i seguenti integrali:

1 X 1 X
e e*+1
a. dx e. dx
fo e +1 fo 2e*+3
1 X __ p—X 1 3x
b. j e gy £ f _C
o e 41 o e 4 8ex
Uexy2 U coshx +4senh x
c. dx . — " dx
o €43 o coshx —senhx

cosh x

1/2 1 Usenh?x 42
d. J 1 dx h. J senh X+ 2 v
0 ezx—Ze‘x 0
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INTEGRALI CONTENENTI RADICI

Consideriamo integrali del tipo

JR(x,m)dx,

con R funzione razionale di due variabilie « € R*, b €R.

Effettuiamo la sostituzione t = +/ax + b, da cui si ricava x = ¢(¢) = (t*—b)/a . Si ha
¢'(t)=2t/a, quindi

JR(x,m)dx:JRCZ_b,t)f—ltdt

a

t=+vax+b
Lintegrale ¢ cosi trasformato nell’integrale di una funzione razionale.

3.1.18 Esempio. Calcoliamo

1
—d
fx\/2x+3 ¥
Effettuiamo la sostituzione t = v/2x +3, cio¢ x = ¢(t) = (t*—3)/2;si ha ¢'(¢) =
Quindi
1 1 2
— - 4 :f—tdt :J dt .
fx\/2x+3 ¥ ((t2—3)/2)t =V2x+3 2—=3 =y
Si ha
2 2 L B3 1 1 1
=3 (t+3)(t—v3) VB(t+V3)(t—V3) V3i—V3 V343
pertanto

fxm ff(t—S t+\/_>

t=+/2x+3
<log|t—1/_|—log|t+\/_|) +c=
2x+3

s )
=— log +c=

V3 |<t+‘/§)<t_‘/3)| t=y2x+3

1 t2—24/31 43 1 2x4+3—-24/3y/2x+3+43
:—log— +C:—10g +c=
7 e ) T/ 2]

1 x+3—1/6x+9>
=—lo <— +c |
o B
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Consideriamo integrali del tipo

JR<x,\ M>0lx,
cx+d

con R funzione razionale di due variabili e 4,5,c,d € R tali che ad —bc # 0. Questa
condizione assicura che la funzione sotto radice non ¢ costante.

Effettuiamo la sostituzione ¢ = \/(ax +b)/(cx +d). Daquisiha ax+b = t*(cx+d),
cio¢ (ct?—a)x =b—dt?, quindi x = ¢(t)=(b—dt?)/(ct? —a). Si ha
()= —2dt(ct*—a)—2ct(b—dt*)  2ad—bc)t
vAI= (ct2—a)?  (ct2—aR

Quindi

I —
JR . ax+b dx:JR<b dt ,t>2<dd bc)tdt ‘
cx+d ct?—a (ct?—a)? t=+/{ax+ b)) (cxtd)

Lintegrale ¢ quindi trasformato nell’integrale di una funzione razionale.

f 4x +1 dr.

x—1

Effettuiamo la sostituzione ¢ = 4/(4x +1)/(x —1). Quindi si ha 4x + 1= t*(x — 1),
cio¢ (t2—4)x =t*+1, quindi x = ¢(¢) = (2 +1)/(t*—4). Si ha

by 202 —4)=2e(2 4+ 1) 10t
e vy

3.1.19 Esempio. Calcoliamo

Quindi

4y +1 10t t?
f\ i dx:_ft—dt :—10f—dt .
x—1 (t2—42 =0/ (12—4Y = =D

La funzione integranda ¢ razionale con numeratore di grado minore del denominatore;

scomponiamola in fratti semplici. Si ha (£2 —4)* = (¢t —2)*(¢ 4 2)?, quindi dobbiamo
determinare a,b,c,d €R tali che
a_ . b L d t?
(t—=22 t—2 (t+42?2 t4+2 (t—=22(t+27?

St ha
4 b 4_C . d _
(t—=22 t—2 (t42? t+2
_a(t 42+ b(?—4)t+2)+c(t —2)* +d(t2—4)(t —2)
B (t —2)2(t +2)?
(b+d)t> +(a+2b+c—2d)t* +(4a—4b—4c—4d)t +4a—8b +4c+8d
(t— 2Pt + 27 '
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Pertanto dCVC €ssere

b+d=0,
a+2b+c—2d =1,
a—b—c—d=0,

a—2b+c+2d=0.

Sommando membro a membro la prima e la terza equazione si ottiene 4 —¢ = 0, som-
mando la seconda e la quarta si ottiene 22 +2¢ = 1, pertanto 4 = ¢ = 1/4. Dalla prima
equazione si ha d = —b e sostituendo quanto ricavato finora nella seconda equazione si
ottiene 1/2+4b =1, quindi b =1/8 e d =—1/8. Pertanto

Jt—zdt—lj< 2 + ! + 21 >dt—
(2—42 " 8 \(t—22 t—2 (t+2? t+2)

1/ 2 2
=—(———+log|t —2| — —— —log|t 2>.
8< ;= Tloslt =2 = g —loglt +2

Quindi

2
J 4x+ldx:—1OJ LA
1 —a |

—§< 2 —lo
T\ VEr)ja_n—2 ©

(4x+1)/(x—1)

2
Ty e TR

:§<4 (4x + 1)/(x—1) \/W)H)H:

4\ (4x+1)/(x—1)—4 (4x + 1)/(x—1)

:§<4 (4x+1)(x—1+ g'(m 2)°

1 5 (b 1)/(c—1) >+C:

+§1Og<8x+4\/(49;+1)(x—1)>+c. <

(dx+1)(x—1)

Consideriamo integrali del tipo

jR(x, az—xz)dx,

con R funzione razionale di due variabili e « € R* .
Effettuiamo la sostituzione x = ¢(t) =asent, quindi ¢’(t) =acost . Si ha

Va2 —x2=1/a? —a?sen2t = Va2 cos’t = alcost]|.
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Sesisceglie t €[—m/2,7t/2] stha |cost|=cost . Inoltre pertali ¢ risulta £ = arcsen(x/a).

Quindi si ha

JR(x,\MZ_xZ)dx:JR(asent,acost)acostdth_ /)’

Lintegrale ¢ cosi trasformato nell’integrale di una funzione razionale di seni e coseni.

3.1.20 Esempio. Calcoliamo
x+3

vV4—x2

Effettuiamo la sostituzione x = ¢(¢) = 2sent, quindi ¢’(¢) = 2cost . Considerando
t €[—m/2,7/2] si ha t = arcsen(x/2). Pertanto

= | (2sent+3)dt =
t=arcsen(x/2) J( ) |t:arcsen(x/2)

x x
==-2 cos<arcsen E) + 3arcsen 5 +c=

dx.

x+3 J 2sent +3

—ax = e —
V4—x2 V4 —4sen?t

=(—2cost +3t —I—c)|

2costdt

t=arcsen(x/2)

:—ZQ 1—sen2<arcsen§>+3arcsenx+c :3arcsen§— 4—x24c. |

Consideriamo integrali del tipo

fR(x, x2—42>dx,

con R funzione razionale di due variabilie 2 € RT .
Effettuiamo la sostituzione x = ¢(t) =acosht, quindi ¢'(t) =asinh¢. Si ha

Vxr—a?=Va?cosh’t —a? = Va2 sinh’t =alsinht|.

Sesisceglie t € [0,400[ siha [sinhz|=sinh¢. Inoltre pertali ¢ risulta ¢ = settcosh(x/a).
Quindi si ha

t=settcosh(x/a)

JR(x, x2—42>dx :JR(acosh t,asinht)asinhtdti

Poiché senh e cosh sono funzioni razionali dell’esponenziale, I’integrale ¢ trasformato
nell’integrale di una funzione razionale dell’esponenziale.

La sostituzione ¢ corretta se nell’intervallo di integrazione risulta x > a; se invece
x < —a occorre porre x =—acoshr.

3.1.21 Esempio. Calcoliamo

f Ve Z9dx.

Effettuiamo la sostituzione x = ¢(¢) =3cosht, quindi ¢'(z)=3senht. Si ha

2
t= settcosh<§> = log<§ + <§> — 1> = log(x + v/ x2 —9>—log3.
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Pertanto

J v x2—9dx:J v 3cosh2t—93senhtdt|

el —e\? 9 » L
=9 > dt =c | (=24 )dy) =
t=settcosh(x/3) 4 t=settcosh(x/3)

9 a9 9 u >
=|-e" —=t—=e " +c
<8 2 8

:9Jsenh2tdt| =

t=settcosh(x/3) t=settcosh(x /3) o

t=settcosh(x /3)

9/x+v/x2=9\" 9 9 3 ’
(VO D e /2= 9) o [ — ) fe=
8< 3 > 2 loglr+ vz =9) 8<x+J—x2—9> e

2
=—(2x?—9+2xv/x2—9)— = og(x+vVx?—9)—— ; +c=
1( \/2—> 91 ( \/2—> 81<x Vx —9>
2 8 \ x

2= (x2—9)
A O ) . N )N
= 1x\/xz—‘)—; log(x+\/x2—9)+0-

2

Consideriamo integrali del tipo
jR(x, v x2 +42)dx ,

con R funzione razionale di due variabilie 2 € RT .
Effettuiamo la sostituzione x = ¢(¢) =asinht, quindi ¢'(t)=acosht. Si ha

Vxl+al= \/azsinhzt +a2= \/azcoshzt =acosht.

Se si sceglie ¢ €[0,400[ risulta ¢ =settsenh(x/4). Quindi si ha

JR(x, V x? +az)dx = f R(asinht,acosh t)acoshtdt| .

t=settsenh(x/a)

o

Poiché senh e cosh sono funzioni razionali dell’esponenziale, I'integrale ¢ trasformato
nell’integrale di una funzione razionale dell’esponenziale.

3.1.22 Esempio. Calcoliamo
szx/x2+1dx.
Effettuiamo la sostituzione x = ¢(¢) =sinh ¢, quindi ¢’(¢) =cosh¢. Si ha
t =settsenhx = log(x +4/x2+ 1).

Pertanto

sz\/xz—i—ldx:JsenhztVSinhzt—i—lcoshtdt| =

t=settsenh x

t_ ,—t\2/,t —t\2
:fsenhztcoshztdtl :J<e ¢ > <e te > dt
t=settsenh x 2 2

t=settsenh x
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1 1 1 1

=— (e4t—2+ef4t)dt| :<—e4t——t——674l+c> =
16 t=settsenhx 64 8 64 t=settsenh x
i(x+ x2+1>4—110g<x+ x2+1>—i(x+ x2—|—1>74+c:
64 8 64

4

1 4 1 1 [ x—vx2+1

= —(x+vVx2+1) ——log(x +vVx2+1)—— [ =——L= ") 4=
64( ) 8 e ) 64< —(x2+1)>

1
—(x4+4x Va2 +1+6x7(x? + 1)+ 4x(x* + 1) Va2 + 14+ (x> + 1) >
1
N 2 —
810g<x+ X2 +1)
1
— o (=4 VR T e (P ) e + D)V 14 (0 1)) o=

1 1
:§(2x3+x)\/x2+1—§log<x+ x2+1)+c. <

Osserviamo che la radice quadrata di un polinomio di secondo grado, che non sia un
quadrato di un polinomio di primo grado, pud sempre essere ricondotta ad uno dei tre casi

Var—x2, \/x2—a2, \/x2+a?.

Infatti, siano « €R*, B,y €R. Siha

wtpesyle os B )l (e £ - 250,

4a2 4072 2a 4a?

Se @>0 e 8 —4ay >0 allora, posto a = 1/ 32 —4ay/(2a)risulta

Vet Brry=va(x+ )

La presenza del termine x 4 ([3/2a) al posto di x richiede di modificare la sostituzione
ponendo x +(/3/2a)=acoshz.

Se @>0 e [3*—4ay <0 allora, posto a = 1/—/2 +4ay/(2a) risulta
/[)7 2
Vax?+Bx+y=+a <x+2—> +a?.
a

Se @ <0 e B2 —4ay >0 allora, posto a = /—/32 + 4ay /(2a) risulta

Jari 3 Brty = y=an ﬂz_<x+§>2.

Non puo essere & <0 e 32 —4ay <0 perché in tal caso il polinomio sarebbe sempre
negativo.
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11) Calcolare

Jx—i—Z\/x—I— v
1 x++/x+2
12) Calcolare
\ xt 1 dx.
/zx 3x—1
13) Calcolare
JZ V—x2+4
—dx
x
14) Calcolare
6 1
f S ¥
0 54++vx24+9
15) Calcolare
Jg 2x2 49 d
(2x2—9) v x2—
16) Calcolare
J34+\/—x2+2x+3
dx
2 x—1
17)  Calcolare i seguenti integrali:
1 3/2 .
a.J VX dx f.f x—de
0o 4+24/x 12 V—x?+2x
0
1 > V16—x2
b. J ' i [ Ye=x,
3 (2—x)y/1—x gf 24 x? ¥
2
x—1 X
dx h.f ——dx
o Vx+2 0 Vx24+4+42

1 1/3
d. —d i. V4—9x2d
Jlx pr x 1J~0 x2dx

2 /X1 . f2v16+x2
dx j- —dx
x

2+ x2
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1 / 2 0
k. J ﬂdx n. f x4/ —x2—4x+5dx
0 —1/2

14 4x2

1
L. J (x> +4)1dx
0

1 3
o.f R SN
0 Vxt4+2x242

3 xz 3 1
m'L md’c p'ﬁ x(v/4x/(x +3)+2)

INTEGRALI VARI

18) Calcolare
2
f _ losx
1 3x(log"x +4)

19) Calcolare

J”/G —2senx +3cosx
x
0 (3senx +2cosx)’

20) Calcolare

Jz arctan(x + 1) Jx
o (4x+1)/2

21) Calcolare
flﬂdx_
o (e3x+2)

22) Calcolare

23) Calcolare
J”M w/2—|—sen2(2x)d
——Cdx.

=12 sen(2x)

24) Calcolare i seguenti integrali:

2 1
a. J arctan< x2—1>dx c. J e Vex +1dx
V2 0
™12 x cosx

b. fo sen(ﬁ)cos(ﬁ)dx d. dx

3
=4 Semx

dx
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/4 1 1

— —————dx
0 ﬁl—l—cos(ﬁ)

/2
f. f x sen x cos’x d x
/4

/2
h.f X dx
/4 sen’x

T

0
g.f 2x log(x +5)dx
2

e¥—3e¢*

2
i +1)——————d
' f1<x )(ex+4+.’>e*x)2 *
12
]J (6x* +2) arcsenx dx
0

log3

k. (2coshx +senh x)log(senhx)d x
log2

L J cos(mlogx) dx
1 x

0
m. J e exp(e® +1)dx
—log2
2
n. J (x*—2x)e* dx
1

2/5
0. f (5x —2)*e ™ dx
0

2
x?arctanx dx

=
S—

1
x?arctan(x’)dx

=
S—

2
3
x2e¥ dx

=
S—

@/3)m
(2x sen’x + x? cosx)dx

S

1/4
t. f (4x* + 1)arcsen(2x) d x
0

o
u.fl TEEE arctan(ﬂ)dx

dx

. J4 cosh(ﬁ)—i—Zsenh(ﬁ)
0 (senh(ﬁ)—i—Zcosh(ﬁ))z

2

w. f " sen(y/x )cos(vE ) dx

2[4

/4
x. f sen(x) cos(4x) log(9-+cos’(4x)) dx
0

(9+ cosz(4x))2

2
X
y. J; m log(3x)dx

3
Z. J log< 4x_6+3>dx
2 X
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3.2 SOLUZIONI E RISULTATI

1) La funzione integranda ¢ razionale, il grado del numeratore ¢ minore del grado del
denominatore. Per calcolarne I'integrale scomponiamola in fratti semplici.

Il denominatore si fattorizza in x(4x + 3). La scomposizione si pud ottenere con un
semplice artificio:

x+3 _4x+3—3x_ 4x+3 —3x 1 3

= + - .
x(4x+3)  x(4x+3)  x(4x+3) x(4x+3) x 4x+3

Quindi una primitiva della funzione integranda ¢
3
x — log|x| — 1 log|4x +3].

Pertanto I'integrale & uguale a
4

3 3 3
log|x| ~ logl4x +3| | = log4—Z log19 + 1 log7.

1
2) La funzione integranda ¢ razionale, il grado del numeratore ¢ minore del grado del
denominatore. Per calcolarne I'integrale scomponiamola in fratti semplici.

Fattorizziamo il denominatore. Il polinomio x*+5x?+12x+8 si annulla per x =—1,
quindi ¢ divisibile per (x + 1). Effettuiamo la divisione con il metodo di Ruffini. Si ha

15 12| 8
—1 —4 |8
1 4 8] o

—1

Pertanto risulta
0 45x% +12x +8 = (x + 1)(x? +4x +8).
Per il polinomio x?44x +8 si ha A/4=2?—8=—4 <0, quindi ¢ irriducibile.
Per scomporre la funzione razionale in fratti semplici determiniamo a,b,c¢ € R tali che
x2—2 _a + bx+c
x34+5x24+12x+8 x4+1 x2+4x+8°

Riducendo a denominatore comune si ottiene

a bx+c  a(x*+4x+8)+(bx+c)(x+1)
x+1 x24+4x+8 (x +1)(x2+4x +38) B
_@+b)x*+(@da+b+c)x+8a+c

B (x+1)(x2+4x+38) ’

quindi deve essere
x*—2=(a+b)x*+(4a+b+c)x+8a+c.
Uguagliando 1 coeflicienti dei due polinomi si ottiene il sistema
at+b=1,
4a+b+c=0,
8a+c=-2.
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Sottraendo la prima e la terza equazione dalla seconda i ottiene —54 = 1, quindi a = —1/5.
Sostituendo tale valore nella prima equazione si ricava b = 6/5, sostituendo nella terza si
ricava ¢ =—2/5. Quindi risulta

! x2—2 (! 1 6x—2
dx=- — + dx =
o X3+5x2412x+8 5 x+1 x2+4x+8

1 11 ('302x+4)—14
=—|—loglx+1|| +- | ——————dx=
5[ gl -+11], SL 2+ 4x18

1 o1 (! 14
= - —10 X+1 +310 x2+4x+8 ——f —dx
5[ gle 1]+ 3log] It 5)y x2+4x+8

Poiché il trinomio x? 4 4x 48 ¢& irriducibile, per calcolare I'ultimo integrale scriviamolo
sotto forma di un quadrato pit una costante. Si ha

2 2
x2+4x+8:x2+4x+4+4:(x+2)2+4:4<<’”2r > +1>,

pertanto

1 1 1
J de:f 4 5 dx:[7arctan<x+2>] .
o x*+4x+38 0 2<<(x+2)/2) +1> 2 /1

Quindi

1 2 1
x“—2 1 ) x+2
fo x3+5x2+12x+8dx—g[—log|x+1|+3log|x +4x+8|—7arctan< >]O_
1 3
:g<—log2+3log13—7arctan5—310g8+7arctan1>:
1 3 7
= 5 (~1010g2+ 3l0g 13— 7arctan> + % 7).
5( ogZ2+3log arcan2—|—47r
3)
1 21
a. |:Ex2—x+210g|x+l|] :§+210g3—210g2
1
| AT 1, 34 5 2
b. [E log|x? 49| —i—arctaun(;ﬂ2 =3 logE + arctang—arctang
c [11 e+ 1] 1|x+3|]2 log3— ~ log5
. |=lo —= =log3—=1lo
2% 2 . 8T8
1 9 1 2191
d. [—xz————log|2x+l|} =——— log5
8" 16(2x+1) 16 . 20 16
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3

o

1 1 5 3
[5 log|x + 1| + > log|x—1|—log|x|] =3 lng_E log3

2

3

f. |lo |xz—x+2|+i arCtan<2x_1> =lo 4-i—i arctan<i>+iarctan<i>

L V7 Vo2 R A W) ARV, A W/
[—iﬂo |x+z|]2—1+1o 4—log3

& x+2 8 1_ 4 & &

h. 2 /3

1 2 ) <¢3> 2 ) <2 >

- X — arctan| — X = - — arctan| ——

3 34/15 V5 , 3 315 V5
1 6 3 1
i [log|x| ~3 log|xz+5|]1 =3 log6—z log41

. 2 2 3 11
j- [210g|x +2|—2log|x +3|]O_210g§

1 7 11 45
k. [51 x2+2 +1o—] —5log— — 2
og| | 12, og CERET

2 3 1 3 2 1
! [—-1 3 loglx — 5|4 L 1 5] S T S I T
5 og|x|+lo oglx |-|—10 og|x + 5| 1 s og 0 og

4) La derivata della funzione coseno ¢ la funzione x — —senx, quindi la funzione inte-
granda ¢ il prodotto tra una funzione in cui la variabile x compare solo come argomento del

coseno e la derivata di tale funzione. E allora evidente che la sostituzione ¢t = ¢(x) = cosx
trasforma I’integrale in uno piu semplice. Abbiamo

J”/zsenxcosxdx:_f”/2 cosx dcosxdx:_fcos("/z) t dr—
0 0 C

cosx +2 cosx+2 dx 0 L2
0 1
t+2-2 2 1
=—| ——dt= <1——>dt: t—2loglt+2|| =1—2log3+2log2.
Jl 42 L t+2 [ gl +21] & &

5) Trasformiamo I'integrale in modo che la funzione integranda sia razionale effettuando
la sostituzione ¢t = tan(x/2), cioé x = ¢(t) = 2arctant . Risulta ¢'(t)=2/(1+t?); per
x=0siha t =tan0=0, per x =7/2 st ha t =tan(n/4) = 1. Quindi si ha

f”/23cosx+25inxdx_f13(1—t2)/(1+t2)+4t/(1+t2) 2 3
0 2+cosx 0 24+ (1—12)/(1+¢2) 1412
(32443

B L(z2+3)(z2+1)
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Il denominatore ¢ scomposto nel prodotto di due polinomi di secondo grado irriducibili.
Scomponiamo la funzione integranda in fratti semplici determinando 4, b,¢,d €R tali che
=32 +4r+3 _ar+b  ct+d
(t24+3)(2+1) 243 241

Si ha
at+b  ct+d (at+b) 2+ 1)+ (ct +d)(t*+3)
243 241 (2 +3) (2 +1) -
(a+)> +(b+d)t> +(a+3c)t+b+3d
- (2+3)(2+1) ‘
Pertanto deve essere
a+c=0,
b+d=-3,
a—+3c=+4,
b+3d=3.
Sottraendo la prima equazione dalla terza si ha 2c =4, quindi ¢ =2 ¢ a =—c =-2. Sot-

traendo la seconda equazione dalla quartasi ha 2d =6, quindi d =3 e b=—3—d =—6.
Quindi si ha

f”ﬁ3amx+2ﬁnxdx:2J”<_2z+6+2z+3>dt:
0 2+ cosx 0 243 241

1
= 2[—10g|t2 +3]—24/3 arctan<%> +log(t* + 1)+ 3arctan ti| =

0

1 3 3 2
=2( —lo 4—2\/§arctan<—>+lo 2+43arctan1+log3 | =2lo ——|—<———>7‘E.
< g /3 g g g2 2 5

6) Trasformiamo la funzione integranda, in modo da esprimerla in funzione di tanx.
Si ha

-2
1 sin’x + cos?x

. 2 . . 2 .
sin“x +6sinx cosx + 8cos?x  sin“x + 6sin x cos x + 8 cos?x
2

sin“x
+1 5
cos?x tan“x + 1
sin’x sin x tan?x + 6tanx + 8
+6 +38
cos2x COSX

Effettuiamo la sostituzione ¢ =tanx, cio¢ x = ¢(t) =arctant . Risulta ¢'(¢) =1/(t*+1);
per x =0 siha t =tan0=0, per x = 7t/4 si ha t =tan(/4)=1. Pertanto

/4 1 /4 t 2 1
f — - dx :f anx+ dx =
o sin“x+6sinxcosx + 8cosZx o tan’x+6tanx+8

Jl 241 1 Jl 1
= t=| ——dt
o t2+61+8 1241 o t24+61+8



3.2. Soluzioni e risultati 139

Scomponiamo la funzione integranda in fratti semplici. Il trinomio ?+6¢+8 siannulla
per

t=—3% 32—8:—3:|:1:{_

Pertanto t? 46t +8=(t +4)(t+2). Si ha

1 1 2 C14+t—2—t 1 1 1

1
(C+4)(+2) 2(t+4(t+2) 2(t+4)(t+2) 2t+2 2t+4

Pertanto

/4 1 11 1
[ e [
o sin“x +6sinxcosx + 8cos?x 2Jo\t+2 t+4

= %[log|t +2|—log|t +4|]:) = —(log3—log5—log2+log4) = % logg.

1
2
7)

301 =3
a. [—x+— sen(4x)} =—r
4716 e 16

b. [arctan(sen x)]g/z = %

1 1 N 1
= log|senx —2| — - log|sen x + 2| =——log3+ - log5
4 4 e 2 4

g

&

p 1
[—log|ZSenx —i—cosx|]0/3 :—log<\/3+ E>

[ L ogitanx + 2] — = logltan®x + 1] + 2 T“ D log3— 2 log2+ =
c. — 10 anx — — 10 an-x — X = — 10 — — 10 —_—
598 10 8 5 5 %8770 % 0

0
/2

f. _—%arctan(%tan(%)—%)} :—32?%

0

1 SN 1 1
g. [log|cosx| 3 log|cos®x 4 1| + arctan(cos x)]o =3 log2— > log3— % + arctan ﬁ
1 1 177 1 22\ 1
h. [-1 1 —cosx|— 11 +1+—] —Dog(14+ 22 )4 L
1 og|1—cosx| Z og|cosx + 1] Peoss—2],, 4 og 3 7
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8) Llintegrale ¢ uguale a

2 x —x 2 2x
1
J Cre J Bk 2NN
o 2(ex+2) o 2e¥(e*+2)
Con la sostituzione ¢t =e* I'integrale si trasforma nell’integrale di una funzione razionale.

Poniamo quindi x = ¢(¢) =logt, per cui ¢'(t)=1/t.Per x=0siha t =1 eper x =2
siha t =e?. Pertanto

2 e? 2 2 2
h 411 1 t*+1
j cos xdx:f —+—dt:—f ALy,
o e¥+2 1 2t(t+2)t 2); t3(t+2)
Scomponiamo la funzione integranda in fratti semplici, cioe cerchiamo a,b,c € R tali

che

241 _a b c

_— A
(t+2)t2 2 ¢ t42

Si ha
a b ¢ at+2)+be(t+2)+ct?  (b+o)P+(a+2b)t+2a
2t t4+2 (t +2)22 B (t +2)t2 '
Pertanto dCVC essere
b4+c=1,
a+2b=0,
2a=1,

dacuisiricavaa=1/2, b=—a/2=—1/4 e c=1—b =5/4. Quindi

2 82 2 82
J coshxdlef to+1 dth <11_11+§L>dt:
, e 42 2), 2(t+2) 1 \412 8t 8t+2

11 1 5 ¢
:[—————log|t|+—log|t+2|} =
: 8 )

9) Siha

Le¥ 42 Ye?r 42
———dx= dx

o e¥+4ex o e +4
Possiamo trasformare 'integrale in quello di una funzione razionale con la sostituzione
t =e”, tuttavia, poiché I’esponente ¢ sempre 2x, ¢ piu utile effettuare la sostituzione
t = e*; in questo modo si ottengono polinomi di grado pitt basso, rendendo piti semplice
il calcolo dell’integrale. Quindi poniamo ¢ = e**, cio¢ x = ¢(t) = (1/2)logt . Risulta
¢'(t)=1/(2t),se x=0siha t =1,se x=1 si ha t =e. Pertanto risulta

1 X —X L’2 (_’Z

e*+2e t+2 1 1 t+2

— dx= — —dt=- dt
Jo ex 4 4e—x fl t+4 2t zﬁ t(t+4)
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Scomponiamo in fratti semplici la funzione integranda. Si ha

t+2 _1t+t+4_1< 1 1>
t(t+4) 2 t(t+4) 2\r+4

Pertanto

1 x —x &2

e¥ +2e 1 1 2

— dx=- < +—>dt— log|t| + log|t +4 =
fo e* +4e—* 4J; t t+4 [og| |+ log] |]1

= 4_1; (log(ez)—i-log(e2 +4)—10g1—log5) = 2 log<e +4>

10)

1 7
a. [arctan(ex)]o =arctane — 7

b. [2 arctan(e®)+e~ ]é =2arctane + é — g —1
1 ' 1 5
[5 log|3€ +1|]0:3e+ log(3e +1)— 1 — > logs

d. [%e ——x+ log|e —2|]:/2:%el/2_g+ log(2 _el/z>
1 17 1 11
[glog|26 +3|+3x]O:glog(26+3)+3—glog5

1
2 *—1

f. |e ——log|e +2|+ log|e2x—26 +4|——arctan<e > =
V3 :

2 e—1
—e——lo e+2)+ log(e” —2e +4 ——arctan<
g g(e? ) 7 7
5 37 5, 1
g. [—ezx——x:| =l
4 271,74 T

h. [senh x+2 arctan(e")]1

T
0 =senh142arctane — —

11) Per eliminare la radice dalla funzione integranda, ¢ opportuno effettuare la sostituzio-
ne Vx +2=1t2,cio¢ x=g¢(t)=t>—2. Risulta ¢'(t)=2t; per x =1 siha t =+/3 e per
x =2 si ha t =2. Pertanto
J x+2v/x+2 22 2+2t2tdt—2f2 £ +2t2—2¢
D xdvxt2 )5 —2+1 s 242

La funzione integranda ¢ razionale, il grado del numeratore ¢ maggiore del grado del de-
nominatore, occorre anzitutto scomporla nella somma di un polinomio con una funzione

dt.
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razionale avente il numeratore di grado minore di quello del denominatore. Si ha

P 4212—2t P42 —2t412 PP4r—2—t42 —t42
= =t =414+ —"
t24t—2 t24t—2 t24t—2 t24t—2

Il denominatore si annulla per

1l /12—4(=2)  —1x3 (-2,
B 2L
pertanto t? 4+t —2=(t+2)(t —1). Per scomporre in fratti semplici la funzione razionale
integranda dobbiamo determinare 4,5 € R tali che
a b —t 42
+ = .
t+2 t—1 t24t-2

Riducendo a denominatore comune risulta
a b a(t—=1)+b(t+2) (a+b)t—a+2b
t+2  t—1 (e +2)(t—1)  (t+2)(t—1)

pertanto deve essere
at+b=-—1,
—a+2b=2.

Sommando membro a membro le due equazioni si ottiene 35 =1, quindi b =1/3 e dalla

bl

prima equazione si ha 2 =—1—5b =—4/3. Pertanto
2/ ? 41 11
f“ D ax=2 | (e41-f o4 dis
1 x+vx+2 /3 3t+2 3:t—1

2
|:t +2t——log|t+2|+ log|t—1|} =
5
2
:4+4—§log4+glog1—3—2\/§+§log(\/g+2)—glog(\/§—l):
8 8 2
:5—2\/§+310g<\/3+2>—310g4—5log(ﬁ—l).

12) Nella funzione integranda compare la radice quadrata del quoziente di due polinomi
di primo grado; per eliminare la radice ¢ opportuno effettuare una sostituzione in modo che

la nuova variabile di integrazione sia tale radice. Percid poniamo ¢t = 4/(x+1)/(3x—1),
quindi (3x —1)t> = x + 1, da cui si ricava (3t> —1)x = t? 4 1. Pertanto effettuiamo la
sostituzione x = ¢(t)=(t*+1)/(3¢t*—1). Si ha
2t(3t*—1)—6t(t*+1) 61> —2t—6t>—6t  —8t¢

(3t2—1)? B (3t2—1)? T Ge—1p’

¢'(1)=

per x =1/2 risulta t =+/3, per x =1 risulta £ =1, per cui si ha

J s+l J3t2—1t —8¢ dt—fﬂ 812 0
1/2x 3x—1 A1 (G212 ) (24 1)(3e2—1)
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La funzione integranda ¢ razionale con numeratore di grado minore del denominatore.
Anzitutto & necessario fattorizzare il denominatore. Il polinomio t* 41 ¢ irriducibile,
mentre il polinomio 3t —1 si scompone in (\/3 t+ 1)(\/3 t —1), percio la funzione
integranda si scompone in fratti semplici nella forma

812 B a 4 b +ct+d
(2+1)(32—1)  /3r—1 B3r+1 t24+1°

cona, b, ¢ e d opportuni numeri reali. Riducendo a denominatore comune ’espressione
a secondo membro, il numeratore diventa

a(V3t+ 1)+ 1)+ b(V3t—1)(2+ 1)+ (ct +d)3P —1)=
=V3ar’ +V3at+ar’ +a+V3b> +V3bt —bt*—b+3ct’ —ct +3d’ —d =
=(V3a+V3b+3¢)’ +(a—b+3d)> +(V3a+V3b—c)t+(a—b—d).

Questo numeratore deve essere uguale a 812, quindi a, b, ¢ e d debbono soddisfare il
sistema

V3a++/3b+3c=0,

a—b+3d=38,
V3ia++v/3b—c=0,
a—b—d=0.

Sottraendo membro a membro la terza equazione dalla prima si ottiene 4¢ = 0, quindi
¢ =0. Sottraendo membro a membro la quarta equazione dalla seconda si ottiene 4d =8,

quindi d =2. La prima equazione diventa v/3a ++/3 b =0, quindi b =—a, sostituendo
nell’ultimasiha 24—2=0,quindia=1e b=—1.
Percio si ha

1 V3 2
R B A e
1 1 2

dt =

V3

1 \W3t—1 V3r41 241
1 1 v

=| — log|v3t—1 ——10g1/§t+1+2arctant] =
|53l 3 1

:%log2—%log4+2arctan«/§—%log(ﬁ—l)+%log(ﬁ+1)—2arctanl:
1 T 1 (\/3+1>2 > T

=——log2+2—+—1 —2- =
Vo 33 Og<(ﬁ—1)(ﬁ+1) 4

2 2 T
=— " log2+— log(vV3+1)+—=.
75 082t 5 el V3t )+ g
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13) Nella funzione integranda compare il termine 4/—x2+4; eliminiamo la radice con
una opportuna sostituzione. Poniamo x = ¢(z) =2sent ; se x appartiene al dominio di in-
tegrazione, allorasi ha x/2 €[1/2,1] C P(arcsen), quindi risulta ¢ = ¢~'(x) = arcsen(x /2)
e gli estremi di integrazione diventano arcsen(1/2) e arcsen 1. Poiché ¢t €[7/6,7/2] si ha
cost >0, quindi

2 T 4 arcsen 1 m /2 2 2;
f x—+dx:f (2sent) ZCostdt:f O
1 x a

2sent

resen(1/2) r/6 Sen t

La funzione integranda puo essere scritta come prodotto tra una funzione razionale
di cost e sent; quindi la sostituzione cost = s trasforma 'integrale in quello di in una
funzione razionale. Si ha infatti

™22 cos?t ™22 cos?t ™2 2costt
J €os dt:f Coi sentdt:f L8 entdr.

sen t sen?t 1—cos?t
/6 /6 /6

T T T

Poiché la derivata della funzione coseno ¢ la funzione x — —senx, con la sostituzione
s =cost siottiene

/2 2 cos(7/2) 2 V3/2 2
J _2cost sentdt:—f 2s ds:f 2s ds.
C 0

o 1—cos?t 1—s2 1—s2

T 0s(7/6)

1l polinomio a numeratore ha lo stesso grado di quello a denominatore, quindi bisogna
scomporre la frazione nella somma di un polinomio e di una frazione il cui numeratore
abbia grado minore di quello del denominatore. Si ha

252 252—-242 2
= =24+ .
1—s2 1—s2 1—s2
Inoltre
2 (I4s)+(1—=s) 1+4s 1—s 1 L 1
1—s2 1—s2 T 1—s2 1—s2 1—s 1+4s

Pertanto st ha

2 V32 V32
J\/x-i- f 252 S_J <_2+1+1>d5:
0

1—3s2 145 1—s
+2 2—v3
=[—2s +log|t +s|—log|1—s |]‘f/2 —/3+1o g<‘/_ >_l°g< \/_>:

2
(V3+2)
(2—/3)(2+V3)

14) Per eliminare la radice ¢ opportuno effettuare la sostituzione x = ¢(¢) = 3senhz,
quindi ¢’(¢) =3cosht. Si ha t = settsenh(x/3), quindi per x = 0 risulta ¢ =0, mentre

per x =6 risulta ¢t =arcsen2 = log<2 +v22+ 1) =log(2+ 1/5) . Pertanto

:—\/3+log< >:—\/§+log(7+4ﬁ).

3coshtdt =

6 1 settsenh 2
J — dx= f
o 5+ v x2 +9 settsenh0 5 4 4/ 9senh2t +9



3.2. Soluzioni e risultati 145

log2+v3) 3 ¢0sh ¢ 4 log2+v5) 3ot 4 3~
= —_—adt = e —
J; 5+3coshr J; 10+ 3et 43¢~

10g(2+ﬁ) 362[ +3
_L 32t 4 10et +3

Per calcolare I'integrale ¢ opportuno eliminare I'esponenziale, ponendo s = e’ ; quindi
effettuiamo la sostituzione t = h(s) =logs ; poiché »'(s)=1/s, si ha

J‘log(2+\/§) 362t +3 4 J‘exp(log(2+\/§)) 352 +3 1
0 e

3¢2t 4 10et +3 , 352410543 s
_ f2+ﬁ 352 43
A (3s2+10s +3)s

Dobbiamo integrare una funzione razionale con numeratore di grado minore del deno-
minatore. Fattorizziamo il denominatore. Il trinomio 35?4 10s 43 si annulla per

-3,
_5EVI9 k4

3 3 —_—

pertanto si ha la fattorizzazione
1
3524105 +3 =3(s +3)<s+ §> =(s+3)3s+1).

Per scomporre la funzione integranda in fratti semplici determiniamo «,b,c € R tali
che risulti

a b ¢ 35243
S —+ = :
s s+3 3s+1 (3524105 +3)s
Si ha
4 b 4+ _a(s+3)Bs+1)+bs(Bs+1)+cs(s+3)
s 543 3s+1 5(3s2410s +3) B
_ (Ba+3b+4c)s?+(10a+b+3c)s +3a
B 5(352 4105 +3) '

Pertanto a,b,c devono verificare il sistema

3a43b+4+c=3,
10a+b+3c=0,
3a=3.

Quindi 2 =1 e rimane il sistema

3b+c=0,
b+3c=-—10.
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Dalla prima equazione segue ¢ =—35 ; sostituendo nella seconda si ottiene b —95 =—10,
da cui segue b =5/4 e ¢ =—15/4. Percio risulta

¢ At 5 15
| estnmy | G-y )as=
0 5+vVx2+9 4 )4 s s+3 3s+1
1
= Z[4log|s|+5log|5 +3|—5log|3s + 1|:|2+f
5 5 5
=log(2+ \/g)—i-z log(5+ \/g)—z log(7+31/§)—z log4+z log4 =

_ 5. [ (5+v5)(7—-3V5)
_log(2+ \/g)—}-z log<<7+3‘/§)<7_3‘/§>

>:log<2+\/§)+§ 10g<5—2\/§).

15) Lafunzione integranda ¢ funzione razionale di x e v/x2—9, quindi ¢ utile effettuare
la sostituzione x = ¢(t) =3cosh ¢, quindi ¢'(z)=3senht. Siha ¢ = settcosh(x/3), quin-

di per x =6 risulta ¢ = settcosh2 = log(Z +4/22— 1) =log(2+ \/3) , mentre per x =3
risulta ¢ = settcosh3 = log<2 +1/32— 1) =log(2+ \/g) . Pertanto

3senhtdt =

J9 2x?+9 seutcosh 18cosh’t +9

o (2x2=9) ‘/— settcosh2 (18 cosh’t — 9)m

_ Jlag(zh/g) 2cosh’t +1 dr — flog@*‘/g) 2(et +e ) 4+1
log(2+v3) 2cosh’t —1 log(2++3) 2et +e1)/4—1

fl°g<2+‘@) ety 24e 242 4 fk’g(”fg) e*t +4e% 41
log(243) o2t 422t —2 log(2+v3) et 41

dt.

Rimane da integrare una funzione razionale di e? ; per eliminare gli esponenziali si puo por-
re s = e*, percio effettuiamo la sostituzione t = h(s)=(1/2)logs . Si ha h'(s)=1/(2s),
gli estremi di integrazione diventano

exp<210g<2+ 1/3)):(24— \/3)2:74-4\/3,
exp<210g<3+\/§>>=(3+\/§>2:17+12\/§.

quindi risulta

ds.

Jlog(“ﬁ) e et 41 J17+12ﬁ52+4s+1 iy _1J17+12ﬁ52+45+1
log(2++73) et +1 74443 s2+1 25 74av3 s(s2+1)

La funzione integranda ¢ razionale e il suo denominatore ¢ gia fattorizzato; per scomporre
in fratti semplici ¢ sufficiente osservare che

52+45+1_ s2+1 n 4s _1+ 4
s(s241)  s(s241)  s(s2+1) s s241°
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Quindi Iintegrale ¢ uguale a

1 [(7H1292 4 1 17+12+/2
Z " ds = —|log|s| + 4 arctans =
J7+4ﬁ <s 52+1> 2[ gl biavs

= % log(17+ 12\/§>+2arctan(l7+ 12\/5)—% log(7+4\/§)—2arctan(7+4\/§).

16) La funzione integranda ¢ funzione razionale della variabile x e della radice quadrata
di un polinomio di secondo grado in x; occorre innanzitutto effettuare una sostituzione
che consenta di eliminare tale radice, trasformando I’integranda in una funzione razionale.
Si ha
243 =—(P—2x—3)=—(x*—2x + 1)+ 4=4—(x—1)%;

quindi, per eliminare la radice dalla funzione integranda, risulta utile porre x —1=2sent,
cioé x = ¢(t)=1+2sent e ¢'(t)=2cost . Poiché (x —1)/2€[1/2,1] C P(arcsen), si ha
t=¢ (x)= arcsen((x—l)/Z) , quindi per x =2 st ha t =arcsen(1/2)=7/6 e per x =3
siha t =arcsenl =1n/2. Se t €[n/6,7/2] si ha cost >0, quindi v/ 1—sen?t = cost;

pertanto risulta

f AV XA J”/24+\/ (2sent)?
2

2sent

2costdt =

x—1

2 44 2cost "2 4cost +2cos’t
= j —+ cos 2costdt = J TCOSETLCOS E +2cos dt.
z/6 2sent /6 sent

Questa funzione integranda puo essere facilmente trasformata nel prodotto di una fun-
zione razionale di cost moltiplicata per sen . Abbiamo infatti

™12 4cost +2cos’t ™12 4cost +2cos’t
— dt= ——  sentdt=

/6 sent /6 sen?t

J”/z 4cost +2cos’t
= —  —  sentdt
/6 1—cos?t

Poiché la derivata della funzione coseno € 'opposto della funzione seno, con la sostituzione
s =cost , si ottiene I'integrale di una funzione razionale:

/2 4cost +2cos’t cos(7/2) g5 4 252 V3/2 52 + 45
—————  sentdt=— ds = d
C 0

/6 1—cos?t os(fe) 12 1—s2
La funzione integranda e razionale, il polinomio a numeratore ha lo stesso grado di
quello a denominatore, quindi occorre scomporre la frazione nella somma di un polinomio

e di una frazione il cui numeratore abbia grado minore di quello del denominatore. Si ha

252 +4s 252 —2+42+4s LAt
1—s2 1—s2 B 1—s2°
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2
. Poiché 1—s* si fattorizza in

1—s

Dobbiamo scomporre in fratti semplici la funzione
(145)(1—s5), la scomposizione in fratti semplici ¢ della forma

“_ b
1+s 1—s’
con a4 e b numeri reali da determinare. Si ha
a b a(l1—s)+b(1+s) (b—a)s+a+b
14s 1—s  (1+s)(1—s) 1—s2 ’
affinché questo sia uguale a (4s +2)/(1—s?), i coefficienti a e b soddisfare il sistema
b—a=4,
a+b=2.

Sommando membro a membro si ottiene 26 = 6, da cui b = 3; sottraendo membro a

membro si ottiene —2a =2, da cui a =—1. Quindi si ha

3 V=—xI+2x+3 V3/2 2 V32
J 44 X +2x+3dx:J 45 +2s ds:J <_2_ 1 n 3 >ds:
2 0 1—52 0 1+5 1—5
V342 2—+3
—3log 5 .

x—1

[ 25—10g|1+S|—3log|1—$|];/§/2:—\/__1 <

17)
a. [ x—Z\/—+4log|2+1/—|] ——z+4log3 4log2

b. [—2 arctan(v 1—x )]i} =— % +2arctan?2

C. [ (x+2)3/2—6m] ——?4-141/—

o)

—1)(«/_+1)>
V5+1)(v3—1)

w
w

[log|v2x+1—1|—log|v2x+l+ 1|]? :log<E

2
_ T
3

e.[ xz—l—arctan< x2—1>]1

3/2
f. [—arcsen(x—l)—\/ —x2+2x] ;2 _—g
3x <1 >2 5
—arcsen( —x )| =>7
4 6

. | 3arctan| ——
8 [ <v16—x2 0
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h. [\/x2+4—210g(\/x2+4+2>]2:2\/5—210g(1/§+2)—2+210g4
0

i |x 1—2x2+zarcsen<2x> 1/3—L z

TV T 3 27/, f 9

7 1 7 1
je |:1/7 arctan<ﬂ> + settsenh<— ﬂ V7 arctan £ + settsenh —
V16 +x2 4 V5 2

1

k. [% Y/ 1+8x2—% arctan(x/ 1+8x2)} = 1—‘—1 arctan5 + 1—72

0

| x 1_ 1
D lavarrd] 4vs

m [Jevaioie] 10g<x+¢—)] =3V2+ log(3+2V2)—V3— log(2+3)

0
1 2

n. [—5(—x2—4x+5>3/2—(x+2) —x2—4x+5—9arcsen<x+ >] =

—1/2

11 2 45 3
=——+5—9arcsen=+ —v3+= 7
3 38 2

1 1 !
o. [— Vxt4+2x242—- 10g(\/ x4+2x2+2+x2+1>] =
2 2 ,

NERES 1 1
=— 21 542)——+ -1 241
> (\/_+) ﬂ+2 0g(1/_+)
p- ;—Elog 4—x+2—llog i —2|+log * =

1
V242
18) La funzione integranda ¢ il prodotto tra una funzione in cui la variabile x compa-

re solo come argomento del logaritmo e la derivata della funzione logaritmo; ponendo
¢(x)=logx, st ha

3 1 1
—Zlog(ﬁ+2)—zlog(2—\/_) —log2—§—|— log3

logx _ o(x) (x
3x(log® x +4) 3(<g0(x)>2 +4) 7)

Pertanto ¢ utile effettuare la sostituzione ¢ = ¢(x)=logx . Si ha

2 log2
J _ logx dx:f LY
1 3x(log"x +4) o 3(2+4)
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A meno di costanti moltiplicative, il numeratore della funzione integranda ¢ la derivata del
denominatore, quindi si trova facilmente una primitiva. Si ha

log2 log2 log2
fo ﬁdt:fo %tfﬁdt:[élog|t2+4|]o :%log(log22+4)—élog4.
19) La funzione integranda ¢ il prodotto di due funzioni di ciascuna delle quali si trova
facilmente una primitiva: il primo fattore ha la primitiva x?, mentre il secondo fattore si
presenta nella forma g/(x)(g(x))_3 ,con g(x)=3senx+2cosx, quindi una sua primitiva e
—(1/ 2)( g(x))_2 . Pertanto ¢ possibile integrare per parti in due modi diversi; evidentemente
¢ opportuno derivare il fattore 2x , perché con tale scelta rimane da integrare una funzione
in cui la variabile x compare esclusivamente come argomento delle funzioni seno e coseno,
cosa che non accade nell’altro caso. Si ha

J‘N/()Zx —2senx +3cosx

0 (3senx +2cosx)?

1 /6 /6 1
= [Zx } —f 2 dx
2(3senx +2cosx)? 1, 0 2(3senx +2cosx)?

—x /6 /6 1
:[ :| —|—J dx.
(3senx +2cosx)? 1, o (3senx+2cosx)?
Il primo addendo ¢ uguale a
—7/6 T 42 7—44/3 L
(3/2+2(v3/2)) 6 2+12V3 9 (7+4v3)(7—443)

2
:§<41/3—7)77:.

Rimane da calcolare 'integrale del quoziente tra una costante e una funzione omogenea
di grado 2 in seno e coseno. Si puo esprimere tale funzione tramite la funzione tangente,
poiché I'intervallo di integrazione ¢ incluso nel suo dominio. Si ha

senzx

2 2 2 +1 2
1 sen”x + cos“x COs*X tan“x + 1

3senx + 2cosx)? 3senx +2cosx)? sen x 2 (3tanx +2)?’
(o)
+

COs X

pertanto ¢ utile effettuare la sostituzione tanx = ¢. Poiché [0,7/6] ¢ incluso nell’imma-
gine della funzione arcotangente, si ha x = () = arctant, da cui ¢'(¢)=1/(1+t?). Per
x=0siha t =tan0=0, per x =7/6 si ha t =tan(r/6)=1/+/3. Pertanto risulta

J’T/(’ 1 4 J”/(’ tan®x + 1 4 Jl/‘ﬁ 2+1 1 I
X = —  dx = - =
o (3senx+2cosx)? o (Btanx+2)? o (Br+2)21+41¢2

_J“ﬁ 1 d_[l 1 ]1/‘/5_ 11 11 1
o (Br+2)

0 3(3/V3)+2 327 35460 6
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L6331 2=43 1
(6+3+/3)(6—33) 6 3 6
Quindi

J”/éz —2senx +5cosx J [ —x ]ﬂ/(’ [ 1 }1/‘5
X X = _ — —
0 (5senx +2cosx)? (55enx+2cosx)2 0 5(5t+2) 1,

(4\/_ 7>n+7—%

20) Lafunzione integranda si puo esprimere sotto forma di prodotto

arctan(x 4 1) (4x + 1)/2,
ed ¢ facile trovare una primitiva del secondo fattore, mentre il primo fattore ha come deriva-

ta una funzione razionale. Per questo ¢ utile integrare per parti, derivando il primo fattore.
Una primitiva di (4x + 1)/ & —(1/2)(4x +1)"2. Quindi si ha

J2 arctan(x—{—l)d |: 1 can(x+ 1) 1 ]2+1f2 1 1
————dx=|—-arctan(x + 1) ——
o (4x+1)2 2 Vax+1 o (x+1P2+1 V4x+1

:—1arctan3—|—larctanl—l—lj2 ! ! dx =
6 2 2)o X2 +2x+2 JAx +1
:—1:arctalrl}—i—z—}—lf2 ! dx.

6 8 o (X2 +2x+2)y/Ax 1

In questo integrale compare il termine +/4x + 1, per ricondurci all’integrale di una
funzione razionale poniamo ¢t = v/4x + 1, cio¢ 4x+1=1¢?,dacui x = (t*—1)/4. Quindi
effettuiamo la sostituzione x = ¢(t) = (t*—1)/4;siha ¢'(t)=1¢/2.Per x=0siha t =1,
mentre per x =2 si ha t =3, percio risulta

EJZ ! dx—1J3 ! 1ta!z:
2)o (242 +20WAx+ 1 2)0 ((2=1)Y/16+2(t2—1)/4+2) 2

3 4 3 4
- a=|
1 A —=2124+14812—8+32 1 tt+612425

Abbiamo I'integrale di una funzione razionale, che ha numeratore di grado minore
del denominatore, quindi puo essere scomposta in fratti semplici. Occorre fattorizzare il
denominatore t*+ 61?4 25; tale polinomio ¢ biquadratico. Ponendo s = t* si ottiene il
polinomio s? 4+ 6s 4 25 il cui discriminante & 6% —4-25=—64 <0, quindi il polinomio
non ha radici reali. Percid il polinomio ¢* + 6¢% + 25 si fattorizza nel prodotto di due
trinomi di secondo grado irriducibili.

La ricerca dei due fattori puo essere effettuata in vari modi. Si possono determinare le
radici complesse del polinomio e quindi fattorizzarlo nel campo complesso; infine, combi-
nando opportunamente a due a due i fattori trovati, si ricava la fattorizzazione reale. Alter-
nativamente si puo esprimere il polinomio come prodotto di due trinomi con coeflicienti
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incogniti, imporre la condizione che il prodotto sia uguale al polinomio da scomporre e
ricavare 1 coefficienti.
Si puo anche ottenere la fattorizzazione ricorrendo ad un semplice artificio. Si ha infatti

tt 6 +25 =1+ 102 +25— 412 = (2 +5)7 — (2t ) = (£ + 5+ 2¢)(t? +5—2¢).

Per calcolare I'integrale dobbiamo scomporre la funzione integranda in fratti semplici, cioe
dobbiamo determinare i numeri reali 2, &, ¢ e d tali che

4 _at+b ct+d
tA 612425  1242t4+5  2—2t+5
St ha
at+b ct+d _ (at+b)(t?—2t+5)+(ct +d)(t?+2t +5)
L2242t 4+5  t2—2t45 (£24-2t +5)(12 =2t +5) B

at® —2at?+5at +bt> —2bt +5b+ ct’ +2ct> +5ct +dt? +2dt +5d

(£24-2t +5)(12—2t +5) -

(a+c)’ +(—2a+b+2c+d)t* +(5a—2b+5c +2d)t +5b +5d
(£242t +5)(t2—2t +5)

b

quindi a, b, ¢ e d devono verificare il sistema
a+c=0,
—2a+b+2c+d=0,
54 —2b+5c+2d =0,

5b+5d =4.
Dalla prima equazione si ha ¢ =—a e, sostituendo, il sistema diventa
c=—a,
—2a+b—2a+d=0,
—2b+2d =0,
5b+5d =4.

Dalla terza equazione si ottiene d = b, quindi restano le equazioni 106 =4 e 4a =2b.
Pertanto b =2/5 e a=1/5, da cui segue d =2/5 e c =—1/5. Si ha quindi

4 _1< t+2 —t+2 >
t44+6t2425 5\t242t+5 2—2t+5/"

Quindi si ha
3 3

4 1 t+2 —t+2
B
| tt+612425 5) \t24+2t+5 2—2t+5
1 3( 2042 2 2t—2 2 ) B
10 ), \ 242t 45 242t 45 2—2t+5 2—2t+5)
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1 3( 2t+2 2 20=2 2 )dt_
10 ), \e2 42t 45 +12+4  2—2t4+5 (t—12+4/)

(¢
1 242 1 1 2t—2 1 1 Ji =
" 10 21245 2 T P—2i45 2 2 b=
P\ 2+ ((t+1)/2)" +1 + ((t=1)/2)"+1

3
1 t+1 t—1
=5 [log|t2 +2t +5]| +arctan(%>—log|t2—2t +5|+ arctan<7>} =
1

1
= 0 (logZO +arctan2 —log8 +arctan 1 —log8 —arctan 1 + log4) =
1 5
:E<logz+arctan2>.
Pertanto
fzarctan(x-i—l) T 1t L arctan2 4+ - log >
— 2 dx=——-arctan3+ — arctan2+ — log —.
o (dxt+ 1) 8 6 10 10 8%
21) Siha

1 3x 1 3x
1 3
J _re dx:—f x—r dx;
o (e +2) 3Jo (e¥+2)

la funzione integranda ¢ prodotto di due funzioni di ciascuna delle quali si trova facilmen-
te una primitiva: il primo fattore ammette la primitiva x?/2, il secondo ¢ nella forma
g/(x)(g(x))_4 , con g(x) = e* 4 2x, quindi una sua primitiva & —(g(x)>_3/3. Si puo
integrare per parti in due modi diversi; evidentemente conviene derivare il fattore x, per-

ché in tal caso nell’integrale che rimane da calcolare la variabile x compare solo in un
esponenziale. Si ha

L x> 1 1 Logt 1
——dx=-|—x—— | += ——dx
o (e3x42) 3 3(ex42P3 1y 3 )y (e 42)3

Per calcolare I'integrale rimasto ¢ utile porre ¢ = e*, cio¢ effettuare la sostituzione
x=g(t)=(1/3)logt. Siha ¢'(t)=1/(3t), quindi risulta

3 3

1 e e
J _ dx:J o ldtzlf _ .
o (e3¥42) 1 (£42) 3¢ 3); t(r+2)

Dobbiamo integrare una funzione razionale con numeratore di grado minore del de-
nominatore, che ¢ gia scomposto in fattori irriducibili. Per scomporre la funzione in fratti
semplici determiniamo 4, b,c,d €R tali che

1 a b c d

—=— + + ,
(t4+23 ¢ t+2 (t+22  (t+2)

ciod
l=a(t® +6t* + 12t +8) + bt( + 4t +4)+ct(t +2)+dt =
=(a+b)t> +(6a+4b+c)t* +(12a+4b +2c+d)t +8a.
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Quindi deve essere

a+b=0,
ba+4b+c=0,
12a+4b+2c+d =0,
8a=1.
Dall’ultima equazione si ricava a = 1/8, quindi dalla prima si ha b = —a = —1/8; sosti-
tuendo nella seconda si ottiene ¢ = —22 = —1/4 e quindi, dalla terza, d = —4a =—1/2.
Pertanto
¢ ‘1 1 1 1
| wmmi=| (- - )de =
1 t(e+2)  \8t 8(t+2) 4r+2)? 2t+2)
3
1 1 1 1 ¢
=| = log|t|— = log|t + 2| + + ] .
[8 el =g loslt + 21+ oo T T2,
Quindi

Jl xe3* J 1[ 1 ]1+1f1 1 J
—_—adx == —x — — —_—adx =
o (e 42) 3 e 4201, 3, 3(ed+2)

3

l[x ! ]l+1[11 It~ loglt 4+2| 4 ——— 4 — ]
= | —x — — | = lo ——lo =
30 (e g2y, T 27Lg BT c+2) " 4+22 ],
_11
9 (e3+2)
1 /1 1 1 1 1 11
+ —( = log(e’)— = log(e’ +2)+ + +-1 3————>:
27(8 ogle) =g logle’ +2)+ T i e T8 0% T 3

1<e6+563—6+11 < 3 >+19>
=—|———7F+ - logl —— — .
7\ xet2p 8 A\ey2) 722

22) La funzione integranda ¢ prodotto di due fattori; Il secondo fattore ¢ nella forma
g’(x)/(g(x))3 ,con g(x)=e*—4e™™, quindi una sua primitiva & (—1/2)/(g(x))2 . Percio,
integrando per parti, risulta

0 e*+4e™ 1 1 o 1
5 St el — L L g
[ T e L ><ex—4e—x>2}_1+zf1 (e —dep

La variabile di integrazione x compare solo all’esponente, eventualmente con un segno
meno. Quindi ¢ utile effettuare la sostituzione ¢ = e*, cio¢ x = ¢(t) = logt. Si ha

¢'(t)=1/t, quindi risulta

0 1 1 1
1 1 1 t 1 1
f S S - ——dt:J =]
_q (ex —4e—x)2 e (1—4t712 ¢ e (22 —4)2 212—4],,
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Quindi I'integrale ¢ uguale a

0 1
1 1 1 1
—=(x+5)—m— ——|: =
2 (ex—4e=x)2] =~ 2Lt2—4
1
4
2

T S 1
O 2(1—42 T (e —4e)?

e
5 " 2¢? n 1 n e 7 n 9e? —4e*
18 (1—4e2)2 12 4(1—4e2) 36 4(1—4e2)?’

23) E facile trasformare la funzione integranda nel prodotto di una funzione in cui la

variabile x compare solo nella forma cos(2x) per la derivata della funzione x — cos(2x).
Infatti si ha

/2 +sen?(2x) B V/2+sen?(2x) _4/3—cos?(2x)/ 1 dcos(2x)
sen(2x)  sen?(2x) sen(2x) = 1—cos?(2x) <_5 dx > ’

Quindi effettuiamo la sostituzione ¢ = cos(2x). Per x = /12 siha t = cos(/6) = v/3/2,
mentre per x = 7t/4 stha x = cos(rc/Z) =0. Pertanto

J /4 /24 sen?(2x) B J mdt—ljﬁ/zmdt
b I/Z 0

/12 sen(2x 1—1¢2 2 1—1¢2
Eliminiamo la radice con un’ulteriore sostituzione. Poniamo ¢ = ¢(s) = v/3 sens,
quindi, considerando s € [—7/2,7t/2], st ha s = arcsen(t/\/_) e ¢'(s)=+/3 coss. Per-
tanto
1 V3/2 m arcsen(1/2) m
- dt = V3 cossds =
2 J)o 1—12 2 arcsen0 1—3senZs
/6 /3 2 3 /6 2
= J o8 \/_cossds:—J ST g,
~2 0 1—3sens 2 ), 1—3sen?s

La funzione integranda puo facilmente essere trasformata in una funzione che dipende
solo da tans . Infatti si ha

cos®s cos®s 1 1

1—3sen?s  cos?s —2sens 1—(2sen?s/cos?s) 1—2tans

Quindi

3[”/6 cos’s ds—3jﬂ/6 1 ds—3jﬂ/6 1 dtans s
2), 1—3sen’s  2J, 1—2tan’.s  2J, (1—2tan%s)(1+tan?s) ds )

Pertanto, ponendo o =tans, si ottiene

3 (7% cos’s 3 (an(/6) 1 3 (U3 1
_J —ds:_f —da:—J L S
2 )y 1—3senZs 2 Juno (1=202)(1+02) 2)e (1—=202)(140?)

La funzione integranda ¢ razionale. Il denominatore si fattorizza come

(1+\/§0)(1—\/§0)(02+ 1).
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Scomponiamo la funzione integranda in fratti semplici, determinando a,b,c,d € R tali
che risulti
1 a b co+d

= + + .
(1—202)(1402) 14++4/20 1—+4/20 o2+1

Poiché la funzione a primo membro ¢ pari rispetto a ¢ anche quella a secondo membro
deve esserlo, quindi si ha ¢ =0. Passando a denominatore comune si ha

“__ L b 4 d _
1+v/20 1—420 0o2+1
_4(1—1/50)(02+1)+b(1+\/50)(02+1)+d(1+\/50)<1—\/§(7)
N (1—20%)(1402)

(V20407 —V20+ 1)+ b(V207 + 0P+ V20 +1)+d(207+1)
(1—202)(1402)
(—v2a+v2b)o’ +(a+b—2d)o* +(—V2a+V2b)o+a+b+d

(1—202)(1402) ’

Il numeratore ¢ uguale a 1, se i coefficienti a,b,d verificano il seguente sistema
—a+b=0,
a+b—2d=0,
—a+b=0,
a+b+d=1.

Dalla prima equazione si ha a2 = b, sostituendo nella seconda si ricava d = a . Sostituendo
nella quarta si ottiene 32 =1, pertanto a = b =d = 1/3. Quindi

— -  do=- —+ + o=
2)s  (1—=202)(1+40?) 2 ) <1+\/§a 1—V20 02+1>

1/v3

:%[%loghﬁo—i—ﬂ—%10g|1/§0—1|+arctan0:| =

1 V2 1 V2\ 1 1)
W log<ﬁ + 1>— m log<1— ﬁ>+§ arctan<—3> =
_ <\/3+\/§> kd
T2z A\Vaova) i

24)

a. [x arctan< x2—1 ) — settcosh x:liﬁ

2 T
_gﬂ—log(Z—l-\/g)—m—l-log(ﬁ—i-l)
2
0

b. [—% ﬁcos(Z ﬁ)—i— i sen(2 ﬁ)] :—% cos(2 \/E)—i—% sen(Zﬁ)
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o

2 2 ) 2 442
- X 15/2__ X 13/2] - _ 15/2__ 13/2__
i G ] e G

x 1 /2
—— cotx]

2sen?x 2 /4
/4

|
)]

¢ [ 1 s +1 1 3] LT 5
. — —XCOS X — Senx — — sen x = _——
3 3 9 o4 9 2442 1842

1 0
g. [(x2 —25)log(x +5)— > X+ Sx] =—25log5+21log3 412
-2

p 1
h. [—xcotx+ log|senx|:|nﬁ = % + 3 log2

1 2

1 1
i |—(x+1)———+ = logle* +1|—=lo ex+3]:
|~ 1) s g sl 11— 3 logle” +31]

1 1 (e +1)(e+3)
+2 + = logl ————=
e2+4+43e2 e+4+3e1 2 (e24+3)(e+1)

2 10 s 743 10
j- [(2x3—i—Zx)arcsenx—i——x2 1—x2+—\/1—x2] :—ﬂ+—[——
3 3 . 24 4 3
3 1 log3
k. [(2senhx—I—coshx)log(senhx)—EeX—I—Eefx+log|ex+1|—log|ex—1|] =
log2
91 97 19
=—log2— — log3— —
6 12 12

0
m |:—exp(e2"+1)] = (2 —e%)
—log2
1
n [—(2x2—6x +3)ezx] =1 (e?—e*)
1
2/5
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1, 1 2
Sx arctanx — — x* 4 ~

8
log|1+x |] =

2
5 arctan2 — — + —

log 5
0

cosx senzx cosx\ 2sen’x
2x + +

2senx
3

@/3)n
3 2
9 - 3 +xzsenx] :—£—£+—n2

, 18 4 343
1/4
2 11 13
-x +x arcsen(Zx)+< x4 — > 1—4x2:|

5v3 11
= —7T
9 18

+
0 288 16 18

1
= — arctan2— —
x+1 2x+2 2 10

x
V.

<[5
[ arctan(y/x ﬁ +arctan<ﬁ>:|4
-

4
+
senh

4
+200sh(\/_) 7 arctan(w/g exp(ﬁ))]

0

4
arctan(v3e?)— ——
senh2 +2 cosh2 ‘/_ ( )

343

=—-n
2[4

w. [—ﬁcos%ﬁ)—i—%sen<\/_)c03<\/_>+ \/_:| >

log 9+ cos*( )) N
72 4 8cos?(4x)

E
. [ log(3x) ,
1

T

X.

/8
1
=0
72+ 8cos?(4x) i|o

ﬁlog6+ log<3+\/_)—— log(3— \/_)

1
\/5 log3—g log(3+2 \/E)-l-g 10g<3—2 \/5)

4x —6

3
_2‘_§log< 4x—6+2>:| =
x 2 x

3 3 16
el 10g(1/§+3)+ﬁ log(Z—\/z)—E log(2+ \/5)—— log4+ = log3

4x —6 3
1 3)+—1
[( og< + >+1O og
1

X




INTEGRALI GENERALIZZATI

4.1 Esercizi

Ilustriamo lo studio dell’integrabilita in senso generalizzato di funzioni definite in un
intervallo che ha minimo, ma non ha massimo, sia nel caso in cui I’intervallo sia limitato
che nel caso che esso sia superiormente illimitato. Lo studio dell’integrabilita in intervalli
che hanno massimo, ma non hanno minimo ¢ del tutto analogo. Il caso degli intervalli
privi sia di massimo che di minimo va trattato spezzando I'intervallo nell’'unione di due
intervalli con un punto in comune, che ¢ il massimo di un intervallo e il minimo dell’altro,
e studiando I’integrabilita in ciascuno dei due sottoinervalli.

Lo studio della convergenza dell’integrale generalizzato di una funzione sull’interval-
lo [a,b], dove a € R, b € Ja,+00], puo essere fatto direttamente determinando una
primitiva della funzione integranda e studiandone il limite in & .

4.1.1 Esempio. Studiamo la convergenza dell’integrale generalizzato

1
J X dx.
o 1—x2

Lintegrale ¢ generalizzato, perché la funzione integranda non ¢ definita in 1. Si ha

2
f * dx:—lj L dx dx:—%10g|x2_1|+6

1—x? 2) x2—1 dx
quindi
l F"d 1'[11|21|]y 1'<11|21|> oo
im x=lim|[—=log|x"—1]| = lim(—= log]y"—1| )= .
y—1- 0 1—_x2 y—1- 2 g 0 y—1- 2 gy
Pertanto I'integrale ¢ divergente. <

4.1.2 Esempio. Studiamo la convergenza dell’integrale generalizzato

400
J xe “dx.
0

Lintegrale ¢ generalizzato, perché I'intervallo di integrazione ¢ superiormente illimita-
to, occorre quindi studiare
.)/

lim xe “dx.
y——+o0 0
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Integrando per parti si ha

f xe Ydx =—xe " +J e tdx=—xe F—e "+,
quindi

y
),ETOOL xe Fdx= yg+moo[—xe_x —e " ]g = yg+moo(—ye_y —e 7 +1)=1.

Pertanto I’integrale € convergente e
+00
J xe “dx=1. <
0

Nel caso in cui non si possa calcolare esplicitamente I’integrale risultano utili alcuni
criteri che consentono di stabilire se un integrale generalizzato ¢ convergente o divergente.

Nel caso di integrale generalizzato su un intervallo superiormente illimitato, se esiste il
limite a +oo della funzione integranda e questo ¢ diverso da 0, allora I'integrale ¢ diver-
gente. In particolare divergente a +o00 se il limite ¢ positivo e divergente a —oo se il limite
¢ negativo.

4.1.3 Esempio. Studiamo la convergenza dell’integrale generalizzato

+00
J arctanx dx.
0
Lintegrale ¢ generalizzato, perché I'intervallo di integrazione ¢ superiormente illimita-
to. Siha lim, | arctanx = 7r/2, quindi I'integrale diverge a 4+-00. <

La maggioranza dei criteri che si possono utilizzare consente di ricondurre la convergen-
za o divergenza dell’integrale generalizzato di una funzione alla convergenza o divergenza
dell’integrale generalizzato di un’altra funzione. Per poterli applicare ¢ utile conoscere il
carattere dell’integrale generalizzato di alcune funzioni campione.

Tra le funzioni campione piu di frequente utilizzate vi sono le funzioni di tipo potenza.
Sia @ € R*. Risulta

+oo 1 converge sea>1,
i |
1

x@ diverge sea <1,

b 1 converge sea <1,
[
s (b—x)2 diverge sea>1.
Nel seguito [a, 5[ indichera sempre un intervallo con a € R e b € Ja,+o0] e f,g

saranno funzioni da [4,5[ a R continue.
Il criterio del confronto afferma che se, Vx €[, 5[, si ha 0< f(x) < g(x), allora

b b
J g(x)dx converge —> f f(x)dx converge;

b b
J f(x)dx diverge = f g(x)dx diverge.
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4.1.4 Esempio. Studiamo la convergenza dell’integrale generalizzato

+oo 1
|
. x—logx

Lintegrale e generalizzato, perché I'intervallo di integrazione € superiormente illimita-
to. La funzione integranda ha valori positivi, non ¢ possibile calcolare esplicitamente I’inte-
grale. Possiamo facilmente minorare la funzione integranda con una funzione di cui cono-
sciamo I'integrabilita. Si ha, Yx €[1,+00[, 1/(x—logx)>1/x elafunzione x — 1/x ha
integrale in [1,4+o0o[ divergente. Pertanto, per il criterio del confronto, anche I'integrale
studiato diverge. <

4.1.5 Esempio. Studiamo la convergenza dell’integrale generalizzato

—dx.
0 vV1—x2
Lintegrale ¢ generalizzato, perché la funzione integranda non ¢ definita in 1. La fun-
zione integranda ha valori positivi, non ¢ possibile calcolare esplicitamente I'integrale. Pos-

siamo facilmente maggiorare la funzione integranda con una funzione di cui conosciamo
I'integrabilita. Si ha, Vx €[0,1[, ¢*/v/1—x2<e/v/1—x2 erisulta

v _ ern

lim dx = lim[e arcsen x] limearcseny = —.
0 y—1 2

fy e
y—1 0 v1—x2 y—1

S o .
Quindi fo e/v/1—x2dx converge, pertanto, per il criterio del confronto, anche 'integrale
studiato converge. <

Il criterio del confronto asintotico afferma che se, Vx € [a,5[, si ha f(x) > 0,
g(x)>0e f(x)~ g(x), per x — b, allora

b b
f f(x)dx converge <= J g(x)dx converge.

4.1.6 Esempio. Studiamo la convergenza dell’integrale generalizzato

T x 41
1 Vxt42

Lintegrale ¢ generalizzato, perché I'intervallo di integrazione ¢ superiormente illimita-
to. La funzione integranda ha valori positivi e per x — 400 si ha

dx.

x+1 X 1

Vxt42 m_x‘

La funzione x — 1/x ha integrale generalizzato in [1,+00[ divergente, quindi, per il
criterio del confronto asintotico, anche 'integrale studiato diverge. <
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4.1.7 Esempio. Studiamo la convergenza dell’integrale generalizzato

'e*log(2—x)
—___ o 74
J (—xp?

Lintegrale ¢ generalizzato, perché la funzione integranda non ¢ definita in 1. La fun-
zione integranda ha valori positivi e per x — 1 siha e* > e e

log(Z—x):log(1+(1—x))~ 1—x,

pertanto
e*log(2—x) e(l1—x) e
(1—x)/? (1—x)/? B (1—x)1/2 ’

La funzione x — 1/(1—x)'/? ha integrale generalizzato in [0, 1[ convergente, quindi anche

x = e/(1—x)/? haintegrale convergente. Pertanto, per il criterio del confronto asintotico,
Iintegrale studiato converge. <

Il confronto tra due funzioni per x — b consente di ottenere informazioni sull’integra-
bilita in senso generalizzato anche se le due funzioni non sono asintotiche. Se, ¥x € [a, 5[ ,

stha f(x)>0, g(x)>0e f(x):o(g(x)),per x — b, allora

b b
f g(x)dx converge —> f f(x)dx converge;

b b
f f(x)dx diverge = f g(x)dx diverge.

4.1.8 Esempio. Studiamo la convergenza dell’integrale generalizzato

f+°° logx\/x+1d
——dx.
1

X

Lintegrale ¢ generalizzato, perché I'intervallo di integrazione ¢ superiormente illimita-
to. La funzione integranda ha valori non negativi. Per x — 400 si ha

logxvx+1 logx4/x logx

b
x X x1/2

quindi, poiché 1/x'/? = o(logx /x'/?), si ha anche

1 [logxv/x+1

a2 N\ )

Poiche f1+ “1/x'?dx ¢ divergente, per il criterio del confronto asintotico anche I'integrale
studiato ¢ divergente. <
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4.1.9 Esempio. Studiamo la convergenza dell’integrale generalizzato

lﬂdx,

o Vx

Lintegrale ¢ generalizzato, perché la funzione integranda non ¢ definita in 0. La fun-
zione integranda ha valori non negativi. Per x — O la funzione logaritmo tende a —oo

ed ¢ trascurabile rispetto a qualunque funzione potenza, in particolare logx = o(x~!/4).

Pertanto
—logx x4 < 1 >
=0 =o — ).
Ve VS x3/4

Poiché | o 1/ x3*dx & convergente, per il criterio del confronto asintotico integrale stu-

diato ¢ convergente. <

Per studiare la convergenza dell’integrale generalizzato di una funzione f* a valori non
positivi ¢ sufficiente considerare la funzione —f', che ¢ a valori non negativi, e utilizzare gli
strumenti illustrati sopra. Nel caso invece di funzioni che assumono valori sia positivi che
negativi si puo studiare I’integrabilita del valore assoluto della funzione integranda. Infatti
un integrale generalizzato assolutamente convergente € convergente, cio¢

b b
f |/ (x)| dx converge => J f(x)dx converge.

4.1.10 Esempio. Studiamo la convergenza dell’integrale generalizzato
+00
J xsenxe “dx.
0

Lintegrale ¢ generalizzato, perché I'intervallo di integrazione ¢ superiormente illimita-
. _ _ . N . —+ _
to. Siha, Yx €[0,+00[, |xsenxe™™| < xe™™ ; come visto nell’esempio 4.1.2 fo Cxe*dx
. . . . . + —
converge, quindi, per il criterio del confronto fo “|xsenxe*|dx converge, pertanto

anche I’integrale studiato converge. <

1) Studiare la convergenza dell’integrale generalizzato

f+m Vix—8 arctan(l/(4x))
5 X log(x/2>

2) Studiare la convergenza dell’integrale generalizzato

dx.

2 x*e?(cosh(x +2)—1) J
J (—2—x)l* *

—0Q

3) Determinare per quali 2 €R ¢ convergente 'integrale generalizzato

+00
J x?log(1+x*)dx.
1
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4) Determinare per quali 2 € R* ¢ convergente I'integrale generalizzato

+oo 4 a
x"+x
—dx.

1 )CS—I—)C”

5) Determinare per quali 2 €R ¢ convergente I'integrale generalizzato
1
J (exp((l + x)‘“‘) — e)(x("z +x ) dx.
0

6) Determinare per quali 2 € R e convergente 'integrale generalizzato
+oo e(a+2)x
dx.
e e2ax 4 4

7) Studiare la convergenza dei seguenti integrali generalizzati:

Jl x ) f+°° Vx2+2x —+/x242
a. dx j- dx
o 1—x 1 (x—1)/4
2 logx
b. | log( >d i
. 0g<x+1 x kf )3/2 — —— dx
—+o00
c.f X dx I.J ! dx
o €F o exp(x+(1/x))—ex
+oo
d.f <exp< v >—1>dx m. J et +x* dx
1 x2+1 o cosh 2x)
+o0 +00
e.f xlog<x—+2>dx n. e +x'
2 x+3 e coshx

T x*cosh x

dx

f. JSL<\/x4+x2—x2)dx o.

0 x9/4

3 23 +o0
g. J ! <x 1> dx p- J ———dx
i logx\3—x logx

I y/—logx
h. —dx
o 1—y/x

oo “cosh2x

too log x+1)
x2 4 2x3

+oo [N +o0 l 1
i. f er 1 dx r. og(1+x). dx
0 senh x o 4/x arctanx
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8) Determinare per quali 2 appartenenti all’insieme indicato a fianco i seguenti integrali
generalizzati sono convergenti:

2 . 5
x* log(1+ x*)
a. | ———dx R . | =———=dx R*
Jo xa+2 4 x? fo Vx + xlha
+oo 2 1 a+1
* log(1—x
b f 14 eax R m. f de R*
1 € o (x2—x3)
! ISen )I 400 l 1 a+1
¢ dx R n j log(+x"7) dx R
0 ﬁ o x3/%arctan(x#)
+oo —
x +e° Jo (4cosh(ax))
——dx R* 8
1 V1+ax?2—1 O'J; x—3a 4 yha dx R
+0oo ax
¢ o (e —1)

e. dx R +
Joo cosh x P'JO senhx dx R
J R q. fl ! x R*

00 €X+ 1+|x|) o x34(1—x4)
+00 2
f 7 9x R* r J eXp< ax >—e dx R
xa 4 xl/a . 21
x4a+ 400 1
J 54+ xoa dx R* s J‘l x“sen<;>aretan(l+x Ydx R
2a +o0 9
f 4x - dx R* t.f ! log<1+2x >dx R*
x4—a 4 x4—2a 0 x2¢+3+x3a 1+x9
1
f x” +x* R+ U-J 1 Jx .
P o (14+2x) —(14x)
400
sen(x 1
R* W dx R*
St |, mae
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4.2 SOLUZIONI E RISULTATI

1) Il dominio di integrazione ¢ superiormente illimitato; inoltre la funzione integranda
non ¢ definita in 2, quindi occorre studiare la convergenza dell’integrale sia in un intervallo
del tipo [b,+oo[ (per un fissato b € ]2,+00[ ) che in un intervallo del tipo ]2,5]. La
funzione integranda ha valori positivi.

Per x — 400 si ha

Vix—8~24/x,
(%)%
arctan( — |~ —,
4x 4x

log(%) =logx —log2 ~logx.

Pertanto

Vax—8 arctan(l/(4x)) _ 2 ﬁ(l/(4x)) 1

x log(x/2) xlogx  2x32logx

Poiché, per x > e, si ha logx > 1, risulta 1/(2x3/?logx) < 1/(2x*/?). Siha 3/2> 1, quindi
quest’ultima funzione ¢ integrabile in [b,+00[, pertanto, per il criterio del confronto
asintotico, la funzione studiata ¢ ¢ integrabile in senso generalizzato in [b,4o00] .

Per x —2 si ha

X

-2
log<£>~f—1:x ,
2 2 2

1 1
arctan<—> — arctan —,
4 8

x—2.
Pertanto

Vax—38 arctan(l/(4x)) 24/x —2 arctan(1/8) _2arctan(1/8)
x log(x/2) - x—2 (k=212

Poiché 1/2 < 1, questa funzione ¢ integrabile in ]2, 5], quindi, per il criterio del confronto
asintotico, anche la funzione studiata ¢ integrabile in senso generalizzato in ]2,5].
Possiamo quindi concludere che 'integrale generalizzato converge.

2) Poiché il dominio di integrazione ¢ inferiormente illimitato e la funzione integranda
non ¢ definita in —2, dobbiamo studiare la convergenza dell’integrale in ciascuno dei due
intervalli ]—o0,b] e [6,—2[, dove b ¢ un fissato numero reale minore di —2. La funzione
integranda ha valori positivi.

Per x ——2 st ha

xt =16,

er N 6_4 ,

cosh(x +2)—1~ %(x+2)2.
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Quindi
e (cosh(x +2) 1) t6eH(1/D)(x+2F | 8¢t
2 ~ (—2—x) C(=2—x)14

Poiché 1/4 < 1, questa funzione ¢ integrabile in senso generalizzato in ogni intervallo del
tipo [b,—2[, pertanto, per il criterio del confronto asintotico, anche la funzione studiata
¢ integrabile.

Per x — —oo si ha

€x+2 +e—x—2 e—x—Z
cosh(x+2)—1=5—"T¢% 1~ ,
(x+2) 5 5
(_z_x)9/4 ~ |x|9/4 )
Quindi
et 1) e et
(—2—x )/ PRE 2
Poiché, qualunque sia ¢ >0, per x — —o0 si ha e* = o<|x|*f) , risulta

xte (cosh(x +2)— 1) .
(—2—x )/ =of[=~77).

Scegliendo ¢ > 11/4 I’esponente & minore di —1, quindi la funzione |x|~¢*7/* ¢ integrabile
in senso generalizzato in un intorno di —oo . Per il criterio del confronto, anche la funzione
studiata ¢ integrabile.

Possiamo quindi concludere che 'integrale generalizzato converge.

3) La funzione integranda ¢ continua in [1,400[, per stabilire la convergenza dell’inte-
grale occorre studiare il comportamento per x — +o0 . La funzione ¢ non negativa, quindi
possiamo utilizzare il criterio del confronto.

Se @ >0 si ha lim_,
percio I'integrale diverge.

x* = 400 e quindi anche lim,_,,  x*log(1+ x*) = + o0,
Se a =0 allora la funzione integranda ¢ x — x?log2, esi ha lim x*log2 =+o00;
anche in questo caso I'integrale diverge.

Se a <0 allora lim x* =0 e quindi si ha log(1+x%) ~ x*, per x — +00; percio

X—+00

x——+00
x%log(1+4x%) ~ x*T2; per il criterio del confronto asintotico, I'integrale ¢ convergente se e
solose a+2<—1,cioé¢ a <—3.

Pertanto 'integrale generalizzato ¢ convergente se e solo se a € ]—o0,—3[ .

4) Lafunzione integranda ¢ continua in [1,4+00[ ed ¢ a valori positivi. Per determinare
la convergenza dell’integrale studiamone il comportamento per x — +oo. A tale fine

studiamo anzitutto il comportamento di numeratore e denominatore.

Per determinare il comportamento del numeratore, occorre stabilire quale tra x* e x*

¢ il termine dominante, per x — 400 . Bisogna quindi stabilire quale degli esponenti ¢
maggiore; se a < 4 allora x*+x% ~ x*, se a =4 allora x*+ x* = 2x*, infine se a >4 si

ha x* 4+ x* ~ x“.
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Analogamente, per il denominatore occorre confrontare x* con x*, percid se a < 8
allora x®+x* ~ x%, se a =8 allora x® 4+ x* =2x8%, infine se @ > 8 si ha x% 4+ x* ~ x“.
Indicata con f la funzione integranda si ha quindi, per x — +o00,

x* 1
a<4, f(x)~_3:_4’
x x
25t 2
(l—4, f(x)NF_F,
x* 1
4<ﬂ<8, f(x>~;_x8—d’
8
X 1
a=38§, X))~ — =—,
f(x) 7=
xd
a>8, f(x)~—=1.
xﬂ

Percio se a < 4 allora f(x) ¢ equivalente (eventualmente a meno di una costante molti-
plicativa che & ininfluente) a 1/x*, che & integrabile in [1,+o00[ ; per il criterio del confronto
asintotico, per tali valori di @ anche f ¢ integrabile. Se invece 4 > 8 allora f(x) ha limite
reale diverso da O per x — 400 e quindi non ¢ integrabile. Infine se 4 < a < 8 allora f(x)
¢ equivalente a 1/x%, che ¢ integrabile se e solo se 8—a > 1, cio¢ 4 <7, quindi anche f
¢ integrabile in senso generalizzato se solo se a < 7.

Percio I'integrale € convergente se e solo se 2 € 10,7[ .

5) La funzione integranda ¢ continua in ]0,1]. La funzione ¢ non negativa se e solo se
exp((1+ x)*) —e ¢ non negativo, cio¢ (14 x)* > 1. Pertanto se 4 > 0 allora ¢ non
negativa, mentre se @ <0 € negativa.

Sia 2>0. Per x — 0, risulta

exp((l + x)4") —e= e(exp((l + x ) — 1)— 1) ~ e((l +x)*— 1) ~4aex,
xéa + x—3u ~ x—3a .
Quindi la funzione integranda ¢ asintotica alla funzione 4aex'=%, che ¢ integrabile se e solo
se 1—3a>—1, cio¢ a <2/3. Pertanto, per il criterio del confronto asintotico, 'integrale
generalizzato ¢ convergente se 0<a <2/3 ed ¢ divergente se 2 >2/3.
Se @ =0 le funzione integranda ¢ identicamente nulla, quindi I'integrale ¢ convergente.
Se a < 0 la funzione integranda ¢ a valori negativi, I'integrale ¢ convergente se e solo se
¢ convergente I’integrale della funzione opposta che ¢ a valori positivi. Si ha

e —exp((l + x)4“) = e(l —exp((l +x ) — 1)) ~ —e((l +x)*— 1) ~—4aex,
x(m +x—3a ~ xéa .
Quindi 'opposta della funzione integranda ¢ asintotica alla funzione —4aex'*% che ¢
integrabile se e solo se 1464 >—1, cio¢ a > —1/3. Pertanto, per il criterio del confron-
to asintotico, I'integrale generalizzato ¢ convergente se —1/3 < a < 0 ed ¢ divergente se
a<—1/3.
Quindi 'integrale generalizzato ¢ convergente se e solo se a € ]—1/3,2/3[ .
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6) Poiché I'intervallo di integrazione ¢ R, occorre studiare la convergenza dell’integrale
negli intervalli ]—o0,0] e [0,400[ . La funzione integranda ¢ positiva.
Consideriamo anzitutto I'integrale in ]—o00,0].
Se 4> 0, allora, per x — —o00, si ha ¢** — 0, quindi
e(ﬂ+2)x e(ﬂ+2)x

v+ 4 4

E facile determinare una primitiva di questa funzione: risulta

JO e(a+2)x [ e(a+2)x ]O 1_e(a+2)y 1
, 4 4a+2)],  Hat+2) 1o 4a+2)’

pertanto questo integrale generalizzato ¢ convergente e, per il criterio del confronto asin-
totico, anche la funzione studiata ha integrale generalizzato in ]—o00,0] convergente.
Se =0 siha

(a+2)x e2x

e —
vl
e, procedendo come sopra, si prova la convergenza dell’integrale generalizzato.
Se 2 <0, allora, per x ——o00, si ha ¢** — +00, quindi

a+2)x a+2)x

el el

(2—a)x
~ .
e2ax + 4 e2ax

Poiché 2—a > 0 si pud procedere come sopra per provare la convergenza dell’integrale.
Pertanto I’integrale generalizzato ¢ convergente in ]—00,0] qualunque sia a .
Consideriamo ora 'integrale in [0,+00] .

Se a >0, allora, per x — 400, si ha ¢*** — +00, quindi

e(a+2)x e(a+2)x

~ _ e(Z—a)x .
e2ax +4 e2ax

Se inoltre @ < 2 questa funzione ha limite +o00, per x — 400, mentre se 4 =2 il limite
¢ 1. In entrambi i casi quindi la funzione e®~** non ¢ integrabile in senso generalizzato in
[0,400[, pertanto, per il criterio del confronto asintotico, anche I'integrale studiato non e

convergente. Se a > 2, allora

y (2—a)x Y (2—a)y __ 1 1
J e(z_“)xdx:[e ] =< ;
0

2—a J, 2—a y—otoe g—2

pertanto questo integrale generalizzato ¢ convergente e, per il criterio del confronto asin-
totico, anche la funzione studiata ha integrale generalizzato in [0,400[ convergente.

Se =0 st ha

a+2)x 2x

6( e

e2ax 4 4 - 5
che tende a +00, per x — +00, quindi I'integrale generalizzato in [0,+o00[ diverge.

b

Se a4 <0, allora e** -0, per x — +00, pertanto
e(ﬂ+2)x e(ﬂ+2)x

e2ax 4 ~ 4
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Se a > —2 siha a+2 >0, quindi questa funzione ha limite diverso da 0 per x — +o0,
percio non ¢ integrabile in senso generalizzato; pertanto, per il criterio del confronto asin-
totico, anche 'integrale che stiamo studiando non € convergente. Se invece a < —2, allora,
procedendo come sopra, si prova la convergenza dell’integrale generalizzato.

Percio 'integrale ¢ convergente se e solo se a € |—o0,—2[ U ]2,+00] .

7)

a. Divergente
b. Convergente
c. Convergente
d. Convergente
e. Divergente

f. Divergente

a. a€]2,+o00]
b. a€]0,+o0[
c. aeR

d. 2a€]0,+00[
e. ac]-1,1]

f. ae]l,+oo]

g. a€]0,4+oo[ \ {1}

h. a€]§,+oo[
i. a€]0,1]
] ae]o,l[

3

g. Convergente
h. Convergente
i. Convergente
j. Convergente
k. Convergente

I. Convergente

m. Convergente
n. Divergente
o. Convergente
p. Divergente

q. Divergente

o

Divergente

. a€]0,6[U]8,400[

m. a€]0,1[

n.

a €]0,4o00[

ae]o,1]
Nessun a
a=1

a € ]—oo,4

7
ae}o,—[
2

. Nessun a

a € ]2,4o00[
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SERIE

5.1 Esercizi

Lo studio della convergenza di una serie risulta semplice nel caso, poco frequente, in cui
¢ possibile ottenere un’espressione esplicita delle somme parziali.
5.1.1 Esempio. Studiamo la convergenza della serie

+0oo 1

Z 7Z2+7l.

n=1

Per n € N* risulta
1 14+n—m  1+n n 1 1

n2+n  nn+1) nxr+1) nrn+l) n o+l
Pertanto, se 7 € N\ {0, 1}, st ha

Z": 1 _Z":<1 1>_Z":1 o1 31 B
=Rtk S\k k+1) SRk SRkt SRk Sk
5 1 5 1 1 1
=1+> -S> =1— S
/ez:;k =k ntl 1 oo
Quindi la serie studiata converge e ha somma 1. <

Nel caso in cui non si possa ottenere una forma esplicita delle somme parziali vi sono
numerosi criteri che consentono di stabilire se una serie converge o no.

Anzitutto, un condizione necessaria per la convergenza di una serie ¢ che il termine
n-simo tendaa 0.

5.1.2 Esempio. Studiamo la convergenza della serie

+o0o

n
; 241
Poiché
_nny
n2+1 n

il termine 7 -simo della serie non ha limite O, pertanto la serie non converge.
La serie ¢ a termini positivi, percid non puo essere indeterminata, quindi ¢ divergente.

<
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Vari criteri per la convergenza di serie consentono di dedurre la convergenza o diver-
genza di una serie dalla convergenza o divergenza di un’altra serie. Per poterli applicare ¢
utile conoscere il carattere di alcune serie campione.

La serie armonica generalizzata > "% n%, con @ € RY, converge se @ > 1 e diverge
se @ < 1. La serie geometrica > ' a”, con @ €R, converge se —1 < a < 1, diverge se
a>1 ed ¢ indeterminata se @ <—1; il numero « ¢ detto ragione della serie geometrica.

Il criterio del confronto afferma che se, V2 €N, siha 0<a, <b, , allora

+o00 +0oo
E bn converge — E a, converge;

n=0 n=0
+o00 +o00
E a, diverge = E b, diverge.
n=0 n=0

5.1.3 Esempio. Studiamo la convergenza della serie

La serie ¢ a termini positivi. Per 7 € N* si ha 1/(y/7 2”) <1/2" =(1/2)". La serie
+29(1/2)" ¢ una serie geometrica convergente, perché 0 < 1/2 < 1, pertanto, per il
criterio del confronto, la serie studiata converge. <

5.1.4 Esempio. Studiamo la convergenza della serie

2 logn

La serie ¢ a termini non negativi. Se n € N*\ {1,2} si ha logz > 1, quindi risul-
ta logn/n>1/n. La serie armonica 3% 1/n diverge. Poiché modificando un numero
finito di termini di una serie il carattere non cambia, possiamo applicare il criterio del con-
fronto anche se la disuguaglianza logn/n > 1/n & verificata solo per » > 3. Quindi la
serie studiata diverge. <

Il criterio del confronto asintotico afferma che se, Y7 € N,siha 0<a,, 0< b, e
a,~b,,allora

+o00 +00
E a, converge <= E b, converge.

n=1 n=1

5.1.5 Esempio. Studiamo la convergenza della serie

n=1 nel/n ‘

La serie ¢ a termini positivi. Poiché e!/” — 1, si ha

1 1

~ —,

nelln n

La serie armonica >, 1/n diverge, quindi, per il criterio del confronto asintotico, anche
la serie studiata diverge. <
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5.1.6 Esempio. Studiamo la convergenza della serie

+0oo 7l3 +2n

= n2+3n '

La serie ¢ a termini positivi. Si ha

n 42" 2" _<2>”

n2+3”~3_”_ 3

Poiché 0<2/3 <1, la serie geometrica >;7°3(2/3)" converge, pertanto, per il criterio del
confronto asintotico, la serie studiata converge. <

Per il criterio del rapporto se, Y7 € N, si ha a4, > 0 ed esiste lim,_,, (4, /a,)
,allora
a,. Ix
lim 2% <1 = Z a, converge;
n n=1

a,. Ix
lim 22 >1 — Z a, diverge.
. —

n=1

Osserviamo che, vista 'ipotesi su «,,, il limite appartiene a [0,4-c0].

5.1.7 Esempio. Studiamo la convergenza della serie

La serie ¢ a termini positivi. Indicato con a,, il termine 7 -simo della serie, si ha

a1 2n42) 2 (2n)(2n+1)(2n+2) n?" B
a, (n4+1242 2n) (2n)! (n4+127(n4+12
@+ 1)2n42)/ n \P
 (n+1)p <n + 1> '
Risulta
(2n+1)(2n+2)
(n+1)? notoo
2n n\ —2 e\ —2
() =((5)) =((+3)) ==
Percio

a
. 1 —
lim 2 —4e2<1.
n—-+400 an

Pertanto, per il criterio del rapporto, la serie studiata converge. <
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5.1.8 Esempio. Studiamo la convergenza della serie

La serie ¢ a termini positivi. Indicato con a,, il termine 7 -simo della serie, si ha

Aoy (2n4+2)! (2n)"  (2n)(2n+1)(2n+2) 2n)" B
a, (2n42y+1 2n) (2n)! 2n+2"2n+2)
n n
=(2 1 .
(@n+ )<n + 1>
Risulta
2n+1— 400,
n——+00
n ny —1 ny —1
) =((57)) ~((+)) ="
n+1 n n n—+o00
Perciod

lim 2% — 4o >1.
n——+4oo an

Pertanto, per il criterio del rapporto, la serie studiata diverge.

Per il criterio della radice se, Yz €N, si ha 2, >0 ed esiste lim,_,

+00
lim ya,<1 = Z a, converge;
n=1

n——+00

+00
lim ya,>1 = Z a, diverge.
n=1

n——+00

Osserviamo che, vista I'ipotesi su a,,, il limite appartiene a [0,+00].

5.1.9 Esempio. Studiamo la convergenza della serie

P
2n
n=0 €
La serie ¢ a termini positivi. Si ha
.| n" n
— =———>+toco>1.

eZn - 62 n—-+oo

Pertanto, per il criterio della radice, la serie studiata diverge.

o/a, , allora

<
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5.1.10 Esempio. Studiamo la convergenza della serie
400 nﬁ

ZeZn‘

n=0

La serie ¢ a termini positivi. Si ha

| nv  atVEexp((logn)/ v 1
eZn eZ 62 n——+o00 eZ

Pertanto, per il criterio della radice, la serie studiata converge. <

Il criterio integrale afferma che se f € C ([O,—I—oo[,]R) ¢ decrescente e non negativa,
allora

+o00 —+00
J f(x)dx converge <= Z f(n) converge.
0 n=0

5.1.11 Esempio. Studiamo la convergenza della serie

400 1

>

“— n(logn) ’

dove a e RT.
La funzione x — 1/<x(logx)“> ¢ positiva e decrescente in [2,400][ . Inoltre

7o 4 dlogx
- dx= 1 — d
L x(logx)2 * L (log.x) dx *

Pertanto, se a # 1, allora

y y
| i dv=[ g™ | = o)~ — o™ ——
) 1—a 1 1

x(logx)s , l—a —a y—too

+o0, sea<l,

[N 1
y—>+oo J—

(log2)'™, sea>1.

1—a

Inoltre, se 2 =1, allora

y y
J ! dx = f I dlogx dx =[log(logx) ], = log(logy) —log(log 2) —— +o0.
, xlogx , logx dx 2 y—>too

Pertanto la serie studiata converge se e solo se a > 1. <

Per studiare la convergenza di unaserie >"°% 4, atermini non positivi ¢ sufficiente con-
siderare serie > "°%(—a,,), che ¢ a termini non negativi, e utilizzare gli strumenti illustrati
sopra. Nel caso invece di serie che che hanno termini sia positivi che negativi si puo studia-
re la serie dei valori assoluti della serie data. Infatti una serie assolutamente convergente ¢
convergente, cio¢

+o00 +o00
|a,| converge =—> E a, converge.
n=0 n=0
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5.1.12 Esempio. Studiamo la convergenza della serie

+oo 1
Z sen(nz)sen<—2> .
n=1 n

Poiché, Yx € R, si ha |senx| <|x| e |senx| <1, si ha, Yn e N,

1
sen(nz)sen<—> <
n2

1

n2

La serie armonica generalizzata > 7% 1/n* converge, quindi, per il criterio del confronto,

la serie 3779 |sen(n?)sen(1/n?)| converge, pertanto anche la seria studiata converge.

D |

Il criterio di Leibniz afferma che se la successione (c,,),on ¢ decrescente e infinitesima,
. —+ oo n

allora la serie >3"°3(—1)"c,, converge.

5.1.13 Esempio. Studiamo la convergenza della serie

+o0

Z(—l)” log<n +1>.

n=0 n

Si ha log((n + 1)/71) — log1=0; inoltre, poiché (n+1)/n =1+(1/n), ¢ evidente che,

per n €N*,siha (n+2)/(n+1) < (n+1)/n. Percio sono verificate le ipotesi del criterio
di Leibniz, quindi la serie studiata converge.

<

1) Studiare la convergenza e la assoluta convergenza della serie
400

Z (—1)n<§ —arctan(n + 2))1/2 .

n=0
2) Studiare la convergenza e la assoluta convergenza della serie

+oo nn+1n!

~(2n+1)

3) Studiare la convergenza e la assoluta convergenza della serie

22 V24 2n—nt+2
= I+ + 1

4) Studiare la convergenza e la assoluta convergenza della serie

Z:: (—1)" <arctan 2>2/ﬂ )

n
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5) Determinare per quali 2« € R converge la serie

+00
Z n*log(1+4n*).

n=1
6) Determinare per quali @ € R* converge la serie

2 sen(n?)
Z w3z

n=1

7) Determinare per quali 2 € R* converge la serie

+o0

n* 4+ n?

8 a’
— nttn

8) Determinare per quali 2 € R converge la serie

— <_1)n d2_ a n
,,Z:;—Zn(ﬁ+z)( 4a+2)".

9) Studiare la convergenza e la assoluta convergenza delle seguenti serie:

& nl(n+1) n+2
. —_— h. |
? ; (2n)! Z Og<n2—n+1>

. n=1 (2n)! n=1 n+ 67
£2 gn n2n . Ix " n? +2
. —1) ——
c. ; 20! ) ;( ) 13
d < (n42) k i(_mnu
. ; (271)” . n=0 3n + n6

+0 H9n 0
e. Z 2 . ! L. 2(—1)” 3<1—cos E)

n=1 * n=1 n

2 7w —2arctann = n+1
£, Z T m. S (—1)" 1og< ! )
n= n=1
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+o0 . 37 (72-{-2)' 3/2 > o nin—4
o. ;(_1) % p- ;( 1) —(n+3)3”

10) Determinare per quali @ appartenenti all’insieme indicato a fianco le seguenti serie
sono convergenti:

+o0 n 400 n?/3

e - R
n:On +1 n=0 7’l+2
400 a 400 2 _ n

b. n -i-n3 R O-Z 1 <a 2a 4> R
— ni4n = (n+1)7 4

+00 a” +00 97 4 4 .,

c.§<n+2)! © p,nz_”az 8
+00
>

— 3n> 437

L e () -
= e “—\a+n
+o00 1 3 n+1 +o00 1

e > (52 R o> — R*
—34+2\a2+1 “—(a+n)+1
+o00 n +00

3/1 3" +a”

£ >4 arctan > (G —a?) P i R*
Z arctan —{ a Z 5 (4/a)
+o00 (42—7d+6>n +00

=z 7t an

g. Z i R t. Z e n! R
n=1 n=0

h. +o00 <n2+1)(ﬂ2+4a+2>n+2 . u +Z°°: dn+3n R+
n=0 2 ar+a—r

. +o00o 1 +o0o nd—3

i. Z 5 3+ 1arctatn((az+5)”> R W Z - R*
n=0 n=1

I L2 2 1 fnta n?
> Row > () R

n=0 ~'n?\ n
at+(2a+3) =2 /n+a n*
k. R
Z at+a*n x ;( n > R
+00 Hn 3 n +00
LS (242—54+§> R R
= 2 “— (2a) + n/*

+oo an? 3n & +00 | . 2/a I a RT
m. Z exp<2n2+4> z. Z(og(n +n7*)—log(n +1))

n=0 n=0
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5.2 SOLUZIONI E RISULTATI

1) La serie ha termini di segno alterno, studiamo anzitutto la assoluta convergenza. Per
questo studiamo il comportamento del valore assoluto del termine 7 -simo della serie per

7n — +OO . Sl ha
12 2
1
— <§ —arctan(n + 2>> = <arCtan< n+ 2>> .

Poiché per n — +o00 siha 1/(n+2)— 0 e per x —» 0 ¢ arctanx ~ x, risulta

‘(—1>n<§ — arctan(n + z>>1/2

< > 1 1
arctan ~ ~—,
n+2 n+2 n
quindi

1
nl/2”

‘(—1)”<§ —arctan(n + 2)>1/2 ~

Pertanto il termine 7-simo della serie dei valori assoluti ¢ asintotico al termine 7 -simo
della serie armonica generalizzata di esponente 1/2 che non ¢ convergente, perché 1/2 < 1,
quindi la serie studiata non ¢ assolutamente convergente.

Studiamo ora la convergenza. Poiché la serie ¢ a termini di segno alterno, verifichiamo
se si puo applicare il criterio di Leibniz. Abbiamo gia verificato che il valore assoluto del ter-
mine 7 -simo della serie & asintotico a #~'/2, quindi ha limite 0. La funzione arcotangente

¢ strettamente crescente, quindi, Y7 €N, si ha arctan(n + 2) < arctan(n + 3), pertanto

g —arctan(n +2) > g —arctan(n +3),
quindi
- 2, 1/2
<3 —arctan(n + 2)> > <5 —arctan(n + 3)>

Pertanto la successione dei valori assoluti dei termini della serie ¢ decrescente, quindi, per
il criterio di Leibniz, la serie converge.
Quindi la serie ¢ convergente ma non ¢ assolutamente convergente.

2) Poiché la serie ¢ a termini positivi, € convergente se e solo se € assolutamente conver-
gente.

E abbastanza complicato verificare direttamente se & soddisfatta la condizione, necessa-
ria per la convergenza della serie, che il termine 7 -simo converga a 0; vista la forma del
termine 7 -simo risulta conveniente applicare il criterio del rapporto.

Indicato con a4, il termine 7 -simo della serie, si ha

dppr  (n+1)"P(n4+1)! Qun+1)

a,  (2n+3) nrtinl
_(n4+1)"(n+1)? nl(n+1) 2n+1) B
B n"n n! Q2n4+1)Q2n+2)2n+3)

:<n:1>nn(2n(j—;_)(12):z+3) :< %)nn(Zn(—T—;(12)731+3)
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Per n — 400 il primo fattore ha limite e, mentre il secondo ha limite 1/4, quindi il limite
del prodotto & e/4, che ¢ minore di 1; percio, per il criterio del rapporto, la serie converge.
Pertanto la serie ¢ convergente e assolutamente convergente.

3) 1l termine 7-simo della serie € un quoziente; il denominatore ¢ somma di due radici
(non nulle) e quindi ¢ positivo, mentre il numeratore ¢ differenza di due radici, ma qualun-
que sia 7 € N* si ha 72 +2n > n?+2 e quindi il numeratore ¢ non negativo. La serie ¢

quindi a termini non negativi, percio converge se e solo se converge assolutamente.
Studiamo 1l comportamento del termine 7 -simo per 7 — 400 Si ha, Yn € N*,

2 2 2 2
Vni42n—y/n2+2=+ ”2<1+_>_ \ n2<1+_>:”2/3f/1+——n2/3{/1+—:
n n? n n?

12 12 21 2
=n?3 <1—|———+0(n71)>—<1+——+0(n72)> :n2/3<——+0(n71)>~—n71/3,
3n 3 3n 3

1 1
{/n2+n+\3/n2+1:dn2<1+—>+ijn2<1+—2>:
n n

1 1
=nP 14—+ 14 = ~ 227,
n n?

Quindi

3 3 —
V2 +2n—n2+2  (2/3)n '3
~
3 3

Vn2+n+Jn?+1 20?1
Il termine 7 -simo della serie ¢ quindi asintotico, a meno di una costante moltiplicativa, a
quello della serie armonica, che non converge. Per il criterio del confronto asintotico la
serie non converge.

Pertanto la serie non ¢ convergente e non ¢ assolutamente convergente.

11
T 3a

4) Poiché, VYn e N*,si ha (arctan(S/n))z/n >0, la serie ha i termini di segno alterno.

Studiamo anzitutto la assoluta convergenza. Si ha, Y7 €N,

2/n
'(—1)” <arctan 2> = exp<3 log<arctan 3)) .
n n n

Per 7 — +o0 si ha arctan(3/n) =3/n + o(n?), quindi

log<arctan %) - log<% + o(n_2)> - log<%<1 + o(n—1>)> _

3
=log = +log(1+0(n"))=—logn +log3+o(n~') ~—logn.
n
Pertanto

2 3 2
- 10g<arctan —> ~ —(—logn) ——0.
n n

n n—-+00
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Quindi

3 2/n
lim <arctan —> =e=1,

n—+400 n

percio il termine 7 -simo della serie non ha limite 0.
Pertanto la serie non ¢ convergente e non ¢ assolutamente convergente.

5) La serie ¢ a termini non negativi; per stabilirne la convergenza studiamo il comporta-
mento del termine 7 -simo per 7 — +00.
Se a € R* allora lim

. o
nstoo MY =00 e quindi anche

lir_zl n*log(14 n*) = +o0,

percio non ¢ verificata la condizione necessaria per la convergenza, quindi la serie non
converge.
n*log2 = 400,
percid non ¢ verificata la condizione necessaria per la convergenza, quindi la serie non
converge.

Se a € R~ allora lim

. . . . C oy .
Se a = 0 allora il termine 7-simo della serie ¢ #*log2 e lim,_,,

1stoo 7° =0 e quindi, per 7 — 400, log(1+4 n%) ~ n*, percio

n*log(14 n*) ~ n**?;
per il criterio del confronto asintotico, la serie converge se e solo se a +2 < —1, cioe

a<-—3.
Possiamo concludere che la serie converge se e solo se a € ]—o0,—3[ .

6) La funzione seno assume valori compresi tra —1 e 1, pertanto, per 7 € N*, si ha

1
= p32c

sen(n?)
23/2

Il membro di destra ¢ il termine 7 -simo della serie armonica generalizzata di esponente 3/2
che converge perché I’esponente ¢ maggiore di 1.

Per il criterio del confronto la serie ¢ assolutamente convergente qualunque sia a e
quindi ¢ anche convergente.

7) Laserie ¢ a termini positivi. Studiamo il comportamento di numeratore e denomina-
tore per n — +00.

Per determinare il comportamento del numeratore occorre stabilire quale tra n* e n*
¢ il termine dominante; se a < 4 allora n*+n% ~ n*, se a =4 allora n*+n* =2n*, infine
se a>4 siha n*+n~n®.

Analogamente per il denominatore occorre confrontare n* con n®; perciod se a < 8

allora 78+ n* ~n®,se =8 allora n®+n* =2x%, infine se a > 8 si ha n®+n* ~n*.
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Indicato con a,, il termine 7 -simo della serie, si ha quindi, per 7 — +o0,

n* 1
sea <4 a, ~—=—,
L
2nt 2
sca—=4 a,~—=—,
n8 n*
n 1
sed<a<8 a,~—= ,
728 nS—a
n® 1
sea=38 a,~—=-—,
2n8 2
a
n
sea>8 a,~—=1.
nﬂ

Percio se a < 4 allora a,, ¢ asintotico (eventualmente a meno di costanti che sono ininfluen-
ti)a 1/n*, termine 7-simo di una serie armonica generalizzata convergente, perché 4 > 1;
per il criterio del confronto asintotico per tali valori di 4 anche la serie studiata converge.
Se invece a > 8 allora 4, ha limite reale diverso da O per 7 — +o0 e la serie studiata non
converge. Infine se 4 < a < 8 allora a, ¢&asintoticoa 1/2%, termine 7 -simo di una serie
che converge se e solo se 8—a > 1, cioe¢ se e solo se a < 7, percio anche la serie studiata
converge solo per a < 7.
Possiamo concludere che la serie converge se e solo se a € ]0,7[ .

8) Studiamo anzitutto I’assoluta convergenza della serie. Si ha

—1) 1
¥<42—44+2)" = |2 —4a+2|".

27(y/n+2) 27(y/n+2)

La forma del termine 7 -simo suggerisce di utilizzare il criterio della radice. Si ha

1 1
— |24t 2= ———|a® —4a+2|.
QJzn(ﬁH) 2y/yn+2
Poiché
n 1
v ﬁ+2:exp<— log(ﬁ+2>>—+>eozl,
risulta

.
EN P

Tale limite risulta minore di 1 se e solo se —1 < (2> —4a+2)/2< 1, cioé se e solo se a ¢
soluzione del sistema

1
a2 —4a 42| = > la®> —4a +2|.

a’—4a+2<2,
A —4a+2>-2,

che equivale a

42—4a<0,
a*—4a+4>0.
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La prima disequazione ¢ verificata per a € ]0,4[ . Poiché 4? —4a +4 = (a—2)* la seconda
¢ verificata per a # 2. Pertanto, se a € ]0,2[ U ]2,4[, allora, per il criterio della radice, la
serie ¢ assolutamente convergente e quindi convergente.

Dai ragionamenti fatti sopra segue anche che, se a € —00,0[ U J4,+00[ , allora

1

lim ¢ ———— a2 —4a+2|" > 1,

quindi, per il criterio della radice, la serie non ¢ assolutamente convergente. Inoltre, per
il teorema della permanenza del segno, se lim, . 4/|a,|>1, allora per # grande si ha
\/la,|>1, quindi |a,| > 1, pertanto il termine 7-simo della serie non converge a 0.
Quindi la serie non ¢ neppure convergente.

Se a =2 allora abbiamo la serie

+oo (_1)71 +o0 1

> =Y =

n=1 271( 7l+2> n=1 n+2
questa serie non converge, perché ¢ a termini non negativi, con termine 7 -simo asintotico
a quello della serie armonica generalizzata di esponente 1/2, che non converge. Se a =0

0 a=4 allorasi ha
+o0 (_

Zzn(fu Z\/"+2

n=1

Si verifica facilmente che la successione (1/ (ﬁ + 2))
Quindi, per il criterio di Leibniz, la serie converge.
Possiamo concludere che la serie converge se e solo se 2 €[0,2[ U ]2,4].

¢ decrescente e convergente a 0.
neN

9)
a. Converge, converge assolutamente

b. Converge, converge assolutamente
c. Non converge, non converge assolutamente
d. Converge, converge assolutamente
e. Converge, converge assolutamente
f. Converge, converge assolutamente
g. Non converge, non converge assolutamente
h. Converge, converge assolutamente

i. Converge, converge assolutamente
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j. Converge, non converge assolutamente

k. Non converge, non converge assolutamente
l. Converge, non converge assolutamente

m. Converge, non converge assolutamente

n. Converge, converge assolutamente

o. Converge, converge assolutamente

p. Converge, converge assolutamente

10)
a. ae[—1,1] n. a€l—o0,2[
b. a€]—o0,2[ 0. a€[—2,0]U[2,4]
c. a€]o,1] ] 1 1 |:
p. 2€ |[——,—=
d. ae]l,+oo] V33
1 q. a€R’
e. ae]—oo,O[U]—,+oo[
3 r. aeR*

f. ae[—%,o[u]o,%} s. a€]0,5]

g. a€]0,3]U[4,7]

t. Nessun «

1
h. ae]—4,0[\{-2) " “6}0’3[
i. a€R V. a€[l,+o00]
j. a€eRY W. a€]—00,0]
k. a€J]—o0,—1[U]3,+00[ Xx. a€R”
1 3 1
L. -1 -2 . -
46[2, ]U[z, ] y. ae]O,4|iU]1,+oo[

m. acR™ Z. a € ]2,+00[



