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In copertina:
rappresentazione della funzione elevamento al quadrato in campo complesso.

Ogni retta nel piano a sinistra viene trasformata in una curva (parabola o semiretta)
dello stesso colore nel piano a destra.
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1

Funzioni

1.1 Esercizi

Dominio e simmetrie

Se è assegnata una formula in cui compare una variabile (solitamente x ), ad esempio:

x3 ,
x

e x − 1
,
p

x2− 5+ 3x ,
p

1− log x ,

risulta naturale considerare la funzione individuata da tale formula. Con questo si intende
la funzione, reale di variabile reale, definita per tutti gli x ∈R per cui la formula ha senso.
L’insieme di tali x , che risulta essere il domino della funzione definita dalla formula, è detto
dominio naturale della funzione.

Per determinare il dominio naturale di una funzione è necessario determinare i numeri
reali tali che nella formula considerata:

• ogni frazione ha denominatore diverso da 0 ,

• ogni potenza a esponente intero non positivo ha base diversa da 0 ,

• ogni potenza a esponente positivo non intero ha base non negativa,

• ogni potenza a esponente negativo non intero ha base positiva,

• ogni funzione elementare con dominio diverso da R ha argomento appartenente al
dominio.

Ricordiamo che le funzioni elementari con dominio diverso da R sono:

• radice, che ha dominio [0,+∞[ ,

• log (in qualunque base), che ha dominio R+ ,

• tan , che ha dominio R \
�

(π/2)+ kπ
�

�k ∈Z
	

,

• cot , che ha dominio R \ {kπ |k ∈Z} ,

• arcsen e arccos , che hanno dominio [−1,1] ,

• settcosh , che ha dominio [1,+∞[ ,

• setttanh , che ha dominio ]−1,1[ ,
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1.1.1 Esempio. Determiniamo il dominio naturale delle funzioni definite dalle formule
riportate sopra.

La formula x3 ha senso ∀x ∈ R ; pertanto il dominio naturale della funzione x 7→ x3

è R .
La formula x/(e x−1) ha senso se il denominatore non si annulla, cioè per e x 6= 1 , che

equivale a x 6= 0 ; quindi il dominio naturale della funzione x 7→ x/(e x − 1) è R∗ .
La formula

p
x2− 5+3x ha senso se l’argomento della radice è non negativo, quindi il

dominio naturale della funzione x 7→
p

x2− 5+ 3x è
�

−∞,−
p

5
�

∪
�p

5,+∞
�

.

La formula
p

1− log x ha senso se l’argomento del logaritmo è positivo e l’argomento
della radice è non negativo, quindi deve essere x > 0 e 1−log x ≥ 0 ; la seconda disequazione
è verificata se e solo se log x ≤ 1 , cioè x ≤ e . Quindi il dominio naturale della funzione
x 7→
p

1− log x è ]0, e] .

Una funzione, o, per la precisione, il suo grafico, può avere particolari simmetrie.
Studiamo il grafico di una funzione reale di variabile reale che sia simmetrico rispetto

all’asse delle ascisse.
Il simmetrico rispetto all’asse delle ascisse del punto (x, y) ∈ R2 è (−x, y) . Quindi il

grafico di una funzione f : A→R è simmetrico quando

∀(x, y) ∈R2 , (x, y) ∈Gr( f ) ⇐⇒ (−x, y) ∈Gr( f ) ;

questa condizione equivale a

∀(x, y) ∈R2 ,
�

x ∈A∧ y = f (x)
�

⇐⇒
�

−x ∈A∧ y = f (−x)
�

.

Tale condizione equivale a chiedere che, ∀x ∈ R , sia x ∈ A ⇐⇒ −x ∈ A e che, ∀x ∈ A ,
sia f (−x) = f (x) .

Poiché la trasformazione x 7→ −x è la simmetria dell’asse reale rispetto all’origine, la
condizione su A significa che A è simmetrico rispetto all’origine.

Osserviamo che la condizione x ∈A ⇐⇒ −x ∈A , è equivalente a x ∈A =⇒ −x ∈A .
Infatti se vale questa, si ha −x ∈A =⇒ −(−x) ∈A , ma −(−x) = x .

Queste osservazioni si traducono nella seguente definizione.
Sia f : A→R , con A⊆R simmetrico rispetto all’origine; se

∀x ∈A, f (−x) = f (x) ,

allora diciamo che f è una funzione pari.
Il nome è dovuto al fatto che, come si verifica facilmente, le funzioni potenza con

esponente intero pari godono di tale proprietà.

1.1.2 Esempio. Sia f1 la funzione definita da

f1(x) = |x|+
p

1− x2 .

Il dominio naturale di f1 è costituito dagli x ∈ R per cui è non negativo il numero sotto
radice, cioè {x ∈R |1− x2 ≥ 0} , pertanto D( f1) = [−1,1] . Evidentemente x ∈ [−1,1] se
e solo se −x ∈ [−1,1] . Inoltre, se x appartiene a tale insieme, allora

f1(−x) = |−x|+
p

1− (−x)2 = |x|+
p

1− x2 = f1(x) .

Pertanto f1 è una funzione pari.
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(−1,1) (1,1)1

Figura 1.1.1
Il grafico della funzione pari f1
(v. esempio 1.1.2) è simmetrico
rispetto all’asse delle ordinate.

Analogamente studiamo il grafico di una funzione reale di variabile reale che sia simme-
trico rispetto all’origine.

Il simmetrico rispetto all’origine del punto (x, y) ∈ R2 è (−x,−y) . Quindi il grafico
di una funzione f : A→R è simmetrico quando

∀(x, y) ∈R2 , (x, y) ∈Gr( f ) ⇐⇒ (−x,−y) ∈Gr( f ) ;

questa condizione equivale a

∀(x, y) ∈R2 ,
�

x ∈A∧ y = f (x)
�

⇐⇒
�

−x ∈A∧−y = f (−x)
�

.

Tale condizione equivale a chiedere che, ∀x ∈ R , sia x ∈ A ⇐⇒ −x ∈ A e che, ∀x ∈ A ,
sia f (−x) =− f (x) .

Queste osservazioni si traducono nella seguente definizione.
Sia f : A→R , con A⊆R simmetrico rispetto all’origine; se

∀x ∈A, f (−x) =− f (x) ,

allora diciamo che f è una funzione dispari.
Il nome è dovuto al fatto che, come si verifica facilmente, le funzioni potenza con

esponente intero dispari godono di tale proprietà.

1.1.3 Esempio. Sia f2 la funzione definita da

f2(x) = x
�

|x| − 2
�

.

Poiché la funzione valore assoluto ha dominio R , il dominio naturale di f2 è R . Tale
dominio è simmetrico rispetto all’origine. Inoltre, ∀x ∈R , si ha

f2(−x) = (−x)
�

|−x| − 2
�

=−
�

x
�

|x| − 2
��

=− f2(x) .

Pertanto f2 è una funzione dispari.
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−2 2

Figura 1.1.2
Il grafico della funzione dispari f2
(v. esempio 1.1.3) è simmetrico
rispetto all’origine.

Studiamo ora il grafico di una funzione che sia invariante per traslazioni in direzione
parallela all’asse delle ascisse.

Sia T ∈ R+ . Effettuando una traslazione di ampiezza T parallelamente all’asse delle
ascisse in direzione positiva, il punto (x, y) ∈R2 viene traslato nel punto (x+T , y) . Quindi
il grafico di una funzione f : A→R è invariante per una traslazione di ampiezza T parallela
all’asse delle ascisse in direzione positiva quando

∀(x, y) ∈R2 , (x, y) ∈Gr( f ) ⇐⇒ (x +T , y) ∈Gr( f ) ,

questa condizione equivale a

∀(x, y) ∈R2 ,
�

x ∈A∧ y = f (x)
�

⇐⇒
�

x +T ∈A∧ y = f (x +T )
�

.

Tale condizione equivale a chiedere che, ∀x ∈R , sia x ∈A ⇐⇒ x+T ∈A e che, ∀x ∈A ,
sia f (x +T ) = f (x) .

Queste osservazioni si traducono nella seguente definizione.
Siano T ∈R+ e f : A→R , con A tale che, ∀x ∈R , si ha x ∈A ⇐⇒ x +T ∈A ; se

∀x ∈A, f (x +T ) = f (x) ,

allora diciamo che f è una funzione periodica di periodo T o funzione T -periodica.

1.1.4 Esempio. Sia f3 la funzione definita da

f3(x) = x − [x]

Poiché la funzione parte intera ha dominio R , il dominio naturale di f3 è R . Per ogni
x ∈R risulta

f3(x + 1) = x + 1− [x + 1] = x + 1−
�

[x]+ 1
�

= x − [x] = f3(x) .

Pertanto f3 è periodica di periodo 1 .
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−2 −1 0 1 2

Figura 1.1.3
Il grafico della funzione periodi-
ca f3 (v. esempio 1.1.4) è inva-
riante per traslazioni orizzontali
di ampiezza 1 .

1) Determinare il dominio naturale della funzione definita da:

f (x) = arcsen

�

1−

√

√

√

6
x − 5
x − 6

�

.

2) Determinare il dominio naturale della funzione definita da:

f (x) =

√

√

√

log
�

�

�

�

3
x − 2

�

�

�

�

.

3) Determinare il dominio naturale della funzione definita da:

f (x) =
1

p

2x2− 3x + 2− |x2+ x − 2|
.

4) Determinare il dominio naturale delle seguenti funzioni:

a. f (x) =
p

x2+ 4x + 3
x + 2

b. f (x) =
p

2x2− 1−
p

x + 1

c. f (x) = log
�

x2+ x + 1− |3x|
�

d. f (x) =
Æp

1− x − x − 4

e. f (x) = log
�

1− x2

x2− 3x

�

f. f (x) =

√

√

√ x2+ 2x
x2− 9

g. f (x) = log

�s

1− 2
x
+
p

3
x

�

h. f (x) =
p

log6− log(−x2+ 3x + 10)

i. f (x) =
p

x2− 4 arcsen
�

1
4x + 8

�

j. f (x) =

p

|x + 2| − 3

1+
p

x2− 9

k. f (x) = log
�

3x + 8−
p

x2− 4
�

l. f (x) = arcsen
�

p

3x2+ 2x
�
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Asintoti

Un asintoto per una funzione reale di variabile reale è una retta a cui il grafico della
funzione “si avvicina all’infinito”.

Precisiamo questa idea. Consideriamo un punto del grafico la cui distanza dall’origine
tende a +∞ e studiamo la sua distanza da una retta fissata. Quindi, assegnata f : A→R ,
consideriamo la funzione, con lo stesso dominio di f , che a x fa corrispondere la distanza

del punto
�

x, f (x)
�

dall’origine, cioè la funzione x 7→
q

x2+
�

f (x)
�2 . Sia c ∈ P L(A) tale

che per x → c , eventualmente da sinistra o da destra, sia
q

x2+
�

f (x)
�2→+∞ . Ciò

avviene per x→±∞ , oppure per x→ c ∈R (o x→ c− o x→ c+ ) se si ha f (x)→±∞ .
Vediamo se in questi casi il punto

�

x, f (x)
�

si avvicina a una determinata retta, nel senso
che la distanza del punto dalla retta tende a 0 , per x→ c .

Nel caso x→±∞ , la distanza del punto
�

x, f (x)
�

dalla retta di equazione y = mx+ p
è
�

� f (x)− mx − p
�

�/
p

1+m2 , che tende a 0 se e solo se f (x)− mx − p → 0 . È utile
distinguere il caso m = 0 da m 6= 0 .

Diciamo che la retta di equazione y = p è asintoto orizzontale per f quando risulta

lim
x→−∞

f (x) = p oppure lim
x→+∞

f (x) = p .

Diciamo che la retta di equazione y = mx + p è asintoto obliquo per f quando risulta

lim
x→−∞

�

f (x)−mx − p
�

= 0 oppure lim
x→+∞

�

f (x)−mx − p
�

= 0 .

Se per x → c , o x → c± , f (x)→±∞ , evidentemente il punto
�

x, f (x)
�

si avvicina
alla retta di equazione x = c . Quindi diciamo che la retta di equazione x = c è asintoto
verticale per f quando, per x→ c+ o per x→ c− si ha f (x)→±∞ .

1.1.5 Esempio. Sia

f4 : R \ {2}→R f4(x) =
x

x − 2
.

Risulta

lim
x→−∞

f4(x) = 1 , lim
x→2−

f4(x) =−∞ ,

lim
x→2+

f4(x) = +∞ , lim
x→+∞

f4(x) = 1 .

Pertanto la retta di equazione x = 2 è asintoto verticale per f4 , mentre la retta di equazione
y = 1 è asintoto orizzontale per f4 .

Per stabilire che la retta di equazione x = c è un asintoto verticale per una funzione f
è sufficiente sapere che limx→c± f (x) =±∞ . Per stabilire che la retta di equazione y = m
è un asintoto orizzontale per una funzione f è sufficiente sapere che limx→±∞ f (x) = m .
Si tratta in entrambi i casi di avere informazioni su limiti di f . Diverso è il discorso per la
ricerca di asintoti obliqui.
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La condizione per cui la retta di equazione y = mx + p è asintoto obliquo equivale a

f (x) = mx + p + o(1) , per x→±∞ .

Da questa uguaglianza segue

f (x)
x
=

mx + p + o(1)
x

= m+
p
x
+

o(1)
x
−−−→
x→±∞

m .

Inoltre risulta limx→±∞
�

f (x)−mx
�

= p . Pertanto, se la retta di equazione y = mx + p
è asintoto obliquo per f , allora, per x → −∞ o per x → +∞ , risulta f (x)/x → m
e f (x)− mx → p . Viceversa, se, per x → −∞ o per x → +∞ , si ha f (x)/x → m e
f (x)−mx→ p , allora si ha f (x)−mx− p→ 0 , quindi la retta di equazione y = mx+ p
è asintoto obliquo per f .

1.1.6 Esempio. Sia

f5 : ]−∞,−4]∪ [0,+∞[→R , f5(x) =
p

x2+ 4x .

Per x→+∞ si ha 1/x→ 0 , quindi

f5(x) = |x|
s

1+
4
x
= x
�

1+
1
2

4
x
+ o
�

1
x

�

�

= x + 2+ o(1) .

Pertanto la retta di equazione y = x + 2 è asintoto obliquo per f5 .
Procedendo invece con il calcolo di limiti, si ha

lim
x→+∞

f (x)
x
= lim

x→+∞

p
x2+ 4x

x
= lim

x→+∞

|x|
p

1+(4/x)
x

= lim
x→+∞

p

1+(4/x) = 1 ,

lim
x→+∞

�

f5(x)− x
�

= lim
x→+∞

�

p

x2+ 4x − x
�

= lim
x→+∞

�p
x2+ 4x − x
��p

x2+ 4x + x
�

p
x2+ 4x + x

=

= lim
x→+∞

x2+ 4x − x2

|x|
p

1+(4/x)+ x
= lim

x→+∞

4x

x
�
p

1+(4/x)+ 1
�
= 2 .

Riotteniamo così che la retta di equazione y = x + 2 è asintoto obliquo per f5 .
Analogamente, per x→−∞ si ha

f5(x) = |x|
s

1+
4
x
=−x
�

1+
1
2

4
x
+ o
�

1
x

�

�

=−x − 2+ o(1) .

Pertanto la retta di equazione y =−x − 2 è asintoto obliquo per f5 .

Come risulta da quanto esposto sopra, per determinare gli asintoti orizzontali e obliqui
di una funzione occorre studiarne il comportamento a −∞ (se il dominio è inferiormente
illimitato) e a +∞ (se il dominio è superiormente illimitato). Per determinare gli asintoti
verticali occorre studiare se la funzione è divergente per x che tende, eventualmente da
sinistra o da destra, a un numero reale c . Ciò può avvenire se c è un punto di discontinuità
per la funzione oppure se è un punto che non appartiene al dominio, ma è di accumulazione
per il dominio. In particolare, se il dominio è unione di intervalli, hanno interesse gli
estremi reali di tali intervalli che non appartengono agli intervalli stessi.
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5) Determinare gli asintoti della funzione definita da:

f (x) =
|x|
p

x2− 1

�

π

2
+ arctan x
�

.

6) Determinare gli asintoti della funzione definita da:

f (x) =
x2+ 3x + 4

x
exp
�

− 1
|x − 2|

�

.

7) Determinare gli asintoti della funzione definita da:

f (x) =
3− x
1− x

arctan
� x − 6

x − 4

�

.

8) Determinare gli asintoti delle seguenti funzioni:

a. f (x) = log(e2x + 3)

b. f (x) =
x
p

x2− 9+ 3
x2− 5x

c. f (x) =
x2+ 3x − |x|
p

x2+ 2x

d. f (x) = (x + 3) log
�

2+
6
x

�

e. f (x) =
p

x2+ 5x log
�

5x
|x − 2|

�

f. f (x) = (x − 5)exp
�

4
x + 4

�

g. f (x) =
x2 e5/x

p
x2− 2x

h. f (x) =
p

x2− 4+ 3x3+ 5x2

x2− 3x

i. f (x) = x
p

x2+ 2x
�

e−3/x − 1
�

j. f (x) =
x +
p

x2+ 2x + 3
e4/x + 1

Monotonia ed estremanti locali

Lo strumento principale per studiare la monotonia di una funzione è il criterio di mono-
tonia, che assicura che una funzione definita in un intervallo I , continua in I e derivabile
in int I , se ha derivata non negativa in int I allora è crescente, mentre se ha derivata non
positiva allora è decrescente. Sottolineiamo che le ipotesi del teorema richiedono che il
dominio sia un intervallo.

Ricordiamo anche il criterio di stretta monotonia, che afferma che, se si impone l’ipo-
tesi più restrittiva che la derivata sia positiva, allora la funzione è strettamente crescente e,
analogamente, se la derivata è negativa, allora la funzione è strettamente decrescente.

Elenchiamo alcune condizioni necessarie e condizioni sufficienti perché un punto del
dominio di una funzione sia estremante locale.

Il teorema di Fermat stabilisce una condizione necessaria: se c ∈ intD( f ) è estremante
locale e f è derivabile in c , allora f ′(c) = 0 . Pertanto l’insieme degli estremanti di una
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funzione f : A→R è incluso nell’unione dei seguenti tre insiemi:

A∩ ∂ A,
�

x ∈ intA
�

� f non è derivabile in x
	

,
�

x ∈ intA
�

� f è derivabile in x e f ′(x) = 0
	

.

I teoremi che stabiliscono condizioni sufficienti affinché un punto sia estremante lo-
cale si suddividono in due categorie: quelli che utilizzano informazioni sulla monotonia
della funzione o, equivalentemente, sulla sua derivata prima e quelli che utilizzano anche
informazioni sulla derivata seconda.

La condizione sufficiente di ordine zero assicura che, fissati f : A→R e c ∈A , se esiste
δ ∈R+ tale che f è crescente in ]c−δ, c]∩A ed è decrescente in [c , c+δ[∩A , allora c
è punto di massimo locale. Una analoga condizione sufficiente affinché c sia un punto di
minimo locale si ottiene scambiando crescenza e decrescenza.

Dalla condizione di ordine zero, mediante il criterio di monotonia, si ottiene immedia-
tamente la condizione sufficiente del I ordine. Questa assicura che, dati f : I → R , con I
intervallo, e c ∈ I , se f è continua in I e derivabile in I \ {c} ed esiste δ ∈ R+ tale
che f ′(x) ≥ 0 per x ∈ ]c −δ, c[∩ I e f ′(x) ≤ 0 per x ∈ ]c , c +δ[∩ I , allora c è punto
di massimo locale. Un’analoga condizione sufficiente affinché c sia un punto di minimo
locale si ottiene scambiando il segno della derivata.

La condizione vale anche se c è massimo o minimo di I , in tal caso uno dei due insiemi
]c −δ, c[∩ I e ]c , c +δ[∩ I è vuoto, quindi ha senso solo una delle due condizioni sul
segno di f ′ .

Evidentemente la condizione del I ordine per l’esistenza di un punto di massimo lo-
cale è verificata quando esistono un intervallo ]a, c[ , con a < c , in cui f ′ è positiva
e un intervallo ]c , b [ , con b > c , in cui f ′ è negativa. In tal caso si può scegliere
δ =min{c − a, b − c} . Analogamente per l’esistenza di un punto di minimo locale.

La condizione sufficiente del II ordine assicura che, dati f : I →R , con I intervallo, e
c ∈ I , se f è derivabile 2 volte in c e risulta f ′(c) = 0 e f ′′(c) > 0 , allora c è punto di
minimo locale; se invece f ′(c) = 0 e f ′′(c)< 0 , allora c è punto di massimo locale.

1.1.7 Esempio. Sia
f6 : R→R , f6(x) = x3− 2x2+ 2x .

La funzione f6 è derivabile e, ∀x ∈ R , si ha f ′6 (x) = 3x2 − 4x + 2 . Questo trinomio ha
discriminante −10 , perciò è sempre positivo. Quindi, ∀x ∈R , si ha f ′6 (x)> 0 , pertanto f
è strettamente crescente.

Non vi sono estremanti locali per f6 , perché solo il minimo e il massimo del dominio
possono essere estremanti locali per una funzione strettamente monotona, ma D( f6) = R
non ha né minimo né massimo.

1.1.8 Esempio. Sia

f7 : R \ {−1,1}→R f7(x) =
x
p

|x2− 1|
.

La funzione f7 è derivabile in x se x non annulla né l’argomento del valore assoluto né
quello della radice. Evidentemente tali argomenti sono non nulli in ogni punto del dominio
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di f7 , che quindi è derivabile. Si ha, ∀x ∈R \ {−1,1} ,

f ′7 (x) =
�

p

|x2− 1| − x
x sgn(x2− 1)
p

|x2− 1|

�

1
�
p

|x2− 1|
�2 =
|x2− 1| − x2 sgn(x2− 1)

|x2− 1|3/2
=

=
sgn(x2− 1)(x2− 1)− x2 sgn(x2− 1)

|x2− 1|3/2
=−

sgn(x2− 1)
|x2− 1|3/2

.

Il denominatore è positivo, quindi f ′7 (x)> 0 se e solo se sgn(x2− 1)< 0 , cioè x2− 1< 0
Pertanto se x ∈ ]−1,1[ , allora f ′7 (x) > 0 , quindi f7 è strettamente crescente in ]−1,1[ .
Se x ∈ ]−∞,−1[ , allora f ′7 (x) < 0 , quindi f7 è strettamente decrescente in ]−∞,−1[ .
Se x ∈ ]1,+∞[ , allora f ′7 (x)< 0 , quindi f7 è strettamente decrescente in ]1,+∞[ .

La funzione f7 non ha estremanti locali. Infatti è derivabile e il dominio è aperto,
pertanto, per il teorema di Fermat, in ogni estremante locale f ′7 è nullo, ma f ′7 non si
annulla.

1.1.9 Esempio. Sia

f8 : R→R , f8(x) =
x + 1
x2+ 3

.

La funzione f8 è derivabile e, ∀x ∈R , si ha

f ′8 (x) =
x2+ 3− 2x(x + 1)
(x2+ 3)2

=
−x2− 2x + 3
(x2+ 3)2

.

Il denominatore è positivo, il trinomio a numeratore si annulla per

x =
1±
p

1− (−1)3
−1

=
1± 2
−1

=
�1 ,
−3 .

Poiché il coefficiente di x2 è negativo, risulta f8
′(x) > 0 se x ∈ ]−3,1[ e f ′8 (x) < 0 se

x ∈ ]−∞,−3[∪ ]1,+∞[ . Quindi la funzione f8
�

�

[−3,1]
è derivabile e ha derivata positiva

in tutti i punti interni al dominio, quindi, per il criterio di monotonia stretta, è strettamente
crescente. Per motivi analoghi f8 è strettamente decrescente in ]−∞,−3] e in [1,+∞[ .

Osserviamo che dal fatto che f8 sia decrescente in ]−∞,−3] e in [1,+∞[ non segue
che essa sia decrescente nell’unione di tali insiemi. Infatti si verifica facilmente che per
x ∈ ]−∞,−3] risulta f8(x) < 0 , mentre per x ∈ [1,+∞[ risulta f8(x) > 0 , quindi f8
non è decrescente in ]−∞,−3]∪ [1,+∞[ .

Poiché esiste un intervallo che ha massimo −3 in cui f8 è strettamente decrescente e un
intervallo che ha minimo −3 in cui f8 è strettamente decrescente, si determina facilmente
δ ∈R+ tale che f8 è strettamente decrescente in ]−3−δ,−3] ed è strettamente crescente
[−3,−3+δ[ ; si può ad esempio scegliere δ = 1 . Quindi −3 è punto di minimo locale
per f8 .

Analogamente, poiché esiste un intervallo che ha massimo 1 in cui f8 strettamente
crescente ed esiste un intervallo che ha minimo 1 in cui f8 è strettamente decrescente, 1 è
un punto di massimo locale per f8 .
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Ripetiamo lo studio degli estremanti locali utilizzando la condizione necessaria del II
ordine. Sappiamo che f ′8 (−3) = f ′8 (1) = 0 . La funzione f ′8 è derivabile e, ∀x ∈R , si ha

f ′′8 (x) =
(−2x − 2)(x2+ 3)2− 4x(x2+ 3)(−x2− 2x + 3)

(x2+ 3)4
=

=
−2x3− 6x − 2x2− 6+ 4x3+ 8x2− 12x

(x2+ 3)3
=

2x3+ 6x2− 18x − 6
(x2+ 3)3

.

Quindi

f ′′8 (−3) =
−54+ 54+ 54− 6

123
=

48
123
> 0 ,

f ′′8 (1) =
2+ 6− 18− 6

43
=− 16

43
< 0 .

Pertanto otteniamo nuovamente che −3 è un punto di minimo locale e 1 è un punto di
massimo locale per f8 .

1.1.10 Esempio. Sia

f9 :
�

− 3
2

,+∞
�

→R , f9(x) =
�

�

p
2x + 3− x
�

� .

Le funzioni radice quadrata e valore assoluto sono derivabili nel dominio escluso 0 , quin-
di f9 è derivabile in x ∈ D( f9) se 2x + 3 6= 0 , e

p
2x + 3− x 6= 0 . Si ha 2x + 3 = 0 se e

solo se x = −3/2 . Si ha
p

2x + 3− x = 0 se e solo se x ≥ 0 e 2x + 3 = x2 . L’equazione
2x + 3= x2 equivale a x2− 2x − 3= 0 , che è verificata per

x = 1±
p

12− (−3) = 1± 2=
�−1 ,

3 .

Poiché deve essere x ≥ 0 , si ha la soluzione x = 3 . Pertanto f9 è derivabile in

D( f9) \
§

− 3
2

,3
ª

=
�

− 3
2

,3
�

∪ ]3,+∞[ .

Lo studio della derivabilità in −3/2 e 3 non ha interesse per la determinazione della
monotonia della funzione.

Per x nell’insieme indicato sopra risulta

f ′9 (x) = sgn
�p

2x + 3− x
�

�

1
p

2x + 3
− 1
�

.

Studiamo il segno di f ′9 .
Si ha
p

2x + 3− x ≥ 0 se e solo se x è soluzione del sistema
�2x + 3≥ 0 ,

x ≤ 0 ,

oppure è soluzione dell’equazione 2x + 3 ≥ x2 . Il sistema è verificato per x ∈ [−3/2,0] .
L’equazione equivale a x2 − 2x − 3 ≤ 0 . Sappiamo che il trinomio ha le radici −1 e 3 ,
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quindi è non positivo in [−1,3] . Pertanto, considerando solo i punti in cui abbiamo già
stabilito la derivabilità di f9 , si ha

p
2x + 3− x ≥ 0 per x ∈ ]−3/2,3[ e

p
2x + 3− x ≤ 0

in ]3,+∞[ .
La disequazione 1/

p
2x + 3≥ 1 è verificata per gli x maggiori o uguali a −3/2 tali che

2x + 3≤ 1 , cioè x ≤−1 .
Pertanto il segno di f ′9 risulta dal seguente schema

− 3
2 −1 3

sgn
�p

2x + 3− x
�

+ + + + + + + + + + + + − − − − − − − −
1

p
2x + 3

− 1 + − − − − − − − − − − − − − − − − − − −

f ′9 (x) + − − − − − − − − − − − + + + + + + + +

Poiché f9 è continua in [−3/2,−1] e derivabile in ]−3/2,−1[ , con derivata positiva in
ogni punto di tale intervallo, per il criterio di monotonia è crescente (e anche strettamente
crescente) in [−3/2,−1] . Per motivi analoghi, f9 è crescente in [3,+∞[ e decrescente
in [−1,3] .

Il punto −3/2 è il minimo del dominio di f9 e nel suo intorno destro [−3/2,−1[ la
funzione è crescente, quindi, per la condizione sufficiente di ordine zero per gli estremanti
locali, −3/2 è punto di minimo locale.

Scelto δ = 1/2 , in ]−1−δ,−1] f9 è crescente, mentre in [−1,−1+δ[ f9 è decre-
scente, quindi −1 è punto di massimo locale; per motivi analoghi, 3 è punto di minimo
locale.

In questo caso la condizione sufficiente del II ordine non può essere utilizzata per stabi-
lire che −3/2 e 3 sono estremanti locali, perché f9 non è derivabile in tali punti. Infatti

lim
x→−3/2

f ′9 (x) = lim
x→−3/2

sgn
�p

2x + 3− x
�

�

1
p

2x + 3
− 1
�

= lim
x→−3/2

�

1
p

2x + 3
− 1
�

=+∞ .

Pertanto

lim
x→−3/2

R f9

�

x,− 3
2

�

= lim
x→−3/2

f ′9 (x) = +∞ ,

quindi f9 non è derivabile in −3/2 . Inoltre

lim
x→3−

f ′9 (x) = lim
x→3−

sgn
�p

2x + 3− x
�

�

1
p

2x + 3
− 1
�

= lim
x→3−

�

1
p

2x + 3
− 1
�

=− 2
3

,

lim
x→3+

f ′9 (x) = lim
x→3+

sgn
�p

2x + 3− x
�

�

1
p

2x + 3
− 1
�

=− lim
x→3+

�

1
p

2x + 3
− 1
�

=
2
3

.

Quindi

lim
x→3−

R f9
(x, 3) = lim

x→3−
f ′9 (x) =−

3
2

, lim
x→3+

R f9
(x, 3) = lim

x→3+
f ′9 (x) =

3
2

,

pertanto i limiti sinistro e destro del rapporto incrementale sono diversi, perciò f9 non è
derivabile in 3 .
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9) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e diminimo
locale della funzione definita da:

f (x) =
|x2− 4x + 3|

x + 1
.

10) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e di
minimo locale della funzione definita da:

f (x) = x exp(−2x2+ 3x) .

11) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e di
minimo locale della funzione definita da:

f (x) =
p

2x2+ 56−
p

x2− 4 .

12) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e di
minimo locale della funzione definita da:

f (x) =
s

x2+ 5x + 4
x

.

13) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e di
minimo locale della funzione definita da:

f (x) = log(x2+ 2x)− |x + 4| .

14) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e di
minimo locale della funzione definita da:

f (x) = tan x + 3cot x .

15) Determinare gli intervalli di crescenza e di decrescenza e i punti di massimo e di
minimo locale delle seguenti funzioni:

a. f (x) =
x2

x + 1

b. f (x) =
p

x + 1− x

c. f (x) =
1

1− log x

d. f (x) = 2x − arcsen x

e. f (x) =
exp
�p
−x + 5
�

x − 2

f. f (x) = x
�

log
x
e2

�3

g. f (x) = e x x
x − 2

h. f (x) =
p

x2− 3− 2x2

i. f (x) = x
p

|log x|

j. f (x) = |8x2+ 2x − 1|exp(−4x2+ 2x)
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k. f (x) =
x + 7

p
x2+ 11− 4

l. f (x) =
|x + 3|+ 2

x2− 9

m. f (x) =
exp(x2/2)

2|x + 1|+ 1

n. f (x) = |x2+ 3x|e−2x

o. f (x) = |x + 4|

√

√

√ x − 1
x − 2

p. f (x) = 2arctan(x2)+ arctan
�

1
2(x2− 9)

�

q. f (x) =
cos x

sen x + 2

r. f (x) = sin x
p

cos x

Convessità e punti di flesso

Per studiare le convessità di una funzione possiamo utilizzare i criteri di convessità;
solitamente risulta utile quello del II ordine, che assicura che una funzione definita in un
intervallo I , continua in I e derivabile 2 volte in int I , se ha derivata seconda non negativa
in int I allora è convessa, mentre se ha derivata seconda non positiva allora è concava.

Il punto c appartenente all’interno del dominio della funzione f è un punto di flesso
per f quando f è derivabile in c e ∃δ ∈R+ tale che ]c −δ, c +δ[⊆D( f ) e

∀x ∈ ]c −δ, c +δ[ \ {c} ,
f (x)− f (c)

x − c
≤ f ′(x) ,

oppure

∀x ∈ ]c −δ, c +δ[ \ {c} ,
f (x)− f (c)

x − c
≥ f ′(x) .

La prima condizione equivale a chiedere che sia
�

∀x ∈ ]c−δ, c[ , f (x)− f (c)≥ f ′(x)(x−c)
�

∧
�

∀x ∈ ]c , c+δ[ , f (x)− f (c)≤ f ′(x)(x−c)
�

,

cioè
�

∀x ∈ ]c−δ, c[ , f (x)≥ f (c)+ f ′(x)(x−c)
�

∧
�

∀x ∈ ]c , c+δ[ , f (x)≤ f (c)+ f ′(x)(x−c)
�

.

Geometricamente ciò significa che in ]c −δ, c[ il grafico di f è “al di sopra” della retta
tangente al grafico in

�

c , f (c)
�

, mentre in ]c , c+δ[ il grafico di f è “al di sotto” della retta
tangente. In altre parole, nel punto

�

c , f (c)
�

il grafico di f attraversa la retta tangente.
Analogamente la seconda condizione equivale a
�

∀x ∈ ]c−δ, c[ , f (x)≤ f (c)+ f ′(x)(x−c)
�

∧
�

∀x ∈ ]c , c+δ[ , f (x)≥ f (c)+ f ′(x)(x−c)
�

.

In questo caso la posizione del grafico rispetto alla retta tangente è invertita e, come prima,
il grafico attraversa la retta tangente.

Siano f : I → R , con I intervallo, e c ∈ int I tale che f è derivabile in c . Se esiste
δ ∈ R+ tale che ]c −δ, c +δ[ ⊆ I , f è convessa in ]c −δ, c] e concava in [c , c +δ[ ,
allora, per le proprietà delle funzioni convesse e concave, risulta verificata la condizione
�

∀x ∈ ]c−δ, c[ , f (x)≥ f (c)+ f ′(x)(x−c)
�

∧
�

∀x ∈ ]c , c+δ[ , f (x)≤ f (c)+ f ′(x)(x−c)
�

,

quindi c è punto di flesso per f .
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c

f (c)

c

f (c)

Figura 1.1.4
Punti di flesso. A sinistra il grafico di una funzione per cui il rapporto incrementale R f (x, c)
è minore o uguale a f ′(c) , per x vicino a c . A destra invece R f (x, c) ≥ f ′(c) , per x
vicino a c .

Analogamente, c è punto di flesso se esiste δ ∈ R+ tale che ]c −δ, c +δ[ ⊆ I , f è
concava in ]c −δ, c] e convessa in [c , c +δ[ .

1.1.11 Esempio. Sia

f10 : R→R , f10(x) = x4+ x3− 3x2+ 4x .

La funzione f10 è derivabile 2 volte e, ∀x ∈R , si ha

f ′10(x) = 4x3+ 3x2− 6x + 4 ,

f ′′10(x) = 12x2+ 6x − 6 .

Si ha 12x2+ 6x − 6= 0 se e solo se 2x2+ x − 1= 0 , e questo è verificato per

x =
−1±
p

12− 4 · 2(−1)
4

=
−1± 3

4
=







−1 ,

1
2

.

Pertanto f ′′10 è positivo in ]−∞,−1[∪ ]1/2,+∞[ ed è negativo in ]−1,1/2[ . Quindi f10
è convessa in ]−∞,−1] e in [1/2,+∞[ , è concava in [−1,1/2] .

I punti −1 e 1/2 sono punti interni al dominio di f10 in cui la funzione è derivabile,
ognuno dei due separa un intervallo in cui f ′′10 è concava da un intervallo in cui f10 è
convessa, pertanto sono punti di flesso per f10 .

1.1.12 Esempio. Sia
f11 : R→R , f11(x) = x2− 2|x| .

La funzione f11 è continua ed derivabile 2 volte in R∗ e, ∀x ∈R∗ , si ha

f ′11(x) = 2x − 2sgn(x) ,

f ′′11(x) = 2 .

Pertanto f ′′11(x) è positivo per x ∈R∗ .
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Quindi f11 è convessa in ]−∞, 0] e in [0,+∞[ .
Osserviamo che questo non consente di concludere che f11 è convessa nel suo dominio.

Si ha f11(−1) =−1 e f11(1) =−1 e

f11

�

�

1− 1
2

�

(−1)+
1
2
· 1
�

= f11(0) = 0 ,

�

1− 1
2

�

f11(−1)+
1
2

f11(1) =
�

1− 1
2

�

(−1)+
1
2
(−1) =−1 .

Pertanto, posto x =−1 , y = 1 , t = 1/2 , non si ha

f11

�

(1− t )x + t y
�

≤ (1− t ) f11(x)+ t f11(y) .

Perciò f11 non è convessa.

16) Determinare gli intervalli di concavità e di convessità e i punti di flesso della funzione
definita da:

f (x) = |4x2− 8x + 3| e x .

17) Determinare gli intervalli di concavità e di convessità e i punti di flesso della funzione
definita da:

f (x) = log
�

|x2+ 2x|+ 3
�

.

18) Determinare gli intervalli di concavità e di convessità e i punti di flesso della funzione
definita da:

f (x) = (x − 1)
p

2x2− 4x + 1 .

19) Determinare gli intervalli di concavità e di convessità e i punti di flesso delle seguenti
funzioni:

a. f (x) =
x2+ 3x

x2+ x + 3

b. f (x) = x4+ 6x − 8− 4|x2− x|

c. f (x) = log
� x

6|x| − 5

�

d. f (x) = log
�

|x2− 3|
�

+ x2− 3

e. f (x) =
x3+ 2x + |x|

x2+ 9

f. f (x) = |x2− 8x + 15|
p

x

g. f (x) = exp
� x + 2
|x + 4|

�

h. f (x) =
p

x2− 4− 2|x − 4|

Studio di funzione

Gli strumenti descritti finora servono per individuare alcune proprietà del grafico di
una funzione. Vediamo come utilizzarli per studiare il comportamento generale di una
funzione e tracciarne un grafico qualitativo.

Per lo studio del grafico di una funzione non vi sono regole precise da applicare in
ogni caso; diamo alcune indicazioni, tenendo conto che non sempre è possibile (o agevole)
ottenere tutte le informazioni elencate.
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• Determinare il dominio naturale.

• Determinare eventuali simmetrie.

• Determinare le intersezioni con gli assi e il segno.

• Studiare il comportamento nei punti limite del dominio.

• Studiare la continuità e il comportamento nei punti di discontinuità.

• Determinare gli asintoti.

• Studiare la derivabilità e calcolare la derivata.

• Studiare il segno della derivata.

• Studiare la monotonia e determinare gli estremanti e gli estremi locali.

• Studiare l’esistenza della derivata seconda e calcolarla.

• Studiare il segno della derivata seconda.

• Studiare concavità, convessità e determinare i punti di flesso.

• Tracciare un grafico qualitativo.

Osserviamo che una particolare informazione sulla funzione studiata può essere ottenu-
ta più volte in passi successivi dello studio, oppure una informazione può dare indicazioni
sui risultati che si ottengono nei passi successivi. Ad esempio, se si è stabilito che una fun-
zione è positiva in un certo intervallo, i limiti della funzione agli estremi dell’intervallo non
possono essere negativi. In questi casi la ridondanza dell’informazione è utile come verifica
di non avere commesso errori.

1.1.13 Esempio. Studiamo la funzione definita da

f12(x) =
x3− 2x
x2− 3

.

Il dominio naturale di f12 è costituito dagli x ∈ R tali che il denominatore x2 − 3 è
diverso da 0 , cioè dagli x diversi da ±

p
3 , quindi

D( f12) =
�

−∞,−
p

3
�

∪
�

−
p

3,
p

3
�

∪
�
p

3,+∞
�

.

Il dominio di f12 è simmetrico rispetto all’origine e, ∀x ∈D( f12) , risulta

f12(−x) =
(−x)3− 2(−x)
(−x)2− 3

=
−x3+ 2x

x2− 3
=− f12(x) ,

pertanto f12 è dispari.
Determiniamo le intersezioni del grafico di f con gli assi cartesiani. Si ha f12(0) = 0 ,

quindi Gr( f ) interseca l’asse delle ordinate nell’origine. Si ha f12(x) = 0 se e solo se si
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annulla il numeratore, cioè se x(x2− 2) = 0 , quindi Gr( f ) interseca l’asse delle ascisse nei
punti di ascissa −

p
2 , 0 e

p
2 .

Il segno di f12 risulta dal seguente schema

−
p

3 −
p

2 0
p

2
p

3

x − − − − − − − − − + + + + + + + + +

x2− 2 + + + + − − − − − − − − − − + + + +

x2− 3 + + + − − − − − − − − − − − − + + +
f12(x) − − − + − − − − − + + + + + − + + +

Pertanto Gr( f12) è contenuto nelle parti chiare del piano rappresentate nella seguente
figura e passa per i punti indicati.

−
p

2
p

2

Studiamo il comportamento di f12 nei punti limite del dominio, cioè negli estremi degli
intervalli che suo cono il dominio. I punti limite non appartengono al dominio, quindi
studiamo i limiti di f12(x) per x che tende a tali punti limite. Si verifica facilmente che
si ha:

lim
x→−∞

f12(x) =−∞ , lim
x→−
p

3
−

f12(x) =−∞ , lim
x→−
p

3
+

f12(x) = +∞ ,

lim
x→
p

3
−

f12(x) =−∞ , lim
x→
p

3
+

f12(x) = +∞ , lim
x→+∞

f12(x) = +∞ .

Pertanto le rette di equazione x =−
p

3 e x =
p

3 sono asintoti verticali per f12 .
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Stabiliamo se esistono asintoti obliqui. Si ha

lim
x→−∞

f12(x)
x
= lim

x→−∞

x3− 2x
x(x2− 3)

= lim
x→−∞

x3

x3
= 1 ;

inoltre

lim
x→−∞

�

f12(x)−x
�

= lim
x→−∞

� x3− 2x
x2− 3

−x
�

= lim
x→−∞

x3− 2x − x(x2− 3)
x2− 3

= lim
x→−∞

x
x2− 3

= 0 .

Pertanto la retta di equazione y = x è asintoto obliquo, per x→−∞ , per f12 . Poiché f12
è dispari, tale retta è asintoto obliquo anche per x→+∞ . Infatti

lim
x→+∞

�

f12(x)− x
�

= lim
y→−∞

�

f12(−y)+ y
�

=− lim
y→−∞

�

f12(y)− y
�

= 0 .

Riportiamo le informazioni ottenute nella seguente figura.

x =−
p

3 x =
p

3

y = x

−
p

2
p

2

La funzione f12 è razionale fratta, quindi derivabile; ∀x ∈D( f12) , si ha

f ′12(x) =
(3x2− 2)(x2− 3)− 2x(x3− 2x)

(x2− 3)2
=

3x4− 9x2− 2x2+ 6− 2x4+ 4x2

(x2− 3)2
=

=
x4− 7x2+ 6
(x2− 3)2

.
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Il denominatore è sempre positivo, quindi, per determinare il segno di f ′12 , è sufficiente
studiare il segno del numeratore. Si ha x4− 7x2+ 6x2 = 0 per

x2 =
7±
p

72− 4 · 6
2

=
7± 5

2
=
�1 ,

6 .

Pertanto x4 − 7x2 + 6x2 = (x2 − 1)(x2 − 6) ; il segno di f ′12 risulta quindi dal seguente
schema.

−
p

6 −
p

3 −1 1
p

3
p

6

x2− 1 + + + + + + + − − − − − − + + + + + + +

x2− 6 + + + − − − − − − − − − − − − − − + + +
f ′12(x) + + + − − − − + + + + + + − − − − + + +

Pertanto f12 è crescente in
�

−∞,−
p

6
�

, in [−1,1] e in
�p

6,+∞
�

ed è decrescente
in
�

−
p

6,−
p

3
�

, in
�

−
p

3,−1
�

, in
�

1,
p

3
�

e in
�p

3,
p

6
�

. Inoltre −
p

6 e 1 sono punti
di massimo locale, −1 e

p
6 sono punti di minimo locale. Calcoliamo il valore di f12 in

tali punti. Poiché f12 è dispari, è sufficiente calcolare il valore nei punti positivi, cambiando
il segno si ottiene il valore nei corrispondenti punti negativi.

f12(1) =
1− 2
1− 3

=
1
2

,

f12

�
p

6
�

=
6
p

6− 2
p

6
6− 3

=
4
p

2
p

3
;

quindi f12(−1) =−1/2 e f12

�

−
p

6
�

=−4
p

2/
p

3 .
Studiamo la convessità di f12 . La funzione f ′12 è derivabile e, per x ∈D( f12) , si ha

f ′′12(x) =
(4x3− 14x)(x2− 3)2− 4x(x2− 3)(x4− 7x2+ 6)

(x2− 3)4
=

=
(4x3− 14x)(x2− 3)− 4x(x4− 7x2+ 6)

(x2− 3)3
=

=
4x5− 12x3− 14x3+ 42x − 4x5+ 28x3− 24x

(x2− 3)3
=

2x3+ 18x
(x2− 3)3

=
2x(x2+ 9)
(x2− 3)3

.

Poiché x2+ 9 è sempre positivo e (x2− 3)3 è positivo se e solo se lo è x2− 3 , il segno di
f ′′12(x) è uguale al segno di x(x2−3) , pertanto risulta dal seguente schema:

−
p

3 0
p

3

x − − − − − − − − − − + + + + + + + + + +

x2− 3 + + + + + − − − − − − − − − − + + + + +
f ′′12(x) − − − − − + + + + + − − − − − + + + + +
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Quindi f12 è convessa in
�

−
p

3,0
�

e in
�p

3,+∞
�

, è concava in
�

−∞,−
p

3
�

e in
�

0,
p

3
�

. Inoltre 0 è punto di flesso per f12 .

Osserviamo che −
p

3 e
p

3 non appartengono a D( f12) , quindi non sono punti di
flesso, anche se f12 alla loro sinistra è concava e alla loro destra è convessa.

Determiniamo la retta tangente al grafico di f12 nel punto di flesso. Si ha f12(0) = 0 e
f ′12(0) = 2/3 , quindi la tangente ha equazione y = (2/3)x .

Il grafico di f12 è quindi, approssimativamente, il seguente.

−
p

2
p

2

x =−
p

3 x =
p

3

y = x

�

−
p

6,− 4
p

2p
3

�

�

−1,− 1
2

�

�

1, 1
2

�

�p
6, 4
p

2p
3

�

1.1.14 Esempio. Studiamo la funzione definita da

f13(x) =
�

|x + 4| − 2
�

e1/x .

Il dominio naturale di f13 è costituito dagli x ∈ R tali che il denominatore dell’espo-
nente è diverso da 0 , quindi D( f13) =R∗ .

Poiché l’esponenziale è sempre positivo, f13(x) = 0 se e solo se |x + 4| − 2 = 0 , cioè
|x + 4|= 2 , che è verificato se è x + 4= 2 o x + 4=−2 , quindi x =−2 o x =−6 .

Si ha f13(x)≥ 0 se e solo se |x+4|−2≥ 0 , che equivale a |x+4| ≥ 2 . Questa disequa-
zione è verificata se x + 4≥ 2 oppure x + 4≤−2 , cioè per x ∈ ]−∞,−6]∪ [−2,+∞[ .

Pertanto Gr( f13) è contenuto nelle parti chiare del piano rappresentate nella seguente
figura e passa per i punti indicati.
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−6 −2

Studiamo il comportamento di f13 nei punti limite del suo dominio, cioè negli estremi
degli intervalli che costituiscono il dominio. I punti limite non appartengono al dominio,
quindi studiamo i limiti di f13(x) per x che tende a tali punti limite. Si verifica facilmente
che si ha:

lim
x→−∞

f13(x) = +∞ , lim
x→0−

f13(x) = 0 ,

lim
x→0+

f13(x) = +∞ , lim
x→+∞

f13(x) = +∞ .

La retta di equazione x = 0 è asintoto verticale per f13 . Determiniamo eventuali asintoti
obliqui. Per x→−∞ si ha 1/x→ 0 , quindi

f13(x) =
�

−(x + 4)− 2
�

e1/x = (−x − 6)
�

1+
1
x
+ o
�

1
x

�

�

=−x − 6− 1+ o
�

1
x

�

,

pertanto la retta di equazione y = −x − 7 è asintoto obliquo per f13 per x → −∞ .
Analogamente, per x→+∞ si ha

f13(x) =
�

(x + 4)− 2
�

e1/x = (x + 2)
�

1+
1
x
+ o
�

1
x

�

�

= x + 2+ 1+ o
�

1
x

�

,

pertanto la retta di equazione y = x + 3 è asintoto obliquo per f13 per x→+∞ . Ripor-
tiamo le informazioni ottenute nella seguente figura.
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−6 −2

y = x + 3

y =−x − 7

La funzione f13 è continua.
Calcoliamo la derivata di f13 per studiare la monotonia. La funzione è derivabile in ogni

punto del dominio che non annulla l’argomento del valore assoluto, quindi è derivabile in
D( f13) \ {−4}=R \ {−4,0} . Per x in tale insieme si ha

f ′13(x) = sgn(x + 4)e1/x +
�

|x + 4| − 2
�

e1/x
�

− 1
x2

�

=

=
x2 sgn(x + 4)− sgn(x + 4)(x + 4)+ 2

x2
e1/x =

sgn(x + 4)(x2− x − 4)+ 2
x2

e1/x

Risulta f ′13(x)≥ 0 se e solo se sgn(x + 4)(x2− x − 4)+ 2 .
Se x > −4 , allora sgn(x + 4) = 1 , pertanto sgn(x + 4)(x2 − x − 4) + 2 = x2 − x − 2 .

Questo trinomio si annulla per

x =
1±
p

(−1)2− 4(−2)
2

=
1± 3

2
=
�−1 ,

2 .

Pertanto, considerando solo x >−4 , il trinomio è positivo per x ∈ ]−4,−1[∪]2,+∞[ ed
è negativo per x ∈ ]−1,2[ .

Se x <−4 , allora sgn(x+4) =−1 , pertanto sgn(x+4)(x2− x−4)+2=−x2+ x+6 .
Questo trinomio si annulla per

x =
−1±
p

12− 4(−1)6
−2

=
−1± 5
−2

=
�3 ,
−2 .
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Poiché −4 è minore di entrambe le radici e il trinomio ha coefficiente di x2 negativo, esso
è negativo per x <−4 . Quindi il segno di f ′13 risulta dal seguente schema

−4 −1 0 2

f ′13(x) − − − − − + + + + + − − − − + + + + +

Pertanto f13 è crescente in [−4,−1] e in [2,+∞[ , è decrescente in ]∞,−4] , in [−1,0[
e in ]0,2] . Inoltre −1 è punto di massimo locale, −4 e 2 sono punti di minimo locale.
Calcoliamo il valore di f13 negli estremanti locali. Si ha:

f13(−4) =
�

|−4+ 4| − 2
�

e−1/4 =−2e−1/4 ,

f13(−1) =
�

|−1+ 4| − 2
�

e−1 = e−1 ,

f13(2) =
�

|2+ 4| − 2
�

e1/2 = 4e1/2 .

Studiamo la derivabilità di f13 in −4 . Se esiste il limite della derivata, allora esiste
anche il limite del rapporto incrementale e i due limiti coincidono, pertanto studiamo il
comportamento della derivata. Si ha

lim
x→−4−

f ′13(x) = lim
x→−4−

−(x2− x − 4)+ 2
x2

e1/x =− 7
8

e−1/4 ,

lim
x→−4+

f ′13(x) = lim
x→−4+

(x2− x − 4)+ 2
x2

e1/x =
9
8

e−1/4 .

Il limite sinistro della derivata è diverso dal limite destro, quindi anche il limite sinistro del
rapporto incrementale è diverso dal limite destro, pertanto f13 non è derivabile in −4 .

Per x→ 0− si ha f13(x)→ 0 , per avere maggiori informazioni sul comportamento del
grafico a sinistra di 0 è utile conoscere il corrispondente limite della derivata. Si ha

lim
x→0−

f ′13(x) = lim
x→0−

−(x2− x − 4)+ 2
x2

e1/x = 0 .

Quindi il grafico di f13 si avvicina all’origine con tangente che tende a diventare orizzontale.
Studiamo la convessità della funzione attraverso la derivata seconda. La funzione f ′13 è

derivabile e, ∀x ∈R \ {−4,0} , si ha

f ′′13(x) =
sgn(x + 4)(2x − 1)x2− 2x

�

sgn(x + 4)(x2− x − 4)+ 2
�

x4
e1/x +

+
sgn(x + 4)(x2− x − 4)+ 2

x2
e1/x
�

− 1
x2

�

=

=
sgn(x + 4)(2x3− x2− 2x3+ 2x2+ 8x − x2+ x + 4)− 4x − 2

x4
e1/x =

=
sgn(x + 4)(9x + 4)− 4x − 2

x4
e1/x .

Pertanto si ha f ′′13(x) > 0 se e solo se sgn(x + 4)(9x + 4) − 4x − 2 > 0 . Se x > −4 ,
allora sgn(x + 4)(9x + 4)− 4x − 2= 5x + 2 che è positivo per x > −2/5 . Se x < −4 ,
allora sgn(x + 4)(9x + 4)− 4x − 2=−13x − 6 che, per tali x , è positivo. Quindi f ′′13(x)
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è positivo per x ∈ ]−∞,−4[ ∪ ]−2/5,0[ ∪ ]0,+∞[ ed è negativo per x ∈ ]−4,−2/5[ .
Pertanto f13 è convessa in ]−∞,−4] , in [−2/5,0[ e in ]0,+∞[ , è concava in [−4,−2/5] .

Osserviamo che nei punti critici −1 e 2 si ha f ′′13(−1)< 0 e f ′′13(2)> 0 , da cui si ottiene
nuovamente che −1 è punto di massimo locale e 2 è punto di minimo locale.

Il punto −2/5 è di flesso, perché è un punto di derivabilità interno al dominio ed esiste
un intervallo a sinistra del punto in cui f13 è concava e un intervallo a destra in cui f13
è convessa. Anche in −4 la funzione cambia concavità, ma questo non è punto di flesso,
perché f13 non è derivabile in tale punto.

Determiniamo la retta tangente a Gr( f13) nel punto di flesso. Si ha

f13

�

− 2
5

�

=
�
�

�

�

�

− 2
5
+ 4
�

�

�

�

− 2
�

e−5/2 =
8
5

e−5/2 ,

f ′13

�

− 2
5

�

=
sgn
�

−2/5+ 4
��

(−2/5)2− (−2/5)− 4
�

+ 2

(−2/5)2
e−5/2 =

=
4+ 10− 100+ 50

4
e−5/2 =−9e−5/2 .

Il grafico di f13 è quindi, approssimativamente, il seguente.

−6 −2

y = x + 3

y =−x − 7
�

−1, e−1
�

�

2,4e1/2
�

�

−4,−2e−1/4
�

�

− 2
5 , 8

5 e−5/2
�

20) Studiare, nel suo dominio naturale, la funzione definita da:

f (x) = |2x3− 9x|+ 9x

(si richiede lo studio della convessità).
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21) Studiare, nel suo dominio naturale, la funzione definita da:

f (x) = |x + 6| exp
� x + 1

x

�

(si richiede lo studio della convessità).

22) Studiare, nel suo dominio naturale, la funzione definita da:

f (x) = arcsen|x2+ 4x + 3|

(si richiede lo studio della convessità).

23) Studiare, nel suo dominio naturale, la funzione definita da:

f (x) =
p

|x + 5| − 1 e1/x .

24) Studiare, nel suo dominio naturale, la funzione definita da:

f (x) =
p

|x2− 2x| − x

(si richiede lo studio della convessità).

25) Studiare, nel loro dominio naturale, le seguenti funzioni:

a. f (x) =
x3+ 9x2

x2− 1

b. f (x) = |x + 1|
p

x + 2

c. f (x) = arctan

�s

x2+ 5x + 4
x

�

d. f (x) = log
�

1− 4
x3− x2

�

e. f (x) = arctan
�

|x2− 4|
(x − 1)2

�

f. f (x) = cos
�

arcsen
�

3x2− x − 2
5x − 2

�

�

g. f (x) =
p

x2+ 2x (x2− 4)

h. f (x) =
x2− 1
p

|x2− 4|

i. f (x) = (1− 4x2)exp
�

|x2− 2|
�

(si richiede lo studio della convessità)

j. f (x) =
x3+ x2− x − 2− |x2− x − 2|

x2− 2
(si richiede lo studio della convessità)

k. f (x) = 2
p

x2− 2x − 3|x|
(si richiede lo studio della convessità)

26) Studiare, nell’intersezione del suo dominio naturale con l’intervallo [−π,π] , la fun-
zione definita da:

f (x) =
2cos2x − 1

−2tan x + sen(2x)

(si richiede lo studio della convessità).
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27) Studiare, nell’intersezione del suo dominio naturale con l’intervallo [−π,π] , la fun-
zione definita da:

f (x) =
p

|sen x| exp
�

1
4sen x

�

.

28) Studiare, nell’intersezione del loro dominio naturale con l’intervallo [−π,π] , le
seguenti funzioni:

a. f (x) =
s

sen2x − 1
2
+ sen x|sen x|

b. f (x) =
(2sen x − 1)2

sen x

c. f (x) = cos x cot x + 5|sen x|

d. f (x) =
p

2sen2x + sen x +
1

p
2sen2x + sen x

Immagine di una funzione

Se una funzione reale di variabile reale è definita in un intervallo ed è continua, allora il
teorema dei valori intermedi assicura che l’immagine è un intervallo. Un intervallo è noto
se si conoscono i suoi estremi e, nel caso che essi siano reali, se si sa se appartengono o no
all’intervallo. Quindi per determinare l’immagine di una funzione continua il cui dominio è
un intervallo è sufficiente determinare estremo inferiore e estremo superiore della funzione
e stabilire se essi sono, rispettivamente, minimo o massimo.

1.1.15 Esempio. Sia

f14 : R→R , f14(x) =
1

x2+ 3
.

Il dominio di f14 è un intervallo ed essa è continua, pertanto Im( f14) è un intervallo. Si
ha f (0) = 1/3 e, ∀x ∈ R , x2 + 3 ≥ 3 , da cui segue f (x) ≤ 1/3 ; quindi max f14 = 1/3 .
Evidentemente f14 ha valori positivi, quindi inf f14 ≥ 0 . Inoltre limx→+∞ f14(x) = 0 ,
pertanto ogni numero reale positivo non è maggiorante di f14 , quindi inf f14 ≤ 0 . Perciò si
ha inf f14 = 0 . Abbiamo osservato che f14 ha valori positivi, quindi 0 /∈ Im( f14) . Pertanto
Im( f14) è un intervallo che ha estremo inferiore 0 e massimo 1/3 e 0 non appartiene
all’intervallo. Perciò

Im( f14) =
�

0,
1
3

�

.

Se una funzione è continua e il suo dominio è unione di un numero finito di inter-
valli disgiunti, si può determinare l’immagine della restrizione della funzione a ciascuno
degli intervalli che costituiscono il dominio. L’unione di tali immagini è l’immagine della
funzione.
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1.1.16 Esempio. Sia

f15 : ]−∞,−1[∪ ]1,+∞[→R , f15(x) =
x − 1
p

x2− 1
.

Poiché f15 è quoziente di composizione di funzioni continue è continua. La sua immagine
è unione dei due intervalli f15

�

]−∞,−1[
�

e f15

�

]1,+∞[
�

.
Per determinare gli estremi di f15 in ciascuno dei due intervalli che costituiscono il suo

dominio, studiamo la monotonia della funzione, attraverso il criterio di monotonia. La
funzione f15 è derivabile e, ∀x ∈D( f15) , si ha

f ′15(x) =
�

p

x2− 1− (x − 1)
x

p
x2− 1

�

1
x2− 1

=
x2− 1− (x2− x)
(x2− 1)3/2

=
x − 1

(x2− 1)3/2
.

Il denominatore è sempre positivo, quindi il segno di f ′15(x) coincide con il segno di x−1 .
Se x ∈ ]−∞,−1[ , allora f ′15(x) < 0 , quindi f15 è strettamente decrescente in tale

intervallo. Pertanto, per il teorema sul limite delle funzioni monotone, si ha

inf f15

�

]−∞,−1[
�

= lim
x→−1

f15(x) = lim
x→−1

x − 1
p

x2− 1
=−∞ ,

sup f15

�

]−∞,−1[
�

= lim
x→−∞

f15(x) = lim
x→−∞

x − 1

|x|
p

1− (1/x2)
=−1 .

Inoltre per tali x risulta
p

x2− 1 < |x| = −x < −x + 1 ; pertanto f15(x) < −1 , perciò
−1 /∈ f15

�

]−∞,−1[
�

. Quindi f15

�

]−∞,−1[
�

= ]−∞,−1[ .
Se x ∈ ]1,+∞[ , allora f ′15(x)> 0 , quindi f15 è strettamente crescente in tale intervallo.

Pertanto, per il teorema sul limite delle funzioni monotone, si ha

inf f15

�

]1,+∞[
�

= lim
x→1

f15(x) = lim
x→1

�p
x − 1
�2

p
x − 1
p

x + 1
= lim

x→1

p
x − 1
p

x + 1
= 0 ,

sup f15

�

]1,+∞[
�

= lim
x→+∞

f15(x) = lim
x→+∞

x − 1

|x|
p

1− (1/x2)
= 1 .

Se x ∈ ]1,+∞[ , allora risulta f15(x) =
p

x − 1/
p

x + 1 , quindi si ha 0< f15(x)< 1 ,
pertanto né 0 né 1 appartengono a f15

�

]1,+∞[
�

. Quindi f15

�

]1,+∞[
�

= ]0,1[ .
Perciò

Im( f15) = ]−∞,−1[∪ ]0,1[ .

Le indicazioni date finora riguardano la ricerca dell’immagine di funzioni coninue. Se
una funzione ha dei punti di discontinuità, si possono determinare l’immagine della re-
strizione della funzione all’insieme dei punti in cui essa è continua e l’insieme dei valori
assunti dalla funzione nei punti di discontinuità. L’unione di tali insiemi è l’immagine della
funzione.
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29) Determinare l’immagine della funzione definita da:

f (x) = x8− 10
3
(x4− 1)3/2 .

30) Determinare l’immagine della funzione definita da:

f (x) =
2
p

x2+ 5x + 4−
p

x2− 10x + 16
x

.

31) Determinare l’immagine della funzione definita da:

f (x) =
s

cos x +
1
2
+ 2

s

1
2
− cos x .

32) Determinare l’immagine delle seguenti funzioni:

a. f (x) = 7arcsen
�

1
x

�

+(x + 6)
s

1− 1
x2

b. f (x) =
3
x
+

4x
1+ x2

+ 6arctan x

c. f (x) =
x2− 4x + 3
p

x2− x

d. f (x) = x exp

�

2

s

x − 2
x

�

e. f (x) =
p

x2− 4− |2x + 6|

f. f (x) =
2
p

x2− 3x + 2+ 3x − 3
x

g. f (x) =
2sen2x +

p
6 sen x + 1

2sen2x − 1

h. f (x) =
p

3+ tan x
p

3− cot x

Zeri di una funzione

Spesso non è facile determinare esplicitamente gli zeri di una funzione, ma studiando-
ne alcune caratteristiche è possibile determinare il numero di tali zeri e anche individuare
intervalli in cui essi si trovano.

Se una funzione f è continua e strettamente monotona in un intervallo [a, b ] , e negli
estremi dell’intervallo ha valori di segno diverso, allora, per il teorema di Bolzano, in tale
intervallo f si annulla, inoltre si annulla una sola volta, perché una funzione strettamente
monotona è iniettiva. Supponiamo invece che sia f (a) che f (b ) siano positivi; per la mo-
notonia, f assume valori compresi tra f (a) e f (b ) , pertanto non può annullarsi. Analoga
è la situazione se f (a) e f (b ) sono entrambi negativi.

Un ragionamento analogo si può fare se l’intervallo, di estremi a e b , non è chiuso
o non è limitato, studiando il segno di limx→a f (x) anziché il segno di f (a) e il segno di
limx→b f (x) anziché il segno di f (b ) .

Se si scompone il dominio di una funzione nell’unione di intervalli in ciascuno dei
quali la funzione è continua e strettamente monotona, si può ripetere il ragionamento fatto
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sopra per ciascuno degli intervalli. Per il criterio di stretta monotonia lo studio della stretta
monotonia di una funzione può essere ricondotto allo studio del segno della derivata.

In alcuni casi è possibile studiare gli zeri di una funzione anche senza determinare il
segno della derivata, ma conoscendo soltanto i punti in cui tale derivata si annulla. Infatti
se una funzione f è continua in un intervallo [a, b ] e derivabile in ]a, b [ , con derivata
sempre diversa da zero, allora f può annullarsi al più una volta. Infatti se avesse due zeri,
allora, per il teorema di Rolle, la derivata si annullerebbe. Pertanto se f (a) e f (b ) hanno
segno opposto, allora, per il teorema di Bolzano, f si annulla in un solo punto.

Se invece f (a) e f (b ) sono entrambi positivi, allora f non si annulla. Infatti non può
esistere d ∈ ]a, b [ tale che f (d )< 0 , perché in tal caso f si annullerebbe una volta in ]a, d [
e una volta in ]d , b [ , ma sappiamo che non può annullarsi due volte in ]a, b [ . Pertanto f è
non negativa, ma se esistesse c ∈ ]a, b [ tale che f (c) = 0 , allora c sarebbe punto di minimo
locale per f quindi, per il teorema di Fermat, si avrebbe f ′(c) = 0 , contro l’ipotesi che f ′

non si annulla. Pertanto f è diversa da zero in [a, b ] . Analogamente se f (a) e f (b ) sono
entrambi negativi, allora f non si annulla.

Anche in questo caso un ragionamento analogo vale se l’intervallo non è chiuso o non
è limitato, studiando il segno di limx→a f (x) e di limx→b f (x) .

1.1.17 Esempio. Sia

f16 : R→R , f16(x) = x3+ 2x2− 4x + 2 .

Determiniamo il numero di zeri di f16 .
La funzione f16 è derivabile e, ∀x ∈R , si ha

f ′16(x) = 3x2+ 4x − 4 .

La derivata si annulla per

x =
−2±
p

22+ 3 · 4
3

=
−2± 4

3
=







−2 ,

2
3

.

Il trinomio 3x2 + 4x − 4 è negativo nell’intervallo individuato dalle due radici e positi-
vo all’esterno di tale intervallo. Quindi f16 è strettamente crescente in ]−∞,−2] e in
[2/3,+∞[ , mentre è strettamente decrescente in [−2,2/3] .

Si ha limx→−∞ f16(x) = −∞ e f16(−2) = 10 , pertanto nell’intervallo ]−∞,−2] la
funzione f16 assume sia valori negativi che valori positivi ed è continua; per il teorema
di Bolzano f16 si annulla in tale intervallo. Inoltre f16 è strettamente crescente, e quindi
iniettiva, in tale intervallo, pertanto si annulla solo una volta.

Si ha f16(−2) = 10 e f16(2/3) = 14/27 ; f16 è strettamente decrescente in [−2,2/3] ,
quindi in tale intervallo f16 assume valori maggiori o uguali a f16(2/3) , quindi è sempre
positiva.

Poiché f16 è crescente in [2/3,+∞[ , in tale intervallo assume valori maggiori o uguali
a f16(2/3) , pertanto è sempre positiva.

Pertanto f16 ha un solo zero che appartiene a ]−∞,−2[ .
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1.1.18 Esempio. Sia

f17 :
�

−∞,− 1
2

�

∪ ]0,+∞[→R , f17(x) = log
�

2+
1
x

�

+ x + 2 .

Determiniamo il numero di zeri di f17 .
La funzione f17 è derivabile e, ∀x ∈D( f ) , si ha

f ′17(x) =
−1/x2

2+ 1/x
+ 1=− 1

2x2+ x
+ 1=

2x2+ x − 1
2x2+ x

.

In D( f ) il denominatore è positivo. Il numeratore si annulla per

x =
−1±
p

12+ 4 · 2
4

=
−1± 3

4
=







−1 ,

1
2

,

quindi è positivo per x ∈ ]−∞,−1[∪ ]1/2,+∞[ ed è negativo per x ∈ ]−1,1/2[ . Pertan-
to f ′17 è positivo in ]−∞,−1[∪ ]1/2,+∞[ ed è negativo in ]−1,−1/2[∪ ]0,1/2[ .

Per il criterio di stretta monotonia, f17 è strettamente crescente in ]−∞,−1] , inoltre
risulta limx→−∞ f (x) = −∞ e f (−1) = 1 > 0 . Quindi in tale intervallo f17 assume sia
valori positivi che valori negativi ed è strettamente monotona, quindi si annulla una sola
volta.

Nell’intervallo [−1,−1/2[ f17 è strettamente decrescente; inoltre si ha f17(−1) = 1> 0
e limx→−1/2 f17(x) =−∞ . Quindi anche in questo intervallo f17 si annulla una sola volta.

Nell’intervallo ]0,1/2] f17 è strettamente decrescente; si ha f17(1/2) = log4+ 5/2> 0 .
Pertanto per x in tale intervallo si ha f17(x)≥ f17(1/2)> 0 , quindi f17 non si annulla.

Nell’intervallo [1/2,+∞[ f17 è strettamente crescente; pertanto per x in tale inter-
vallo si ha f17(x)≥ f17(1/2)> 0 , quindi f17 non si annulla.

Pertanto f17 si annulla in 2 punti, uno appartenente a ]−∞,−1[ e l’altro appartenente
a ]−1,−1/2[ .

33) Trovare per quanti valori di x appartenenti al dominio naturale si annulla la funzione
definita da:

f (x) = log x + log|x − 4|+ |2− x|

34) Trovare per quanti valori di x appartenenti al dominio naturale si annulla la funzione
definita da:

f (x) = 2arcsen
�

1
x

�

+
p

x2− 1− 2

35) Trovare per quanti valori di x appartenenti al dominio naturale si annulla la funzione
definita da:

f (x) = (x + 2)exp
�

2x − 2
x2− 4

�

− 3e1/2 .
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36) Trovare per quanti valori di x appartenenti al dominio naturale si annullano le se-
guenti funzioni:

a. f (x) = 2arctan(x + 2)+
1

x + 2

b. f (x) = x5+ 2x3− 8x + 2

c. f (x) = arccos
x
2
−
p

4− x2

d. f (x) = log
�

1− x
x2

�

− 6
1− x

e. f (x) = 2arctan
�

1
x − 2

�

+3arctan
�

1
3− x

�

f. f (x) =
1
x
+ log(2x2+ 2x)

g. f (x) = log(1+ x2)+ arctan
�

1
1− x2

�

− 1

h. f (x) = arcsen x − 3

√

√

√ 2
1− x

+ 6
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1.2 Soluzioni e risultati

1) Il dominio naturale di f è costituito dagli x ∈ R per cui il denominatore x − 6 non
è nullo, il numero sotto radice è non negativo e l’argomento dell’arcoseno appartiene a
[−1,1] ; quindi D( f ) è l’insieme delle soluzioni del sistema











































x − 5
x − 6
≥ 0 ,

1−

√

√

√

6
x − 5
x − 6
≥−1 ,

1−

√

√

√

6
x − 5
x − 6
≤ 1 ,

cioè










































x − 5
x − 6
≥ 0 ,
√

√

√

6
x − 5
x − 6
≤ 2 ,

√

√

√

6
x − 5
x − 6
≥ 0 .

L’ultima disequazione è verificata da tutti gli x che verificano la prima disequazione. La
seconda disequazione è verificata dagli x che soddisfano la prima disequazione e tali che

6
x − 5
x − 6
≤ 4 ,

che, successivamente, equivale a

3
x − 5
x − 6
− 2≤ 0 ,

3(x − 5)− 2(x − 6)
x − 6

≤ 0 ,

x − 3
x − 6
≤ 0 .

Il sistema è quindi equivalente a














x − 5
x − 6
≥ 0 ,

x − 3
x − 6
≤ 0 .

L’insieme delle soluzioni della prima disequazione è ]−∞, 5] ∪ ]6,+∞[ , quello della se-
conda è [3,6[ ; l’intersezione di tali insiemi è [3,5] .

Quindi si ha
D( f ) = [3,5] .
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2) Il dominio naturale di f è costituito dagli x ∈ R tali che il denominatore x − 2 è
diverso da 0 e l’argomento della radice è non negativo. La presenza della funzione loga-
ritmo non comporta condizioni ulteriori, perché l’argomento è sempre positivo. Quindi
deve essere

x 6= 2 ∧ log
�

�

�

�

3
x − 2

�

�

�

�

≥ 0 .

Poiché il logaritmo è non negativo se e solo se il suo argomento è maggiore o uguale a 1 ,
la disequazione equivale a

�

�

�

�

3
x − 2

�

�

�

�

≥ 1 .

Per risolvere questa disequazione è utile osservare che, per x 6= 2 , essa equivale a
�

�

�

�

x − 2
3

�

�

�

�

≤ 1 ,

cioè |x − 2| ≤ 3 , che è verificata se e solo se 2− 3≤ x ≤ 2+ 3 , cioè −1≤ x ≤ 5 .
Quindi si ha

D( f ) = [−1,2[∪ ]2,5] .

3) La radice quadrata è definita quando il suo argomento è non negativo, poiché essa è a
denominatore deve essere diversa da 0 , quindi il dominio naturale di f è costituito dagli
x ∈R per cui è positivo l’argomento della radice; cioè tali che 2x2−3x+2> |x2+ x−2| ,
che equivale a

¨

x2+ x − 2< 2x2− 3x + 2 ,

x2+ x − 2>−(2x2− 3x + 2) ,

cioè
¨

x2− 4x + 4> 0 ,

3x2− 2x > 0 .

Poiché x2 − 4x + 4 = (x − 2)2 , la prima disequazione è verificata per x 6= 2 ; la seconda è
verificata quando x > 2/3 oppure x < 0 .

Quindi si ha

D( f ) = ]−∞, 0[∪
�

2
3

,2
�

∪ ]2,+∞[ .

4)

a. ]−∞,−3]∪ [−1,+∞[

b.
�

−1,− 1
p

2

�

∪
�

1
p

2
,+∞
�

c.
�

−∞,−2−
p

3
�

∪
�

−2+
p

3,1
�

∪]1,+∞[

d.
�

−∞,
−9+
p

21
2

�

e. ]−1,0[∪ ]1,3[

f. ]−∞,−3[∪ [−2,0]∪ ]3,+∞[
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g. ]−∞,−1[∪ [2,+∞[

h. ]−2,−1]∪ [4,5[

i.
�

−∞,− 9
4

�

∪ [2,+∞[

j. ]−∞,−5]∪ [3,+∞[

k.
�

−6+
p

2
2

,−2
�

∪ [2,+∞[

l.
�

−1,− 2
3

�

∪
�

0,
1
3

�

5) Il dominio naturale di f è costituito dagli x ∈ R tali che l’argomento della radice è
positivo. Perciò

D( f ) = {x ∈R | x2− 1> 0}= ]−∞,−1[∪ ]1,+∞[ .

Studiamo il comportamento di f negli estremi dei due intervalli che costituiscono
D( f ) . Si ha

f (x) =
|x|

|x|
p

1− (1/x2)

�

π

2
+ arctan x
�

=
1
p

1− (1/x2)

�

π

2
+ arctan x
�

perciò per x→−∞ si ha

f (x)∼ π
2
+ arctan x→ π

2
− π

2
= 0 ;

mentre per x→+∞ si ha

f (x)∼ π
2
+ arctan x→ π

2
+
π

2
=π .

Quindi le rette y = 0 e y =π sono asintoti orizzontali per f .
Si ha

lim
x→−1
|x|
�

π

2
+ arctan x
�

= 1
�

π

2
+ arctan(−1)
�

=
π

4
,

lim
x→1
|x|
�

π

2
+ arctan x
�

= 1
�

π

2
+ arctan1
�

=
3
4
π ;

inoltre
lim

x→−1

p

x2− 1= lim
x→1

p

x2− 1= 0 ,

e
p

x2− 1> 0 . Pertanto
lim

x→−1
f (x) = lim

x→1
f (x) = +∞ ;

perciò le rette x =−1 e x = 1 sono asintoti verticali per f .
Quindi gli asintoti di f sono le rette di equazione y = 0 , y =π , x =−1 e x = 1 .
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6) Il dominio naturale di f è costituito dagli x tali che ciascuno dei denominatori delle
frazioni che compaiono nella definizione di f sia non nullo, perciò

D( f ) =R \ {0,2}= ]−∞, 0[∪ ]0,2[∪ ]2,+∞[ .

Studiamo i limiti di f (x) per x che tende a uno degli estremi degli intervalli che
costituiscono D( f ) .

Per x→±∞ si ha 1/|x − 2| → 0 , pertanto

exp
� −1
|x − 2|

�

= 1− 1
|x − 2|

+ o
� −1
|x − 2|

�

= 1− 1
|x − 2|

+ o(x−1) ;

quindi, per x→±∞ , si ha

f (x) = (x + 3+ 4x−1)
�

1− 1
|x − 2|

+ o(x−1)
�

= x − x
|x − 2|

+ 3+ o(1) .

Perciò per x→−∞ si ha

f (x) = x + 3− x
2− x

+ o(1) = x + 4+ o(1) ,

mentre per x→+∞ si ha

f (x) = x + 3− x
x − 2

+ o(1) = x + 2+ o(1).

Quindi le rette di equazione y = x + 4 e y = x + 2 sono asintoti obliqui.
Poiché

lim
x→0
(x2+ 3x + 4)exp

�

− 1
|x − 2|

�

= 4exp
�

− 1
2

�

> 0 ,

si ha
lim

x→0−
f (x) =−∞ , lim

x→0+
f (x) = +∞ ,

quindi la retta di equazione x = 0 è asintoto verticale.
Infine −1/|x−2| →−∞ , per x→ 2 , quindi exp

�

−1/|x−2|
�

→ 0 , pertanto f (x)→ 0 ;
perciò la retta di equazione x = 2 non è asintoto verticale.

Quindi gli asintoti di f sono le rette di equazione x = 0 , y = x + 4 e y = x + 2 .

7) Il dominio naturale di f è costituito dagli x ∈R tali che i due denominatori 1− x e
x − 4 sono diversi da 0 , quindi

D( f ) = ]−∞, 1[∪ ]1,4[∪ ]4,+∞[ .

Studiamo i limiti di f (x) per x che tende ad uno degli estremi degli intervalli che
costituiscono D( f ) .

Si ha

lim
x→−∞

3− x
1− x

arctan
� x − 6

x − 4

�

= arctan1=
π

4

e analogamente limx→+∞ f (x) = π/4 ; quindi la retta di equazione y = π/4 è asintoto
orizzontale per f .
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Per x → 1 si ha 3− x → 2 , 1− x → 0 e arctan
�

(x − 6)/(x − 4)
�

→ arctan2 > 0 . Il
limite di f (x) dipende dal segno del denominatore 1− x . Tale denominatore è positivo
per x < 1 e negativo per x > 1 , perciò si ha

lim
x→1−

3− x
1− x

arctan
� x − 6

x − 4

�

=+∞ ,

lim
x→1+

3− x
1− x

arctan
� x − 6

x − 4

�

=−∞ ,

quindi la retta di equazione x = 1 è asintoto verticale per f .
Per x→ 4 si ha

3− x
1− x
→ 3− 4

1− 4
=

1
3

,

mentre la funzione arcotangente è limitata, quindi f (x) non può essere divergente per
x→ 4 né da sinistra né da destra. Perciò la retta di equazione x = 4 non è asintoto verticale
per f .

Quindi gli asintoti di f sono le rette di equazione y =π/4 e x = 1 .

8)

a. y = 2x , y = log3

b. y = 1 , y =−1 , x = 5

c. x =−2 , y = x + 1 , y =−x − 3

d. x = 0 , y = log2 x + 3+ 3 log2

e. x = 2 , y = log5 x +
5 log5

2
+ 2

f. y = x − 1 , x =−4

g. x = 2 , y = x + 6

h. y = 3x + 14 , x = 3

i. y = 3x − 3
2
, y =−3x +

3
2

j. y =− 1
2
, y = x − 3

2

9) Il dominio di f è costituito dagli x reali tali che il denominatore x+1 è diverso da 0 .
Pertanto

D( f ) = ]−∞,−1[∪ ]−1,+∞[

Nei punti del dominio che non annullano l’argomento del valore assoluto f è deriva-
bile. Tale argomento si annulla per

x = 2±
p

22− 3= 2± 1=
�1 ,

3 ;

perciò f è derivabile in D( f ) \ {1,3} . Per x in tale insieme si ha

f ′(x) =
sgn(x2− 4x + 3) (2x − 4)(x + 1)− |x2− 4x + 3|

(x + 1)2
=

=
sgn(x2− 4x + 3) (2x2− 2x − 4)− (x2− 4x + 3) sgn(x2− 4x + 3)

(x + 1)2
=
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=
sgn(x2− 4x + 3)(x2+ 2x − 7)

(x + 1)2
.

Il denominatore è positivo in D( f ) , quindi il segno di f coincide col segno del numeratore.
Il trinomio x2+ 2x − 7 si annulla per

x =−1±
p

12+ 7=−1±
p

8,

quindi x2+2x−7≥ 0 per x ∈
�

−∞,−1−
p

8
�

∪
�

−1+
p

8,+∞
�

. Sappiamo che il trinomio
x2−4x+3 si annulla per x = 1 e x = 3 , perciò x2−4x+3≥ 0 per x ∈ ]−∞, 1]∪[3,+∞[ .
Il segno di f ′ risulta quindi dal seguente schema

−1−
p

8 −1 1 −1+
p

8 3

x2+ 2x − 7 + + − − − − − − − − − − − + + + +

x2− 4x + 3 + + + + + + + + + + + + − − − + +

f ′(x) + + − − − − − − − − − − + − − + +

Quindi f è crescente in
�

−∞,−1−
p

8
�

, in
�

1,−1+
p

8
�

e in [3,+∞[ , è decrescente
in
�

−1−
p

8,−1
�

, in ]−1,1] e in
�

−1+
p

8,3
�

.

Per la condizione sufficiente di ordine zero, −1−
p

8 e −1+
p

8 sono punti di massimo
locale, 1 e 3 sono punti di minimo locale.

10) Si ha D( f ) =R .
La funzione f è derivabile e, ∀x ∈R , si ha

f ′(x) = exp(−2x2+ 3x)+ x exp(−2x2+ 3x)(−4x + 3) = (−4x2+ 3x + 1) exp(−2x2+ 3x) .

Poiché l’esponenziale è sempre positivo, si ha f ′(x)≥ 0 se e solo se −4x2+ 3x + 1≥ 0 . Il
trinomio −4x2+ 3x + 1 si annulla per

x =
−3±
p

32+ 4 · 4
−8

=
−3± 5
−8

=







1 ,

− 1
4

;

Perciò è non negativo per x ∈ [−1/4,1] ed è non positivo per x ∈ ]−∞,−1/4]∪ [1,+∞[ .
Pertanto f è crescente in [−1/4,1] ed è decrescente in ]−∞,−1/4] e in [1,+∞[ .

Poiché esiste un intervallo con massimo −1/4 in cui f è decrescente ed esiste un inter-
vallo con minimo −1/4 in cui f è crescente, −1/4 è punto di minimo locale; per motivi
analoghi 1 è punto di massimo locale.

11) Il dominio di f è costituito dagli x ∈ R per cui è non negativo l’argomento delle
radici quadrate. Si ha 2x2+ 56 > 0 , qualunque sia x ∈ R , mentre x2− 4 ≥ 0 se e solo se
x ∈ ]−∞,−2]∪ [2,+∞[ . Pertanto

D( f ) = ]−∞,−2]∪ [2,+∞[ .
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La funzione f è derivabile in x ∈ D( f ) , se x non annulla gli argomenti delle radici,
pertanto f è derivabile in ]−∞,−2[∪ ]2,+∞[ . Per x in tale insieme si ha

f ′(x) =
2x

p
2x2+ 56

− x
p

x2− 4
=

x
�

2
p

x2− 4−
p

2x2+ 56
�

p
2x2+ 56

p
x2− 4

.

Il denominatore è positivo, perciò il segno di f ′ è determinato dal segno di x e da quello
di 2
p

x2− 4−
p

2x2+ 56 . Per x ∈D( f ′) si ha

2
p

x2− 4−
p

2x2+ 56≥ 0 ⇐⇒ 2
p

x2− 4≥
p

2x2+ 56 ⇐⇒ 4x2− 16≥ 2x2+ 56 ;

tale disuguaglianza equivale a 2x2 ≥ 72 , quindi

2
p

x2− 4−
p

2x2+ 56≥ 0 ⇐⇒ x ∈ ]−∞,−6]∪ [6,+∞[ .

Perciò il segno di f ′ risulta dal seguente schema

−6 −2 2 6

x − − − − − − + + + + + +

2
p

x2− 4−
p

2x2+ 56 + + + − − − − − − + + +

f ′(x) − − − + + + − − − + + +

Quindi f è crescente in [−6,−2] e in [6,+∞[ ed è decrescente in ]−∞,−6] e in [2,6] .
Per la condizione sufficiente di ordine zero per l’esistenza di estremanti locali, da queste

informazioni sulla monotonia della funzione segue che −6 e 6 sono punti di minimo
locale, −2 e 2 sono punti di massimo locale.

12) Il dominio di f è costituito dagli x reali non nulli, tali che (x2+ 5x + 4)/x ≥ 0 . Il
trinomio x2+ 5x + 4 si annulla per

x =
−5±
p

52− 4 · 4
2

=
−5± 3

2
=
�−4
−1 ;

quindi il segno dell’argomento della radice risulta dal seguente schema

−4 −1 0

x2+ 5x + 4 + + + + + + − − − − − − + + + + + + + +
x − − − − − − − − − − − − − − + + + + + +

x2+ 5x + 4
x

− − − − − − + + + + + + − − + + + + + +

Pertanto D( f ) = [−4,−1]∪ ]0,+∞[ .
La funzione f è derivabile in tutti i punti del dominio che non annullano x2+5x+4 ,

pertanto f è derivabile in ]−4,−1[∪ ]0,+∞[ . Per x in tale insieme si ha

f ′(x) =
1
2

� x2+ 5x + 4
x

�−1/2 (2x + 5)x − (x2+ 5x + 4)
x2

=
� x

x2+ 5x + 4

�1/2 x2− 4
2x2

.

Perciò, per ]−4,−1[ ∪ ]0,+∞[ , si ha f ′(x) ≥ 0 se e solo se x2 − 4 ≥ 0 ; quest’ultima
disequazione è verificata se e solo se x ∈ ]−∞,−2]∪ [2,+∞[ . Il segno di f ′ è riportato
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nel seguente schema

−4 −2 −1 0 2

f ′(x) + + + + − − − − − − + + + + + + +

Quindi f è crescente in [−4,−2] e in [2,+∞[ , è decrescente in [−2,−1] e in ]0,2] .
Per la condizione sufficiente di ordine zero per l’esistenza di estremanti locali, da que-

ste informazioni sulla monotonia della funzione segue che −2 è punto di massimo locale
per f , −4 , −1 e 2 sono punti di minimo locale.

13) Il dominio di f è costituito dagli x ∈R tali che è positivo l’argomento del logaritmo,
cioè tali che x2+ 2x > 0 , quindi D( f ) = ]−∞,−2[∪ ]0,+∞[ . Inoltre f è derivabile in
ogni punto del dominio in cui non si annulla l’argomento del valore assoluto, cioè in ogni
punto del dominio escluso −4 . Se x ∈D( f ) \ {−4} si ha

f ′(x) =
2x + 2
x2+ 2x

− sgn(x + 4) .

Studiamo il segno di f ′ . A tale fine è necessario distinguere a seconda che sgn(x + 4)
sia −1 o a 1 , cioè a seconda che x sia minore o maggiore di −4 . Si ha

f ′(x) =















2x + 2
x2+ 2x

+ 1=
2x + 2+ x2+ 2x

x2+ 2x
=

x2+ 4x + 2
x2+ 2x

se x <−4 ,

2x + 2
x2+ 2x

− 1=
2x + 2− x2− 2x

x2+ 2x
=
−x2+ 2
x2+ 2x

se x >−4 .

Se x ∈ D( f ) si ha x2 + 2x > 0 , pertanto il segno di f ′(x) dipende solo dal segno del
numeratore. Il trinomio x2+ 4x + 2 si annulla per

x =−2±
p

22− 2=−2±
p

2 ;

poiché −4 < −2−
p

2 , per x < −4 è positivo. Il polinomio −x2+ 2 è non negativo per
x ∈
�

−
p

2,
p

2
�

, quindi in D( f ) ∩ ]−4,+∞[ si ha f ′(x) ≥ 0 se e solo se x ∈
�

0,
p

2
�

.
Perciò il segno di f ′ risulta dal seguente schema

−4 −2 0
p

2

f ′(x) + + + + − − − − + + + − − − −

Pertanto f è crescente in ]−∞,−4] e in
�

0,
p

2
�

, è decrescente in [−4,−2[ e in
�p

2,+∞
�

. Inoltre −4 e
p

2 sono punti di massimo locale per f e non esistono punti di
minimo locale.

14) Il dominio di f è l’intersezione dei domini delle funzioni tangente e cotangente.
Pertanto tale dominio è
�

R \
§

kπ+
π

2

�

�

�

�

k ∈Z
ª�

∩
�

R \ {kπ |k ∈Z}
�

=R \
�§

kπ+
π

2

�

�

�

�

k ∈Z
ª

∪{kπ |k ∈Z}
�

=

=R \
§

k
π

2

�

�

�

�

k ∈Z
ª

.
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Poiché le funzioni tangente e cotangente sono periodiche di periodo π , anche f è
periodica di periodo π . Quindi se si conosce la monotonia di f nell’intersezione del
dominio con [−π/2,π/2] si può ottenere facilmente il comportamento in tutto il dominio.
Notiamo che l’intersezione di D( f ) con tale intervallo è ]−π/2,0[∪ ]0,π/2[ .

La funzione f è derivabile e, ∀x ∈D( f ) , si ha

f ′(x) =
1

cos2x
− 3

sen2x
=

sen2x − 3cos2x
cos2x sen2x

.

Studiamo il segno di f ′ . Il denominatore è positivo nel dominio di f , quindi il segno
di f ′(x) coincide con il segno di sen2x − 3cos2x . Per semplificare lo studio del segno è
opportuno trasformare questa espressione in modo che compaia solo la funzione coseno.
Si ha

sen2x − 3cos2x = 1− cos2x − 3cos2x = 1− 4cos2x .

Per x ∈ ]−π/2,0[∪]0,π/2[ si ha cos x > 0 , quindi 1−4cos2x > 0 se e solo se cos x < 1/2 .
Quindi il segno di f ′ risulta dal seguente schema

− π2 − π3 0 π
3

π
2

f ′(x) + + + − − − − − − − − − − − − − − + + +

Pertanto f è crescente in ]−π/2,−π/3] , in [π/3,π2[ e in ogni intervallo ottenuto da
questi con una traslazione di unmultiplo intero di π ; inoltre f è decrescente in [−π/3,0[ ,
in ]0,π/3] e in ogni intervallo ottenuto da questi con una traslazione di un multiplo intero
di π . Inoltre −π/3+ kπ ( k ∈ Z ) è punto di massimo locale per f , π/3+ kπ ( k ∈ Z )
è punto di minimo locale.

15)
a. f è crescente in ]−∞,−2] e in [0,+∞[ , è decrescente in [−2,−1[ e in ]−1,0] ; −2
è punto di massimo locale, 0 è punto di minimo locale

b. f è crescente in
�

−1,− 3
4

�

, è decrescente in
�

− 3
4

,+∞
�

; −3/4 è punto di massimo

locale; −1 è punto di minimo locale

c. f è crescente in ]0, e[ e in ]e ,+∞[ ; non vi sono estremanti locali

d. f è crescente in
�

−
p

3/2,
p

3/2
�

, è decrescente in
�

−1,−
p

3/2
�

e in
�
p

3/2,1
�

; −1

e
p

3
2

sono punti di massimo locale; −
p

3
2

e 1 sono punti di minimo locale

e. f è crescente in ]−∞,−4] , è decrescente in [−4,2[ e in ]2,5] ; −4 è punto di massimo
locale; 5 è punto di minimo locale.

f. f è crescente in [e−1,+∞[ , è decrescente in ]0, e−1] ; e−1 è punto di minimo locale
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g. f è crescente in
�

−∞, 1−
p

3
�

e in
�

1+
p

3,+∞
�

, è decrescente in
�

1−
p

3,2
�

e in
�

2,1+
p

3
�

; 1−
p

3 è punto di massimo locale, 1+
p

3 è punto di minimo locale

h. f è crescente in
�

−∞,− 7
4

�

e in
�p

3,
7
4

�

, è decrescente in
�

− 7
4

,−
p

3
�

e in
�

7
4

,+∞
�

;

− 7
4

e
7
4

sono punti di massimo locale, −
p

3 e
p

3 sono punti di minimo locale

i. f è crescente in
�

0, e−1/2� e in [1,+∞[ , è decrescente in
�

e−1/2, 1
�

; e−1/2 è punto di
massimo locale, 1 è punto di minimo locale

j. f è crescente in
�

−∞,−
p

7
4

�

, in
�

− 1
2

,0
�

e in
�

1
4

,
p

7
4

�

, è decrescente in
�

−
p

7
4

,− 1
2

�

,

in
�

0,
1
4

�

e in
�
p

7
4

,+∞
�

; −
p

7
4

, 0 e
p

7
4

sono punti di massimo locale, − 1
2
e

1
4
sono

punti di minimo locale

k. f è crescente in
�

−∞,−
p

5
�

e in
�

−
p

5,− 1
3

�

, è decrescente in
�

− 1
3

,
p

5
�

e in

�
p

5,+∞
�

; − 1
3

è punto di massimo locale

l. f è crescente in ]−∞,−3[ e in ]−3,−1] , è decrescente in [−1,3[ e in ]3,+∞[ ; −1
è punto di massimo locale

m. f è crescente in
�

−1−
p

17
4

,−1
�

e in
�

1
2

,+∞
�

, è decrescente in
�

−∞,
−1−
p

17
4

�

e in
�

−1,
1
2

�

; −1 è punto di massimo locale,
−1−
p

17
4

e
1
2
sono punti di minimo locale

n. f è crescente in
�

−3,
−2−
p

10
2

�

e in
�

0,
−2+
p

10
2

�

, è decrescente in ]−∞,−3] , in
�

−2−
p

10
2

,0
�

e in
�

−2+
p

10
2

,+∞
�

;
−2−
p

10
2

e
−2+
p

10
2

sono punti di massimo

locale, −3 e 0 sono punti di minimo locale

o. f è crescente in [−4,0] e in
�

7
2

,+∞
�

, è decrescente in ]−∞,−4] , in [0,1] e in
�

2,
7
2

�

; 0 è punto di massimo locale, −4 , 1 e
7
2

sono punti di minimo locale

p. f è crescente in
�

−3
p

2,−3
�

, in
�

−3,−
p

6
�

, in
�

0,
p

6
�

e in
�

3
p

2,+∞
�

, è decre-
scente in
�

−∞,−3
p

2
�

, in
�

−
p

6,0
�

, in
�
p

6,3
�

e in
�

3,3
p

2
�

; −
p

6 e
p

6 sono punti
di massimo locale, −3

p
2 , 0 e 3

p
2 sono punti di minimo locale
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q. Per ogni k ∈ Z , f è crescente in
�

− 5
6
π + 2kπ,− π

6
+ 2kπ
�

, è decrescente in
�

− π
6
+ 2kπ,

7
6
π+ 2kπ
�

; − π
6
+ 2kπ è punto di massimo locale, − 5

6
π+ 2kπ è punto

di minimo locale

r. Per ogni k ∈Z , f è crescente in
�

−arccos
1
p

3
+2kπ, arccos

1
p

3
+2kπ
�

, è decrescente

in
�

− π
2
+ 2kπ,−arccos

1
p

3
+ 2kπ
�

e in
�

arccos
1
p

3
+ 2kπ,

π

2
+ 2kπ
�

; − π
2
+ 2kπ e

arccos
1
p

3
+2kπ sono punti di massimo locale, −arccos

1
p

3
+2kπ e

π

2
+2kπ sono punti

di minimo locale.

16) Si ha D( f ) = R . La funzione f è derivabile in tutti i punti che non annullano
l’argomento del valore assoluto. Il trinomio 4x2− 8x + 3 si annulla per

x =
4±
p

42− 4 · 3
4

=
4± 2

4
=











1
2

,

3
2

,

pertanto f è derivabile in R \ {1/2,3/2} . Per x in tale insieme risulta

f ′(x) = sgn(4x2− 8x + 3)(8x − 8) e x + |4x2− 8x + 3| e x =

= sgn(4x2− 8x + 3)(8x − 8+ 4x2− 8x + 3) e x = (4x2− 5) sgn(4x2− 8x + 3) e x .

La funzione f ′ è derivabile in R \ {1/2,3/2} e per x in tale insieme si ha

f ′′(x) = 8x sgn(4x2− 8x + 3) e x +(4x2− 5) sgn(4x2− 8x + 3) e x =

= (4x2+ 8x − 5) sgn(4x2− 8x + 3) e x .

Poiché e x è sempre positivo, il segno di f ′′ è determinato dai fattori 4x2 + 8x − 5 e
sgn(4x2 − 8x + 3) . Evidentemente sgn(4x2 − 8x + 3) ha lo stesso segno di 4x2 − 8x + 3 .
Sappiamo che il trinomio 4x2−8x+3 si annulla per x = 1/2 e per x = 3/2 , quindi è non
negativo se e solo se x ∈ ]−∞, 1/2]∪ [3/2,+∞[ . Il trinomio 4x2+ 8x − 5 si annulla per

x =
−4±
p

42+ 4 · 5
4

=
−4± 6

4
=











− 5
2

,

1
2

,

quindi è non negativo se e solo se x ∈ ]−∞,−5/2] ∪ [1/2,+∞[ . Il segno di f ′′ risulta
quindi dal seguente schema:

− 5
2

1
2

3
2

4x2+ 8x − 5 + + + + − − − − − − − − − + + + + + + +

4x2− 8x + 3 + + + + + + + + + + + + + − − − + + + +

f ′′(x) + + + + − − − − − − − − − − − − + + + +
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Quindi, per la caratterizzazione del II ordine della convessità, f è convessa in ]−∞,−5/2]
e in [3/2,+∞[ , è concava in [−5/2,1/2] e in [1/2,3/2] . Il punto −5/2 è di flesso per f .

Poiché f è concava sia in [−5/2,1/2] che in [1/2,3/2] , ci chiediamo se è concava
anche nell’unione di questi intervalli. Studiamo la derivabilità di f in 1/2 .

Si ha

lim
x→1/2−

f ′(x) = lim
x→1/2−

�

(4x2− 5) e x�=−4e1/2 ,

lim
x→1/2+

f ′(x) = lim
x→1/2+

−(4x2− 5) e x = 4e1/2 .

Perciò

lim
x→1/2−

f (x)− f (1/2)
x − (1/2)

=−4e1/2 6= 4e1/2 = lim
x→1/2+

f (x)− f (1/2)
x − (1/2)

,

quindi f non è derivabile in 1/2 . Pertanto non possiamo utilizzare il criterio del II or-
dine per stabilire la concavità in [−5/2,3/2] . Abbiamo però informazioni sufficienti per
affermare che f non è convessa in tale intervallo. Infatti si ha limx→1/2− R f (1/2, x)< 0
e limx→1/2+ R f (1/2, x) > 0 , quindi esiste x1 < 1/2 tale che R f (1/2, x1) < 0 ed esiste
x2 > 1/2 tale che R f (1/2, x2) > 0 , pertanto il rapporto incrementale non è decrescente
in [−5/2,3/2] , quindi f non è concava in tale intervallo.

In 3/2 la funzione cambia convessità, ma non sappiamo se f è derivabile in tale punto.
Si ha

lim
x→3/2−

f ′(x) = lim
x→3/2−

�

−(4x2− 5) e x�=−4e3/2 ,

lim
x→3/2+

f ′(x) = lim
x→3/2+

(4x2− 5) e x = 4e3/2 .

Perciò

lim
x→3/2−

f (x)− f (3/2)
x − (3/2)

=−4e3/2 6= 4e3/2 = lim
x→3/2+

f (x)− f (3/2)
x − (3/2)

,

quindi f non è derivabile in 3/2 , perciò tale punto non è di flesso.

17) L’argomento del logaritmo è sempre maggiore o uguale a 3 , quindi è positivo, perciò
D( f ) = R . Se x non annulla l’argomento del valore assoluto, allora f è derivabile in x .
Si ha x2+2x = 0 se e solo se x = 0 o x =−2 , quindi f è derivabile in R\{−2,0} . Per x
in tale insieme si ha

f ′(x) =
sgn(x2+ 2x)(2x + 2)
|x2+ 2x|+ 3

.

Questa funzione è derivabile in R \ {−2,0} e per x in tale insieme si ha

f ′′(x) = sgn(x2+ 2x)
2
�

|x2+ 2x|+ 3
�

− (2x + 2) sgn(x2+ 2x)(2x + 2)
(|x2+ 2x|+ 3)2

=

= sgn(x2+ 2x)
2sgn(x2+ 2x)(x2+ 2x)+ 6− sgn(x2+ 2x)(4x2+ 8x + 4)

(|x2+ 2x|+ 3)2
=

=
−2x2− 4x − 4+ 6sgn(x2+ 2x)

(|x2+ 2x|+ 3)2
.
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Studiamo il segno di f ′′(x) . Per x ∈ ]−2,0[ risulta sgn(x2 + 2x) = −1 , mentre per
x ∈ ]−∞,−2[∪ ]0,+∞[ si ha sgn(x2 + 2x) = 1 . Quindi il numeratore nell’espressione
scritta sopra è

−2x2− 4x − 4+ 6=−2x2− 4x + 2 , per x ∈ ]−∞,−2[∪ ]0,+∞[,

−2x2− 4x − 4− 6=−2x2− 4x − 10 , per x ∈ ]−2,0[.

Studiamo il caso x ∈ ]−∞,−2[∪ ]0,+∞[ . Il trinomio −2x2− 4x + 2 si annulla per

x =
2±
p

22+ 2 · 2
−2

=
2±
p

8
−2

=−1∓
p

2 ,

quindi esso è non positivo per x ∈
�

−∞,−1−
p

2
�

∪
�

−1+
p

2,+∞
�

e non negativo per
x ∈
�

−1−
p

2,−1+
p

2
�

. Poiché −1−
p

2<−2 e 0<−1+
p

2 , si ha

x ∈
�

−1−
p

2,−2
�

∪
�

0,−1+
p

2
�

=⇒ f ′′(x)≥ 0

x ∈
�

−∞,−1−
p

2
�

∪
�

−1+
p

2,+∞
�

=⇒ f ′′(x)≤ 0 .

Studiamo il caso x ∈ ]−2,0[ . Il trinomio −2x2− 4x − 10 ha discriminante

42− 4 · 2 · 10=−64< 0 ,

quindi esso ha sempre lo stesso segno del coefficiente di x2 , perciò è negativo. Pertanto

x ∈ ]−2,0[ =⇒ f ′′(x)≤ 0 .

Il segno di f ′′ è riportato nel seguente schema

−1−
p

2 −2 0 −1+
p

2

f ′′(x) − − − − + + − − − − − − − − − + + − − − −

Quindi f è convessa in
�

−1−
p

2,−2
�

e in
�

0,−1+
p

2
�

, è concava in
�

−∞,−1−
p

2
�

,
in [−2,0] e in
�

−1+
p

2,+∞
�

. I punti −1−
p

2 e −1+
p

2 sono di flesso per f .
Nei punti −2 e 0 la funzione cambia convessità, ma non sappiamo se in tali punti f

è derivabile. Si ha

lim
x→−2−

f ′(x) = lim
x→−2−

2x + 2
x2+ 2x + 3

=− 2
3

,

lim
x→−2+

f ′(x) = lim
x→−2+

−(2x + 2)
−x2− 2x + 3

=
2
3

,

lim
x→0−

f ′(x) = lim
x→0−

−(2x + 2)
−x2− 2x + 3

=− 2
3

,

lim
x→0+

f ′(x) = lim
x→0+

2x + 2
x2+ 2x + 3

=
2
3

.

Poiché, sia in −2 che in 0 , limite sinistro e destro della derivata sono diversi tra loro, per
il teorema sul limite della derivata ciò vale anche per i rapporti incrementali. Pertanto f
non è derivabile né in −2 né in 0 , perciò tali punti non sono di flesso.
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18) Il dominio naturale di f è costituito dagli x ∈R tali che 2x2−4x+1 è non negativo.
Tale trinomio si annulla per

x =
2±
p

22− 2 · 1
2

= 1± 1
p

2
.

Pertanto

D( f ) =
�

−∞, 1− 1
p

2

�

∪
�

1+
1
p

2
,+∞
�

.

La funzione f è derivabile nei punti del dominio per cui non si annulla l’argomento
della radice, cioè per x 6= 1±

�

1/
p

2
�

e, per tali x , si ha

f ′(x) =
p

2x2− 4x + 1+(x − 1)
4x − 4

2
p

2x2− 4x + 1
=

=
2x2− 4x + 1+(x − 1)(2x − 2)

p
2x2− 4x + 1

=
4x2− 8x + 3
p

2x2− 4x + 1
.

La funzione f ′ è derivabile in tutto il suo dominio e si ha

f ′′(x) =
�

(8x − 8)
p

2x2− 4x + 1− (4x2− 8x + 3)
4x − 4

2
p

2x2− 4x + 1

�

1
�p

2x2− 4x + 1
�2 =

=
(8x − 8)(2x2− 4x + 1)− (4x2− 8x + 3)(2x − 2)

(2x2− 4x + 1)3/2
=

=
2(x − 1)
�

4(2x2− 4x + 1)− (4x2− 8x + 3)
�

(2x2− 4x + 1)3/2
=

2(x − 1)(4x2− 8x + 1)
(2x2− 4x + 1)3/2

.

Poiché il denominatore è positivo, si ha f ′′(x) ≥ 0 se e solo se (x − 1)(4x2− 8x + 1)≥ 0 .
Il trinomio 4x2− 8x + 1 si annulla per

x =
4±
p

42− 4 · 1
4

=
4±
p

12
4

= 1±
p

3
2

.

Il segno di f ′′ risulta quindi dal seguente schema:

1−
p

3
2 1− 1p

2
1+ 1p

2
1+
p

3
2

x − 1 − − − − + + + +

4x2− 8x + 1 + + + − − + + +

f ′′(x) − − − + − + + +

Pertanto f è convessa in
�

1−
p

3/2,1− 1/
p

2
�

e in
�

1+
p

3/2,+∞
�

ed è concava in
�

−∞, 1−
p

3/2
�

e in
�

1+1/
p

2 ,1+
p

3/2
�

. I punti 1−
p

3/2 e 1+
p

3/2 sono di flesso.
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19)

a. f è convessa in
�

9− 3
p

33
4

,0
�

e in
�

9+ 3
p

33
4

,+∞
�

, è concava in
�

−∞,
9− 3
p

33
4

�

e in
�

0,
9− 3
p

33
4

�

;
9− 3
p

33
4

, 0 e
9+ 3
p

33
4

sono punti di flesso

b. f è convessa in
�

−∞,−
s

2
3

�

, in [0,1] e in [1,+∞[ , è concava in
�

−
s

2
3

,0

�

;

−
s

2
3

è punto di flesso

c. f è convessa in
�

− 5
6

,− 5
12

�

e in
�

5
6

,+∞
�

è concava in
�

− 5
12

,0
�

; − 5
12

è punto di

flesso

d. f è convessa in
�

−∞,−
p

6
�

, in [−1,1] e in
�
p

6,+∞
�

, è concava in
�

−
p

6,−
p

3
�

,
in
�

−
p

3,−1
�

, in [1,
p

3 ] e in [
p

3,
p

6 ] ; ±
p

6 e ±1 sono punti di flesso

e. f è convessa in
�

−∞,−3
p

3
�

e in
�

0,3
p

3
�

, è concava in
�

−3
p

3,0
�

e in
�

3
p

3,+∞
�

;
−3
p

3 e 3
p

3 sono punti di flesso

f. f è convessa in
�

4+
p

41
5

,3
�

e in [5,+∞[ , è concava in
�

0,
4+
p

41
5

�

e in [3,5] ;

4+
p

41
5

è punto di flesso

g. f è convessa in [−5,−4[ e in ]−4,−3] , è concava in ]−∞,−5] e in [−3,+∞[ ; −5
e −3 sono punti di flesso

h. f è concava in ]−∞,−2] , in [2,4] e in [4,+∞[ ; non vi sono punti di flesso

20) Il dominio naturale di f è R .
Cerchiamo le intersezioni del grafico di f con gli assi. Si ha f (0) = 0 , quindi il grafico

interseca l’asse delle ordinate nell’origine. Inoltre f (x) = 0 se e solo se |2x3− 9x|=−9x ;
il valore assoluto è sempre non negativo, quindi deve essere −9x ≥ 0 , cioè x ≤ 0 . Quindi
f (x) è nullo se x è non positivo e verifica una delle due equazioni 2x3 − 9x = −9x e
2x3 − 9x = 9x . La prima equazione è verificata solo per x = 0 , la seconda equivale a
2x3 − 18x = 0 e quindi ha le soluzioni x = 0 , x = −3 e x = 3 . Deve essere x ≤ 0 ,
quindi f si annulla in 0 e in −3 .
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Studiamo il comportamento negli estremi del dominio.

lim
x→−∞

f (x) = lim
x→−∞
|2x3|
�
�

�

�

�

1− 9
2

x−2
�

�

�

�

+
9x
|2x3|

�

=+∞ ,

lim
x→+∞

f (x) = lim
x→−∞
|2x3|
�
�

�

�

�

1− 9
2

x−2
�

�

�

�

+
9x
|2x3|

�

=+∞ .

Poiché per x→±∞ si ha f (x)∼ 2|x|3 non vi sono asintoti obliqui.
La funzione è continua.
La funzione f è derivabile in tutti i punti che non annullano l’argomento del valore

assoluto, cioè tali che 2x3−9x 6= 0 . Poiché 2x3− 9x = x(2x2− 9) , si ha 2x3− 9x = 0 per
x = 0 e per x = ±3/

p
2 . Perciò f è derivabile in R \

�

−3/
p

2,0,3/
p

2
	

. Per x in tale
insieme si ha

f ′(x) = (6x2− 9) sgn(2x3− 9x)+ 9 .

Per studiare il segno di f ′ è utile anzitutto determinare per quali x si ha sgn(2x3− 9x) = 1
e per quali si ha sgn(2x3− 9x) =−1 . Si ha

2x3− 9x = 2x
�

x +
3
p

2

��

x − 3
p

2

�

,

quindi il segno di 2x3− 9x risulta dal seguente schema

− 3p
2

0 3p
2

2x − − − − − − − − − − + + + + + + + + + +

x + 3p
2

− − − − + + + + + + + + + + + + + + + +

x − 3p
2

− − − − − − − − − − − − − − − − + + + +

2x3− 9x − − − − + + + + + + − − − − − − + + + +

Perciò sgn(2x3− 9x) = 1 se x ∈
�

−3/
p

2,0
�

∪
�

3/
p

2,+∞
�

, e sgn(2x3− 9x) = −1 se
x ∈
�

−∞,−3/
p

2
�

∪
�

0,3/
p

2
�

.

Calcoliamo il limite della derivata nei punti −3/
p

2 , 0 e 3/
p

2 per determinare la
derivabilità di f in tali punti.

lim
x→−3/

p
2
−

f ′(x) = lim
x→−3/

p
2
−
−(6x2− 9)+ 9=−9 ,

lim
x→−3/

p
2
+

f ′(x) = lim
x→−3/

p
2
+
(6x2− 9)+ 9= 27 ,

lim
x→0−

f ′(x) = lim
x→0−
(6x2− 9)+ 9= 0 ,

lim
x→0+

f ′(x) = lim
x→0+
−(6x2− 9)+ 9= 18 ,

lim
x→3/
p

2
−

f ′(x) = lim
x→3/
p

2
−
−(6x2− 9)+ 9=−9 ,

lim
x→3/
p

2
+

f ′(x) = lim
x→3/
p

2
+
(6x2− 9)+ 9= 27 .
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In ciascuno dei punti considerati il limite sinistro di f ′ è diverso dal limite destro, per-
ciò anche i limiti sinistro e destro del rapporto incrementale sono diversi tra loro. Quin-
di −3/

p
2 , 0 e 3/

p
2 sono punti di non derivabilità per f .

Studiamo il segno di f ′ . Se x ∈
�

−3/
p

2,0
�

∪
�

3/
p

2,+∞
�

, allora si ha

f ′(x) = (6x2− 9)+ 9= 6x2 ;

poiché x 6= 0 , risulta f ′(x)> 0 . Se x ∈
�

−∞,−3/
p

2
�

∪
�

0,3/
p

2
�

, allora si ha

f ′(x) =−(6x2− 9)+ 9=−6x2+ 18= 6(−x2+ 3) ,

che è positivo per x ∈
�

−
p

3,
p

3
�

e negativo per x ∈
�

−∞,−
p

3
�

∪
�p

3,+∞
�

e quindi,
tenuto conto delle condizioni a cui deve soddisfare x , abbiamo f ′(x)> 0 per x ∈

�

0,
p

3
�

e f ′(x)< 0 per x ∈
�

−∞,−3/
p

2
�

∪
�p

3,3/
p

2
�

.
Complessivamente, il segno di f ′ risulta dal seguente schema

− 3p
2

0
p

3 3p
2

f ′(x) − − − + + + + + + + + + + + + − + + +

Pertanto f è crescente in
�

−3/
p

2,0
�

, in
�

0,
p

3
�

e in
�

3/
p

2,+∞
�

ed è decrescente in
�

−∞,−3/
p

2
�

e in
�p

3,3/
p

2
�

. Il criterio di monotonia non può essere applicato diretta-
mente per stabilire la crescenza di f in

�

−3/
p

2,
p

3
�

, perché la funzione non è derivabile
in tutti i punti interni a tale intervallo. Possiamo però ugualmente concludere che f è
crescente, a partire dalle informazioni relative agli intervalli

�

−3/
p

2,0
�

e
�

0,
p

3
�

. Infatti
siano x, y ∈
�

−3/
p

2,
p

3
�

tali che x < y . Se x e y appartengono entrambi a
�

−3/
p

2,0
�

o entrambi a
�

0,
p

3
�

, allora sappiamo che f (x)≤ f (y) . Se invece x ∈
�

−3/
p

2,0
�

e
y ∈
�

0,
p

3
�

, allora si ha f (x)≤ f (0)≤ f (y) . Quindi in ogni caso f (x)≤ f (y) . Utilizzan-
do il criterio di monotonia stretta si può analogamente dimostrare che f è strettamente
crescente in
�

−3/
p

2,
p

3
�

.

Inoltre −3/
p

2 e 3/
p

2 sono punti di minimo locale per f ,
p

3 è un punto di massimo
locale.

Il valore di f in tali punti è:

f
�

− 3
p

2

�

=

�

�

�

�

�

2
�

− 3
p

2

�3

+ 9
3
p

2

�

�

�

�

�

− 9
3
p

2
=

�

�

�

�

�

− 27
p

2
+

27
p

2

�

�

�

�

�

− 27
p

2
=− 27
p

2

f
�
p

3
�

=
�

�

�2
�
p

3
�3− 9
p

3
�

�

�+ 9
p

3=
�

�6
p

3− 9
p

3
�

�+ 9
p

3= 12
p

3 ,

f
�

3
p

2

�

=

�

�

�

�

�

2
�

3
p

2

�3

− 9
3
p

2

�

�

�

�

�

+ 9
3
p

2
=

�

�

�

�

�

27
p

2
− 27
p

2

�

�

�

�

�

+
27
p

2
=

27
p

2
.

Studiamo la convessità di f .
La funzione f ′ è derivabile in tutto il dominio e si ha

f ′′(x) = 12x sgn(2x3− 9x) .
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Quindi il segno di f ′′(x) coincide con quello di 12x(2x3− 9x) , che è uguale a

24x2
�

x − 3
p

2

��

x +
3
p

2

�

.

Quindi per x ∈
�

−∞,−3/
p

2
�

∪
�

3/
p

2,+∞
�

risulta f ′′(x) ≥ 0 , mentre invece per
x ∈
�

−3/
p

2,3/
p

2
�

\ {0} si ha f ′′(x) ≤ 0 ; pertanto f è convessa in
�

−∞,−3/
p

2
�

e
in
�

3/
p

2,+∞
�

ed è concava in
�

−3/
p

2,0
�

e in
�

0,3/
p

2
�

.
Poiché nei punti di cambio di convessità f non è derivabile, non vi sono punti di flesso.
Perciò il grafico di f è, approssimativamente, il seguente:

−3

�

− 3p
2
,− 27p

2

�

�p
3,12
p

3
�

�

3p
2
, 27p

2

�

21) La funzione f è definita per tutti gli x per cui non si annulla il denominatore
dell’argomento dell’esponenziale, pertanto si ha

D( f ) =R∗ .

Cerchiamo le intersezioni del grafico di f con gli assi cartesiani. Poiché 0 non appar-
tiene al dominio della funzione non c’è intersezione con l’asse delle ordinate. L’equazione
f (x) = 0 equivale a x+6= 0 , quindi f si annulla solo per x =−6 . Poiché f è prodotto
di funzioni a valori non negativi è non negativa.

Studiamo il comportamento di f negli estremi degli intervalli che costituiscono il suo
dominio. Si ha

lim
x→−∞

f (x) = lim
x→−∞
|x + 6| e1 =+∞ ,

lim
x→0−

f (x) = 6 lim
x→0−

exp
� x + 1

x

�

= 0 ,

lim
x→0+

f (x) = 6 lim
x→0+

exp
� x + 1

x

�

=+∞ ,

lim
x→+∞

f (x) = lim
x→+∞
|x + 6| e1 =+∞ .
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La funzione ha quindi l’asintoto verticale x = 0 .
Poiché per x che tende a −∞ e a +∞ la funzione diverge, cerchiamo eventuali asintoti

obliqui. Per x→−∞ si ha

|x + 6|exp
� x + 1

x

�

=−(x + 6)e exp
�

1
x

�

=−(x + 6)e
�

1+
1
x
+ o
�

1
x

�

�

=

= e
�

−x − 6− x
1
x
+ o(1)
�

=−e x − 7e + o(1) ;

perciò la retta di equazione y = −e x − 7e è asintoto obliquo per f per x → −∞ . In
modo analogo per x→+∞ si ha

|x + 6|exp
� x + 1

x

�

= (x + 6)e exp
�

1
x

�

= (x + 6) e
�

1+
1
x
+ o
�

1
x

�

�

=

= e
�

x + 6+ x
1
x
+ o(1)
�

= e x + 7e + o(1) ,

quindi f ha l’asintoto obliquo y = e x + 7e per x→+∞ .
La funzione f è continua, perché prodotto di composizione funzioni continue.
Studiamo la derivata di f . La funzione f è derivabile in x se x non annulla l’argo-

mento del valore assoluto. Pertanto f è derivabile in D( f )\{−6}=R\{−6,0} . Per x in
tale insieme si ha

f ′(x) = sgn(x + 6) exp
� x + 1

x

�

+ |x + 6| exp
� x + 1

x

� x − (x + 1)
x2

=

= sgn(x + 6)
�

1− (x + 6)
1
x2

�

exp
� x + 1

x

�

= sgn(x + 6)
x2− x − 6

x2
exp
� x + 1

x

�

.

Poiché, ∀x ∈ D( f ′) , si ha x2 > 0 e l’esponenziale è maggiore di 0 , il segno e di f ′(x)
coincide con il segno di (x2− x − 6) sgn(x + 6) . Gli zeri del trinomio x2− x − 6 , sono

x =
1±
p

12− 4 · (−6)
2

=
1± 5

2
=
�−2 ,

3 ,

pertanto è positivo se e solo se x ∈ ]−∞,−2[∪ ]3,+∞[ .
Il segno della derivata risulta quindi dal seguente schema:

−6 −2 0 3

x2− x − 6 + + + + + + + + + − − − − − − − + + +

sgn(x + 6) − − − + + + + + + + + + + + + + + + +

f ′(x) − − − + + + + + + − − − − − − − + + +

Pertanto f è crescente in [−6,−2] e in [3,+∞[ , è decrescente in ]−∞,−6] , in
[−2,0[ e in ]0,3] . Inoltre −6 e 3 sono punti di minimo locale, −2 è un punto di massimo
locale.
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Studiamo la derivabilità di f in −6 .

lim
x→−6−

f ′(x) = lim
x→−6−

(x2− x − 6) sgn(x + 6)
x2

exp
� x + 1

x

�

=

= lim
x→−6−
− x2− x − 6

x2
exp
� x + 1

x

�

=−
(−6)2+ 6− 6
(−6)2

e5/6 =−e5/6 ,

lim
x→−6+

f ′(x) = lim
x→−6+

(x2− x − 6) sgn(x + 6)
x2

exp
� x + 1

x

�

=

= lim
x→−6+

x2− x − 6
x2

exp
� x + 1

x

�

=
(−6)2+ 6− 6
(−6)2

e5/6 = e5/6 ,

quindi esistono limite sinistro e destro di f ′(x) per x→−6 , ma tali limiti sono diversi tra
loro, dunque f non è derivabile in −6 .

Poiché limx→0− f (x) esiste reale, per studiare l’andamento della funzione, è utile calco-
lare limx→0− f ′(x) . Per x→ 0− risulta

f ′(x) =
x2− x − 6

x2
exp
� x + 1

x

�

=
x2− x − 6

x2
e exp
�

1
x

�

∼−6e
1
x2

exp
�

1
x

�

e

lim
x→0−

1
x2

exp
�

1
x

�

= lim
y→−∞

y2e y = 0 .

Pertanto limx→0− f ′(x) = 0 .
Calcoliamo il valore di f negli estremanti locali; sappiamo che f (−6) = 0 , inoltre

si ha:

f (−2) = (−2+ 6) exp
�−2+ 1
−2

�

= 4 e1/2 ,

f (3) = (3+ 6) exp
�

3+ 1
3

�

= 9 e4/3 .

Studiamo la convessità. Evidentemente f ′ è derivabile in ogni punto del suo dominio,
che è R \ {−6,0} ; per x in tale insieme si ha

f ′′(x) = sgn(x + 6)
�

(2x − 1)x2− 2x(x2− x − 6)
x4

exp
� x + 1

x

�

+

+
(x2− x − 6)

x2

x − (x + 1)
x2

exp
� x + 1

x

�

�

=

= sgn(x + 6)
�

2x3− x2− 2x3+ 2x2+ 12x
x4

+
−x2+ x + 6

x4

�

exp
� x + 1

x

�

=

= sgn(x + 6)
13x + 6

x4
exp
� x + 1

x

�

.
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Se x ∈ D( f ′′) si ha x4 > 0 e l’esponenziale è positivo, il segno di f ′′(x) coincide con il
segno di (13x + 6) sgn(x + 6) e risulta dal seguente schema:

−6 − 6
13 0

13x + 6 − − − − − − − − − − − − − + + + + + +

sgn(x + 6) − − − + + + + + + + + + + + + + + + +

f ′′(x) + + + − − − − − − − − − − + + + + + +

La funzione f è quindi convessa in ]−∞,−6] , in [−6/13,0[ e in ]0,+∞[ mentre è
concava in [−6,−6/13] ; inoltre −6/13 è punto di flesso. Si ha:

f
�

− 6
13

�

=
�

�

�

�

− 6
13
+ 6
�

�

�

�

exp
�−6/13+ 1
−6/13

�

=
72
13

e−7/6 ,

f ′
�

− 6
13

�

=
(−6/13)2− (−6/13)− 6

(−6/13)2
sgn
�

− 6
13
+ 6
�

exp
�−6/13+ 1
−6/13

�

=−25e−7/6 ,

quindi la retta tangente nel punto di flesso ha equazione

y =
72
13

e−7/6− 25e−7/6
�

x +
6
13

�

,

cioè
y = (−25x − 6) e−7/6 .

Il grafico di f è quindi, approssimativamente, il seguente:

y = e x + 7e

y =−e x − 7e

−6

�

− 6
13 , 72

13 e−7/6
�

�

−2,4 e1/2
�

�

3,9 e4/3
�
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22) Poiché la funzione arcoseno ha dominio [−1,1] , si ha

D( f ) =
�

x ∈R
�

�−1≤ |x2+ 4x + 3| ≤ 1
	

=
�

x ∈R
�

� − 1≤ x2+ 4x + 3≤ 1
	

.

Dobbiamo quindi risolvere il sistema di disequazioni
¨

x2+ 4x + 3≤ 1 ,

x2+ 4x + 3≥−1 ,
cioè

¨

x2+ 4x + 2≤ 0 ,

x2+ 4x + 4≥ 0 .

Il trinomio x2+ 4x + 2 si annulla per

x =−2±
p

22− 2=−2±
p

2 ,

pertanto la prima disequazione è verificata per x ∈
�

−2−
p

2,−2+
p

2
�

. Dall’uguaglianza
x2+ 4x + 4= (x + 2)2 segue che la seconda disequazione è sempre verificata. Pertanto

D( f ) =
�

−2−
p

2,−2+
p

2
�

.

I valori di f negli estremi del dominio sono:

f
�

−2−
p

2
�

= arcsen
�

�

�

−2−
p

2
�2+ 4
�

−2−
p

2
�

+ 3
�

�=

= arcsen
�

�4+ 4
p

2+ 2− 8− 4
p

2+ 3
�

�= arcsen|−1|= π
2

,

f
�

−2+
p

2
�

= arcsen
�

�

�

−2+
p

2
�2+ 4
�

−2+
p

2
�

+ 3
�

�=

= arcsen
�

�4− 4
p

2+ 2− 8+ 4
p

2+ 3
�

�= arcsen|−1|= π
2

.

Il grafico di f non interseca l’asse delle ordinate perché 0 /∈ D( f ) . Cerchiamo le in-
tersezioni con l’asse delle ascisse; si ha f (x) = 0 se e solo se arcsen|x2 + 4x + 3| = 0 , che
equivale a x2+ 4x + 3= 0 . Questo trinomio si annulla per

x =−2±
p

22− 3=−2± 1=
�−3 ,
−1 .

Poiché la funzione arcoseno assume valori non negativi quando il suo argomento è non
negativo, f è sempre non negativa.

La funzione non ha asintoti orizzontali o obliqui perché il dominio è limitato e non ha
asintoti verticali perché, per il teorema di Weierstrass, è limitata.

Poiché f è composizione di funzioni continue, è continua.
La funzione f è derivabile in ogni x ∈R tale che l’argomento del valore assoluto è di-

verso da 0 e l’argomento dell’arcoseno è diverso da ±1 . Quindi deve essere x2+ 4x + 3 6= 0
e |x2 + 4x + 3| 6= 1 , non si ha mai |x2 + 4x + 3| = −1 . Come già trovato in precedenza
x2+4x+3= 0 per x =−3 e per x =−1 . Si ha |x2+4x+3|= 1 se e solo se x2+4x+3= 1
oppure x2+4x+3=−1 , tali equazioni, già risolte per determinare il dominio di f , hanno
le soluzioni x = −2−

p
2 e x = −2+

p
2 la prima e x = −2 la seconda. Pertanto f è
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derivabile in
D( f ) \
�

−2−
p

2,−3,−2,−1,−2+
p

2
	

;

la derivabilità nei punti −2−
p

2 , −3 , −2 , −1 , −2+
p

2 sarà studiata in seguito.
Per x ∈D( f ) \
�

−2−
p

2,−3,−2,−1,−2+
p

2
	

si ha

f ′(x) =
sgn(x2+ 4x + 3) (2x + 4)
p

1− |x2+ 4x + 3|2
.

Poiché

1− |x2+ 4x + 3|2 =
�

1− (x2+ 4x + 3)
��

1+(x2+ 4x + 3)
�

=

= (−x2− 4x − 2)(x2+ 4x + 4) = (−x2− 4x − 2)(x + 2)2

risulta

f ′(x) =
2sgn(x2+ 4x + 3) (x + 2)
|x + 2|

p
−x2− 4x − 2

=
2sgn(x2+ 4x + 3) sgn(x + 2)

p
−x2− 4x − 2

.

Il segno di f ′(x) coincide con il segno di sgn(x2+4x+3) sgn(x+2) , che risulta dal seguente
schema:

−2−
p

2 − 3 −2 −1 − 2+
p

2

sgn(x2+ 4x + 3) + − − − − − − − − +

sgn(x + 2) − − − − − + + + + +

sgn(x2+ 4x + 3) sgn(x + 2) − + + + + − − − − +

Pertanto f è crescente in [−3,−2] e in
�

−1,−2+
p

2
�

, è decrescente in
�

−2−
p

2,−3
�

e in [−2,−1] . Inoltre −2−
p

2 , −2 e −2+
p

2 sono punti di massimo locale per f , −3
e −1 sono punti di minimo locale per f .

Studiamo la derivabilità di f nei punti −2−
p

2 , −3 , −2 , −1 , −2+
p

2 . Si ha

lim
x→−2−

p
2
+

f ′(x) =− lim
x→−2−

p
2
+

2
p
−x2− 4x − 2

=−∞ ,

lim
x→−3−

f ′(x) =− lim
x→−3−

2
p
−x2− 4x − 2

=−2 ,

lim
x→−3+

f ′(x) = lim
x→−3+

2
p
−x2− 4x − 2

= 2 ,

lim
x→−2−

f ′(x) = lim
x→−2−

2
p
−x2− 4x − 2

=
p

2 ,

lim
x→−2+

f ′(x) =− lim
x→−2+

2
p
−x2− 4x − 2

=−
p

2 ,

lim
x→−1−

f ′(x) =− lim
x→−3−

2
p
−x2− 4x − 2

=−2 ,

lim
x→−1+

f ′(x) = lim
x→−3+

2
p
−x2− 4x − 2

= 2 ,
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lim
x→−2+

p
2
−

f ′(x) = lim
x→−2+

p
2
−

2
p
−x2− 4x − 2

=+∞ .

Poiché il limite della derivata (se esiste) coincide con il limite del rapporto incrementale,
risulta che f non è derivabile in nessuno dei punti elencati sopra, perché nei due estremi
del dominio il limite del rapporto incrementale non è reale, mentre in tutti gli altri punti
il limite sinistro del rapporto incrementale è diverso dal limite destro.

Calcoliamo il valore di f negli estremanti locali. Sappiamo che si ha:

f
�

−2−
p

2
�

= f
�

−2+
p

2
�

=π/2 .
Inoltre

f (−3) = arcsen
�

�(−3)2+ 4 · (−3)+ 3
�

�= arcsen|0|= 0 ,

f (−2) = arcsen
�

�(−2)2+ 4 · (−2)+ 3
�

�= arcsen|−1|= π
2

,

f (−1) = arcsen
�

�(−1)2+ 4 · (−1)+ 3
�

�= arcsen|0|= 0 .

Studiamo la convessità di f . La funzione f ′ è derivabile in ogni punto del suo dominio,
perché in tale dominio non si annullano gli argomenti delle funzioni segno e radice che
compaiono nell’espressione di f ′ , e si ha

f ′′(x) = sgn(x2+ 4x + 3) sgn(x + 2)2
�

− 1
2

�

(−x2− 4x − 2)−3/2(−2x − 4) =

= sgn(x2+ 4x + 3)
2(x + 2) sgn(x + 2)
(−x2− 4x − 2)3/2

= sgn(x2+ 4x + 3)
2|x + 2|

(−x2− 4x − 2)3/2
.

Sappiamo che sgn(x2+ 4x+ 3)> 0 per x ∈ ]−∞,−1[∪ ]3,+∞[ , quindi se x ∈D( f ′′) si
ha f ′′(x)≥ 0 se e solo se x ∈

�

−2−
p

2,−3
�

∪
�

−1,−2+
p

2
�

. Pertanto f è convessa in
�

−2−
p

2,−3
�

e in
�

−1,−2+
p

2
�

, è concava in [−3,−2] e in [−2,−1] . Infine f non
ha punti di flesso, perché i punti di cambio della concavità sono punti di non è derivabilità.

Il grafico di f è quindi, approssimativamente, il seguente.

�

−2−
p

2, π2
� �

−2+
p

2, π2
�

−3

�

−2, π2
�

−1
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23) La funzione f è definita per gli x reali diversi da 0 , (perché per x = 0 si annulla il
denominatore dell’esponente) e tali che l’argomento della radice |x + 5| − 1 è maggiore o
uguale a 0 . Si ha |x + 5| − 1 ≥ 0 se e solo se |x + 5| ≥ 1 e ciò è verificato se x + 5 ≥ 1
oppure x + 5≤−1 , che equivale a x ≥−4 o x ≤−6 . Pertanto

D( f ) = ]−∞,−6]∪ [−4,0[∪ ]0,+∞[ .

Il grafico di f non interseca l’asse delle ordinate perché 0 /∈D( f ) . Si ha f (x) = 0 se e
solo se
p

|x + 5| − 1= 0 , cioè |x + 5| − 1= 0 che è verificato se x =−6 o x =−4 .
Poiché è prodotto di funzioni a valori non negativi, f ha sempre valori non negativi.
Studiamo il comportamento di f negli estremi degli intervalli che costituiscono il suo

dominio.

lim
x→−∞

f (x) = +∞ ,

f (−6) =
p

|−6+ 5| − 1 e−1/6 = 0 ,

f (−4) =
p

|−4+ 5| − 1 e−1/4 = 0 ,

lim
x→0−

f (x) = 0 ,

lim
x→0+

f (x) = +∞ ,

lim
x→+∞

f (x) = +∞ .

Pertanto la retta di equazione x = 0 è asintoto orizzontale.
La funzione diverge per x →±∞ , ma è semplice provare che f (x)∼

p

|x| , pertanto
non vi sono asintoti obliqui.

La funzione f è prodotto di composizioni di funzioni continue, quindi è continua.
La funzione è derivabile in x se x non annulla l’argomento del valore assoluto e non

annulla l’argomento della radice. Quindi deve essere x + 5 6= 0 e |x + 5| − 1 6= 0 . Se
x ∈ D( f ) , allora si ha x 6= −5 e, come già visto, |x + 5| − 1 si annulla per x = −6 e per
x =−4 . Pertanto f è derivabile in ]−∞,−6[∪ ]−4,0[∪ ]0,+∞[ , mentre la derivabilità
in −6 e in −4 verrà studiata in seguito.

Si ha

f ′(x) =
1

2
p

|x + 5| − 1
sgn(x + 5) e1/x +

p

|x + 5| − 1
�

− 1
x2

�

e1/x =

=
x2 sgn(x + 5)− 2

�

(x + 5) sgn(x + 5)− 1
�

2x2
p

|x + 5| − 1
e1/x =

(x2− 2x − 10) sgn(x + 5)+ 2

2x2
p

|x + 5| − 1
e1/x .

Studiamo le derivabilità in −6 e in −4 . Si ha

lim
x→−6−

f ′(x) = lim
x→−6−

−x2+ 2x + 12

2x2
p
−x − 6

e1/x =−∞ ,

lim
x→−4+

f ′(x) = lim
x→−4+

x2− 2x − 8

2x2
p

x + 4
e1/x =+∞ .

Poiché il limite della derivata coincide con il limite del rapporto incrementale, il limite del
rapporto incrementale non è reale, pertanto f non è derivabile in nessuno dei due punti.



58 Capitolo 1. Funzioni

Poiché limx→0− f (x) è reale, per conoscere il comportamento di f è utile calcolare il
limite corrispondente della derivata. Si ha:

lim
x→0−

f ′(x) = lim
x→0−

x2− 2x − 8

2x2
p

x + 4
e1/x =− 8

4
lim

x→0−

e1/x

x2
= 0 .

Per x ∈D( f ′) si ha

f ′(x)> 0 ⇐⇒ (x2− 2x − 10) sgn(x + 5)+ 2> 0 ;

distinguendo a seconda che sia sgn(x+5) = 1 o sgn(x+5) =−1 , f ′(x) è positivo se e solo
se x è un elemento del dominio di f ′ che soddisfa uno dei seguenti sistemi di disequazioni:

¨x ≥−5 ,

x2− 2x − 8> 0 ;
¨x <−5 ,

−x2+ 2x + 12> 0 .

Il trinomio x2− 2x − 8 si annulla per

x = 1±
p

1+ 8= 1± 3=
�−2 ,

4 ;

pertanto le soluzioni del primo sistema risultano dal seguente schema

−5 −2 4

x ≥−5

x2− 2x − 8> 0

sistema

Quindi l’insieme delle soluzioni è [−5,−2]∪[4,+∞[ . Il trinomio −x2+2x+12 si annulla
per

x =
−1±
p

1+ 12
−1

= 1∓
p

13 ;

pertanto le soluzioni del secondo sistema risultano dal seguente schema

−5 1−
p

13 1+
p

13

x <−5

−x2+ 2x + 12> 0

sistema

perciò questo sistema non ha soluzioni.
Il segno di f ′ è quindi rappresentato nel seguente schema:

−6 −4 −2 0 4

f ′(x) − − − + + + − − − − − − − − − + + +
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Pertanto f è crescente in [−4,−2] e in [4,+∞[ ed è decrescente in ]−∞,−6] , in
[−2,0[ e in ]0,4] . Inoltre −6 , −4 e 4 sono punti di minimo locale per f , −2 è un punto
di massimo locale.

Sappiamo che f (−6) = f (−4) = 0 , inoltre:

f (−2) =
p

|−2+ 5| − 1 e−1/2 =
p

2 e−1/2 ,

f (4) =
p

|4+ 5| − 1 e1/4 =
p

8 e1/4 .

Il grafico di f è quindi, approssimativamente, il seguente.

−6 −4

�

−2, e−1/2
p

2
�

�

4, e1/4
p

8
�

24) Poiché l’argomento della radice è sempre non negativo, si ha D( f ) =R .
Cerchiamo le intersezioni del grafico con gli assi cartesiani.
Si ha f (0) =
p

|0− 0|+ 0= 0 .
Inoltre f (x) = 0 se e solo se

p

|x2− 2x| = x , che equivale a |x2 − 2x| = x2 purché
sia x ≥ 0 . Risulta x2 − 2x ≥ 0 se e solo se x ∈ ]−∞, 0]∪ [2,+∞[ , pertanto per tali x
l’equazione |x2− 2x| = x2 equivale a x2− 2x = x2 , che è verificata per x = 0 . Se invece
x ∈ ]0,2[ , allora l’equazione |x2− 2x|= x2 equivale a −x2+ 2x = x2 , cioè 2x2− 2x = 0
che, nell’intervallo considerato, è verificata per x = 1 . Pertanto f (x) = 0 per x = 0
e x = 1 .

Studiamo il comportamento di f negli estremi del dominio.

lim
x→−∞

f (x) = lim
x→−∞

�

√

√

√

x2

�

�

�

�

1− 2
x

�

�

�

�

− x

�

= lim
x→−∞

�

|x|
s

1− 2
x
− x

�

=

= lim
x→−∞

�

−x
�

1− 1
2

2
x
+ o(x−1)
�

− x
�

= lim
x→−∞

�

−x + 1+ o(1)− x
�

=+∞ ,

lim
x→+∞

f (x) = lim
x→+∞

�

√

√

√

x2

�

�

�

�

1− 2
x

�

�

�

�

− x

�

= lim
x→+∞

�

|x|
s

1− 2
x
− x

�

=

= lim
x→+∞

�

x
�

1− 1
2

2
x
+ o(x−1)
�

− x
�

= lim
x→+∞

�

x − 1+ o(1)− x
�

=−1 .
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Pertanto la retta di equazione y = −1 è asintoto orizzontale per x → +∞ e la retta
di equazione y = −2x + 1 è asintoto obliquo per x → −∞ , come si prova facilmente
esaminando i passaggi fatti per calcolare il limite.

La funzione f è somma di composizione di funzioni continue e quindi è continua.
La funzione è derivabile in ogni punto del suo dominio in cui non si annullano né

l’argomento del valore assoluto né l’argomento della radice; questi argomenti si annullano
per gli x tali che x2− 2x = 0 , cioè per x = 0 e x = 2 . Quindi f è derivabile in R\{0,2} ,
mentre dobbiamo studiare a parte la derivabilità della funzione in 0 e in 2 .

Per x ∈R \ {0,2} si ha

f ′(x) =
1

2
p

|x2− 2x|
sgn(x2− 2x) (2x − 2)− 1=

(x − 1) sgn(x2− 2x)
p

|x2− 2x|
− 1 .

Per studiare f ′ osserviamo che si ha x2−2x > 0 se e solo se x > 2 o x < 0 , quindi risulta
sgn(x2−2x) = 1 per x ∈ ]−∞, 0[∪]2,+∞[ e sgn(x2−2x) =−1 per x ∈ ]0,2[ , pertanto
il comportamento della derivata nei punti 0 e 2 è il seguente:

lim
x→0−

f ′(x) = lim
x→0−

�

(x − 1)
p

|x2− 2x|
− 1

�

=−∞ ,

lim
x→0+

f ′(x) = lim
x→0+

�

−(x − 1)
p

|x2− 2x|
− 1

�

=+∞ ,

lim
x→2−

f ′(x) = lim
x→2−

�

−(x − 1)
p

|x2− 2x|
− 1

�

=−∞ ,

lim
x→2+

f ′(x) = lim
x→2+

�

(x − 1)
p

|x2− 2x|
− 1

�

=+∞ ;

poiché il limite destro o sinistro della derivata (se esiste), coincide con il corrispondente li-
mite del rapporto incrementale, si deduce che f non è derivabile né in 0 né in 2 . Sappiamo
che f (0) = 0 , inoltre

f (2) =
p

|22− 2 · 2| − 2=−2 .

La disequazione f ′(x)≥ 0 è abbastanza complessa, per risolverla è opportuno determi-
nare anzitutto gli zeri di f ′ .

Se x ∈R \ {0,2} , si ha f ′(x) = 0 se e solo se

(x − 1) sgn(x2− 2x)
p

|x2− 2x|
= 1 ,

quindi deve essere (x−1) sgn(x2−2x)> 0 . Il segno di questo prodotto risulta dal seguente
schema

0 1 2

x − 1 − − − − − − − + + + + + + +

sgn(x2− 2x) + + + + + − − − − + + + + +

(x − 1) sgn(x2− 2x) − − − − − + + − − + + + + +
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Quindi, se f ′(x) = 0 , allora x ∈ ]0,1[∪ ]2,+∞[ . Per x in tale insieme si ha f ′(x) = 0 se
e solo se

(x − 1)2

|x2− 2x|
= 1 ,

cioè
x2− 2x + 1= |x2− 2x| .

Se x ∈ ]0,1[ si ha x2− 2x < 0 , quindi l’equazione diventa

x2− 2x + 1=−x2+ 2x ,
cioè

2x2− 4x + 1= 0 ,

che è verificata per

x =
2±
p

22− 2
2

= 1± 1
p

2
.

Risulta 1− 1/
p

2 ∈ ]0,1[ e 1+ 1/
p

2 /∈ ]0,1[ . Se x ∈ ]2,+∞[ si ha x2− 2x > 0 , quindi
l’equazione diventa

x2− 2x + 1= x2− 2x ,

che non ha soluzione. Perciò f ′(x) = 0 se e solo se x = 1− 1/
p

2 .
Studiamo il segno della derivata. La funzione f ′ è continua e diversa da 0 in ]−∞, 0[ ,

quindi, per il teorema di Bolzano, in tale intervallo f si mantiene sempre positiva o sem-
pre negativa. Si ha limx→0− f ′(x) = −∞ , perciò f ′ è negativa in ]−∞, 0[ . In ]0,2[ la
derivata è continua, si annulla solo in 1−1/

p
2 , dunque, ancora per il teorema di Bolzano,

essa ha segno costante in
�

0,1− 1/
p

2
�

e in
�

1− 1/
p

2,2
�

. Poiché limx→0+ f ′(x) = +∞
e limx→2− f ′(x) = −∞ , la funzione f ′ è positiva nel primo intervallo e negativa nel se-
condo. Infine in ]2,+∞[ f ′ è continua e non si annulla, quindi ha segno costante, poiché
limx→2+ f ′(x) = +∞ essa è positiva.

Il segno di f ′ è quindi rappresentato dal seguente schema:

0 1− 1p
2

2

f ′(x) − − − − − + − − − − − − − − + + + + +

Pertanto f è crescente in
�

0,1− 1/
p

2
�

e in [2,+∞[ ed è decrescente in ]−∞, 0] e
in
�

1−1/
p

2,2
�

. Inoltre 0 e 2 sono punti di minimo locale per f e 1−1/
p

2 è punto di
massimo locale.

Il valore della funzione in 0 e in 2 è già stato calcolato;

f
�

1− 1
p

2

�

=

√

√

√

√

�

�

�

�

�

�

1− 1
p

2

�2

− 2
�

1− 1
p

2

�

�

�

�

�

�

− 1+
1
p

2
=

=

√

√

√

√

�

�

�

�

�

1− 2
1
p

2
+

1
2
− 2+ 2

1
p

2

�

�

�

�

�

− 1+
1
p

2
=

√

√

√

�

�

�

�

− 1
2

�

�

�

�

− 1+
1
p

2
=−1+

p
2 .
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Studiamo la convessità di f mediante la derivata seconda. Se x ∈ D( f ′) , allora gli
argomenti delle funzioni radice e valore assoluto che compaiono nell’espressione di f ′(x)
sono diversi da 0 , quindi f ′ è derivabile in ogni punto del suo dominio, pertanto si ha
D( f ′′) =D( f ′) =R \ {0,2} . Per x in tale insieme, si ha

f ′′(x) =

= sgn(x2− 2x)
�

p

|x2− 2x| − (x − 1)
(2x − 2) sgn(x2− 2x)

2
p

|x2− 2x|

�

1
�
p

|x2− 2x|
�2 =

=
sgn(x2− 2x)
�
p

|x2− 2x|
�2− (x − 1) sgn(x2− 2x)(x − 1) sgn(x2− 2x)
�
p

|x2− 2x|
�3 =

=
sgn(x2− 2x) |x2− 2x| − (x − 1)2

|x2− 2x|3/2
=

x2− 2x − (x2− 2x + 1)
|x2− 2x|3/2

=
−1

|x2− 2x|3/2
,

quindi, ∀x ∈D( f ′′) , si ha f ′′(x)< 0 , pertanto f è concava in ogni intervallo il cui interno
è contenuto in D( f ′′) , in particolare f è concava in ]−∞, 0] , in [0,2] e in [2,+∞[ .

Poiché f ′′ è sempre negativa, ogni punto in cui f ′ si annulla è un punto di massimo
locale per f ; sappiamo che f ′ si annulla solo in 1− 1/

p
2 , è così confermato che tale

punto è di massimo locale.
Il grafico di f è quindi, approssimativamente, il seguente.

y =−1

y =−2x + 1

(2,−2)

1

�

1− 1p
2
,−1+

p
2
�
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25)
a.

y = x + 9

x = 1

x =−1

−9

�

3, 27
2

�

b.

−2 −1

p
2

�

− 5
3 , 2

3
p

3

�

c.

y = π
2

−4 −1

π
2

�

−2, π4
� (2, arctan3)
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d.

x = 1

x = 2

�

2
3 , log28
�

e.

y = π
4

−2

�

1, π2
�

2

�

4, arctan 4
3

�

arctan4

f.

−2 2
3

2

�

− 2
3 , 1
�

(1,1)
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g.

−2 2

�

1,−3
p

3
�

h.

�

−
p

7,2
p

3
�

− 1
2

�p
7,2
p

3
�

x =−2 x = 2

−1 1

y = xy =−x

i.

�

−
p

5
2 ,−4e3/4
�

e2

�p
5

2 ,−4e3/4
�

�

−
p

2,−7
� �p

2,−7
�

− 1
2

1
2
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j.

2

y = x

x =−
p

2

(−1,1)

(2,4)
�p

2,2+
p

2
�

�

−
p

6,−
p

3
2
p

2

�

�p
6,
p

3
2
p

2

�

k.

y =−x − 2

y = x + 2

− 8
5

(2,−6)

�

1− 3p
5
, 3−
p

5
�

�

1+ 3p
5
, 3−
p

5
�



1.2. Soluzioni e risultati 67

26) Poiché la funzione tangente ha dominio R \
�

π/2+ kπ
�

�k ∈Z
	

, affinché x appar-
tenga a D( f ) bisogna che esso appartenga al dominio della funzione tangente e che non si
annulli il denominatore −2tan x + sen(2x) . Quindi deve essere x 6=π/2+kπ , qualunque
sia k ∈Z , e −2tan x + sen(2x) 6= 0 . Poiché

−2tan x + sen(2x) =−2
sen x
cos x

+ 2sen x cos x =
−2sen x + 2sen x cos2x

cos x
=
−2sen3x

cos x
,

si ha −2tan x + sen(2x) = 0 se e solo se sen x = 0 , cioè x = kπ con k ∈Z . Quindi D( f )
è costituito dai reali che non sono né multipli interi di π né somma di π/2 con multipli
interi di π . Si ha quindi

D( f ) =R \
§

k
π

2

�

�

�

�

k ∈Z
ª

.

Dalla periodicità delle funzioni seno, coseno e tangente segue che f è periodica di
periodo 2π . Inoltre f è dispari, perché, ∀x ∈D( f ) , si ha

f (−x) =
2cos2(−x)− 1

−2tan(−x)+ sen(−2x)
=

2cos2x − 1
2tan x − sen(2x)

=− f (x) .

Come richiesto studiamo la funzione in [−π,π] . Essa è dispari, quindi possiamo stu-
diarla in [0,π] e ricavare il comportamento in tutto [−π,π] per simmetria. Osservia-
mo che

D( f )∩ [0,π] =
�

0,
π

2

�

∪
�

π

2
,π
�

.

È utile un’espressione di f che contenga solo le funzioni seno e coseno. Come già visto,
il denominatore è uguale a −2sen3x/cos x , quindi Si ha:

f (x) =
2cos2x − 1

−2tan x + sen(2x)
=

cos x (1− 2cos2x)
2sen3x

.

Cerchiamo le intersezioni del grafico di f con gli assi cartesiani. Poiché 0 /∈D( f ) non
vi sono intersezioni con l’asse delle ordinate. Poiché per x ∈D( f ) si ha cos x 6= 0 , f (x) si
annulla se e solo se 1− 2cos2x = 0 , cioè se cos x =±1/

p
2 . Se x ∈ [0,π] ciò avviene per

x =π/4 e x = 3π/4 .
Poiché per x ∈ ]0,π[ si ha sen x > 0 , il segno di f (x) coincide con il segno del

numeratore, quindi risulta dal seguente schema

0 π
4

π
2

3
4 π π

cos x + + + + + + + + − − − − − − − −
1− 2cos2x − − − − + + + + + + + + − − − −

f (x) − − − − + + + + − − − − + + + +

Pertanto f è positiva in ]π/4,π/2[∪ ]3π/4,π[ ed è negativa in ]0,π/4[∪ ]π/2,3π/4[ .
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Studiamo il comportamento di f nei punti di frontiera del dominio.

lim
x→0+

f (x) = lim
x→0+

cos x (1− 2cos2x)
2sen3x

=− lim
x→0+

1
2sen3x

=−∞ ,

lim
x→π/2−

f (x) = lim
x→π/2−

cos x (1− 2cos2x)
2sen3x

=
0 · (1− 2 · 0)

2 · 1
= 0 ,

lim
x→π/2+

f (x) = lim
x→π/2+

cos x (1− 2cos2x)
2sen3x

=
0 · (1− 2 · 0)

2 · 1
= 0 ,

lim
x→π−

f (x) = lim
x→π−

cos x (1− 2cos2x)
2sen3x

= lim
x→π−

1
2sen3x

=+∞ .

Le rette x = 0 e x =π sono quindi asintoti verticali per f .
La funzione f è continua, perché quoziente di somma di funzioni continue.
La funzione f è derivabile e, per x ∈D( f ) , si ha

f ′(x) =
1
2
(− sen x + 6cos2x sen x) sen3x − 3sen2x cos x (cos x − 2cos3 x)

(sen3x)2
=

=
(− sen x + 6cos2x sen x) sen x − 3cos x (cos x − 2cos3 x)

2sen4x
=

=
− sen2x + 6cos2x sen2x − 3cos2x + 6cos4 x

2sen4x
=

=
− sen2x + 6(1− sen2x) sen2x − 3(1− sen2x)+ 6(1− sen2x)2

2sen4x
=

=
− sen2x + 6sen2x − 6sen4x − 3+ 3sen2x + 6− 12sen2x + 6sen4x

2sen4 x
=

=
−4sen2x + 3

2sen4x
.

Il denominatore è sempre positivo, quindi il segno della derivata dipende esclusivamen-
te dal segno del numeratore; pertanto si ha f ′(x) ≥ 0 se e solo se sen2x ≤ 3/4 . Poi-
ché nell’intervallo [0,π] la funzione seno è non negativa, tale disequazione equivale a
sen x ≤

p
3/2 ; quest’ultima disuguaglianza è verificata se x ≤ π/3 oppure se x ≥ 2π/3

(continuiamo a considerare solo x ∈ [0,π] ). Il segno di f ′ è quindi rappresentato dal
seguente schema:

0 π
3

π
2

2
3 π π

f ′(x) + + + + + + + − − − − − − + + + + + + +

Pertanto f è crescente negli intervalli ]0,π/3] e [2π/3,π[ e decrescente negli inter-
valli [π/3,π/2[ e ]π/2,2π/3] . Inoltre π/3 è un punto di massimo locale per f , 2π/3
è un punto di minimo locale per f .

Poiché f (x) ha limite finito per x→π/2 , per conoscere l’andamento del grafico vicino
a tale punto è utile calcolare il limite di f ′(x) . Si ha:

lim
x→π/2

f ′(x) = lim
x→π/2

−4sen2x + 3
2sen4x

=
−4+ 3

2
=− 1

2
.
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Calcoliamo il valore di f negli estremanti locali.

f
�

π

3

�

=
cos(π/3)
�

1− 2cos2(π/3)
�

2sen3(π/3)
=
(1/2)
�

1− 2(1/2)2
�

2
�p

3/2
�3 =

1

3
p

3
,

f
�

2
3
π
�

=
cos(2π/3)
�

1− 2cos2(2π/3)
�

2sen3(2π/3)
=
(−1/2)
�

1− 2(−1/2)2
�

2
�p

3/2
�3 =− 1

3
p

3
.

Studiamo la convessità. La funzione f ′ è derivabile e, per x ∈D( f ) , si ha

f ′′(x) =
1
2
−8sen x cos x sen4x − 4sen3x cos x(−4sen2x + 3)

(sen4x)2
=

=
−8sen2x cos x + 16cos x sen2x − 12cos x

2sen5x
=

8sen2x cos x − 12cos x
2sen5x

=

=
2cos x(2sen2x − 3)

sen5x
.

Poiché sen x è compreso tra −1 e 1 , si ha sempre 2sen2x − 3< 0 , inoltre in ]0,π[ si ha
sen x > 0 , quindi f ′′(x) > 0 se e solo se cos x < 0 , che è vero per x ∈ ]π/2,π[ . Quindi
f ′′(x) è positivo per x ∈ ]π/2,π[ e negativo per x ∈ ]0,π/2[ .

Perciò f è convessa in ]π/2,π[ ed è concava in ]0,π/2[ .
Il grafico di f ristretta a D( f )∩ [0,π] è quindi, approssimativamente, il seguente:

π
4

3
4 π

x =π

π
2

�

π
3 ,
p

3
9

�

�

2
3 π,−

p
3

9

�

Poiché f è dispari, da questo si può facilmente ottenere il grafico della restrizione di f
a D( f )∩ [−π, 0] : è il simmetrico rispetto all’origine. Perciò il grafico di f ��

D( f )∩[−π,π]
è:
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π
4

3
4 π

x =π

π
2

�

π
3 ,
p

3
9

�

�

2
3 π,−

p
3

9

�

−π4− 3
4 π

x =−π

− π2
�

− π3 ,−
p

3
9

�

�

− 2
3 π,

p
3

9

�

Osserviamo che questo grafico suggerisce che f , oltre a essere periodica di periodo 2π ,
sia anche periodica di periodo π ; verifichiamo se ciò è vero. Anzitutto si ha

x ∈D( f ) ⇐⇒ ∀k ∈Z , x 6= k
π

2
⇐⇒ ∀k ∈Z , x +π 6= kπ/2 ⇐⇒ x +π ∈D( f ) ,

inoltre se x ∈D( f ) allora

f (x +π) =
2cos2(x +π)− 1

−2tan(x +π)+ sen
�

2(x +π)
� =

2(−cos x)2− 1
−2tan x + sen(2x)

= f (x) ;

quindi f è periodica di periodo π .

27) Poiché sen x compare al denominatore, il dominio naturale di f è costituito dagli x
tali che sen x 6= 0 . Se x ∈ [−π,π] si ha sen x = 0 per x = 0 , x =π e x =−π . Pertanto

D( f )∩ [−π,π] = ]−π, 0[∪ ]0,π[ .

La funzione non interseca l’asse delle ordinate, perché 0 /∈D( f ) . Poiché l’esponenziale
è sempre positivo e il seno si annulla in punti non appartenenti a D( f ) , f non si annulla.

Studiamo il comportamento di f nei punti di frontiera del dominio. Si ha

lim
x→−π+

f (x) = lim
x→−π+

p

|sen x| lim
x→−π+

exp
�

1
4sen x

�

= 0 · 0= 0 ,

lim
x→0−

f (x) = lim
x→0−

p

|sen x| lim
x→0−

exp
�

1
4sen x

�

= 0 · 0= 0 .

Per calcolare limx→0+ f (x) è utile porre y = 1/(4sen x) ; si ha

lim
x→0+

p

|sen x| exp
�

1
4sen x

�

= lim
y→+∞

√

√

√
1

4y
e y =

1
2

e y

py
=+∞ .



1.2. Soluzioni e risultati 71

Analogamente limx→π− f (x) = +∞ . Pertanto f ha gli asintoti verticali x = 0 e x =π .
La funzione f è continua, perché prodotto di composizioni di funzioni continue.
In ogni punto di D( f ) l’argomento del valore assoluto è non nullo, lo stesso vale per

l’argomento della radice, quindi f è derivabile. Si ha, ∀x ∈D( f ) ,

f ′(x) =
cos x sgn(sen x)

2
p

|sen x|
exp
�

1
4sen x

�

+
p

|sen x| exp
�

1
4sen x

�

1
4

�

− cos x
sen2x

�

=

= exp
�

1
4sen x

�

�

cos x sgn(sen x)

2
p

|sen x|
− 1

4
cos x
|sen x|3/2

�

=

= exp
�

1
4sen x

� 2cos x|sen x| sgn(sen x)− cos x
4|sen x|3/2

= exp
�

1
4sen x

� cos x (2sen x − 1)
4|sen x|3/2

.

Si ha f ′(x) ≥ 0 se e solo se cos x (2sen x − 1) ≥ 0 . Considerando x ∈ [−π,π] , ri-
sulta sen x = 1/2 per x =π/6 e per x = 5π/6 , da ciò segue che si ha sen x > 1/2 per
x ∈ ]π/6,5π/6[ . Il segno di f ′ è quindi rappresentato dal seguente schema:

−π − π2 0 π
6

π
2

5
6 π π

2sen x − 1 − − − − − − − − − − − + + + + + + −
cos x − − − − − + + + + + + + + + − − − −
f ′(x) + + + + + − − − − − − + + + − − − +

Pertanto f è crescente in ]−π,−π/2] , in [π/6,π/2] e in [5π/6,π[ ed è decrescente
in [−π/2,0[ , in ]0,π/6] e in [π/2,5π/6] . Inoltre −π/2 e π/2 sono punti di massimo
locale e π/6 e 5π/6 sono punti di minimo locale. In tali punti si ha

f
�

− π
2

�

=

√

√

√

�

�

�

�

sen
�

− π
2

�
�

�

�

�

exp
�

1
4sen(−π/2)

�

=
p

|−1| exp
�

1
−4

�

= e−1/4 ,

f
�

π

6

�

=

√

√

√

�

�

�

�

sen
�

π

6

�
�

�

�

�

exp
�

1
4sen(π/6)

�

=

√

√

√

�

�

�

�

1
2

�

�

�

�

exp
�

1
2

�

=
e1/2

p
2

,

f
�

π

2

�

=

√

√

√

�

�

�

�

sen
�

π

2

�
�

�

�

�

exp
�

1
4sen(π/2)

�

=
p

|1| exp
�

1
4

�

= e1/4 ,

f
�

5
6
π
�

=

√

√

√

�

�

�

�

sen
�

5
6
π
�
�

�

�

�

exp
�

1
4sen(5π/6)

�

=

√

√

√

�

�

�

�

1
2

�

�

�

�

exp
�

1
2

�

=
e1/2

p
2

.

Poiché f (x) ha limite reale per x→−π+ e per x→ 0− , è utile calcolare i corrispon-
denti limiti della derivata. Ponendo y = 1/(4sen x) , si ha

lim
x→0−

f ′(x) = lim
x→0−

1
4|sen x|3/2

exp
�

1
4sen x

�

�

cos x (2sen x − 1)
�

=

=− lim
y→−∞

1
4|1/4y|3/2

e y =− lim
y→−∞

2|y|3/2e y = 0 .



72 Capitolo 1. Funzioni

lim
x→−π+

f ′(x) = lim
x→−π+

1
4|sen x|3/2

exp
�

1
4sen x

�

�

cos x (2sen x − 1)
�

=

= lim
y→−∞

1
4|1/4y|3/2

e y = lim
y→−∞

2|y|3/2e y = 0 .

Pertanto il grafico di f è, approssimativamente, il seguente.

x =π

�

− π2 , e−1/4
�

�

π
6 , e1/2
p

2

�

�π
2 , e1/4
�

�

5
6 π, e1/2

p
2

�

28)
a.

�

π
4 , 1

2

� �

3
4 π, 1

2

�

�

− 3
4 π,− 1

2

� �

− π4 ,− 1
2

�

�

π
2 ,
p

2
2 + 1
�

�

− 2
3 π,− 1

4

�

�

− π2 ,
p

2
2 − 1
�

�

− π3 ,− 1
4

�
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b.

x =π

x =−π

π
6

�π
2 , 1
�

5
6 π

�

− 5
6 π,−8
�

�

− π2 ,−9
�

�

− π6 ,−8
�

c.

x =πx =−π

−π+ arcsen 1p
6
−arcsen 1p

6

�π
6 , 4
�

�π
2 , 5
�

�

5
6 π, 4
�

�

− π2 , 5
�

d.

x =πx =− π6x =− 5
6 π

�π
6 , 2
�

�

π
2 , 4p

3

�

�

5
6 π, 2
��

− π2 , 2
�
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29) Il dominio naturale di f è costituito dagli x ∈R tali che x4− 1≥ 0 , quindi

D( f ) = ]−∞,−1]∪ [1,+∞[ .

Poiché nella formula che definisce f la variabile x è sempre elevata alla quarta, possia-
mo semplificare i calcoli considerando una nuova funzione rispetto alla variabile y = x4 .
Al variare di x in ]−∞,−1] ∪ [1,+∞[ , la nuova variabile y varia in [1,+∞[ , quindi
determiniamo l’immagine della funzione

g : [1,+∞[→R , g (y) = y2− 10
3
(y − 1)3/2 .

Poiché il dominio è un intervallo e g è continua, l’immagine è un intervallo. Per determi-
narlo cerchiamo gli estremi di g .

Si ha

lim
y→+∞

g (y) = lim
y→+∞

y2
�

1− 10
3
(y − 1)3/2

y2

�

= lim
y→+∞

y2(1+ o(1)) = +∞ ;

pertanto sup g =+∞ .
Dobbiamo determinare inf g e stabilire se appartiene all’immagine. Fissiamo M ∈R

maggiore di inf g ; poiché limy→+∞ g (y) = +∞ , esiste K > 1 tale che, se y ∈ ]K ,+∞[ ,
allora g (y)>M . Si ha

inf g =min
�

inf g
�

[1,K]
�

, inf g
�

]K ,+∞[
�	

,

ma inf g
�

]K ,+∞[
�

≥ M > inf g , quindi inf g = inf g
�

[1,K]
�

. Poiché g è continua e
[1,K] è compatto, per il teorema di Weierstrass g ha minimo in tale insieme; tale minimo
è evidentemente il minimo di g in tutto il dominio.

Il minimo (assoluto) di g è anche minimo locale e ovviamente è il più piccolo tra tutti
i minimi locali. Per determinarlo è quindi sufficiente individuare tutti i punti di minimo
locale e determinare il più piccolo tra i valori assunti da g in tali punti. Il teorema di Fer-
mat consente di individuare i possibili estremanti locali, è necessario un ulteriore studio
per distinguere tra di essi i punti di minimo, ma tale studio non è necessario per trovare il
minimo assoluto della funzione. Infatti se B è un sottoinsieme di Im(g ) a cui appartiene
min g , allora minB = min g , quindi ci basta conoscere un sottoinsieme di Im(g ) conte-
nente min g . Un sottoinsieme che ha tale proprietà è l’insieme dei minimi locali, ma anche
l’insieme degli estremi locali; per il teorema di Fermat tale insieme è incluso nell’insieme
costituito dai valori che g assume nei punti che non sono interni a D(g ) , nei punti di non
derivabilità e nei punti in cui g ′ si annulla.

La funzione g è derivabile, quindi se

B = {g (1)} ∪
�

g (y) ∈ ]1,+∞[
�

� g ′(y) = 0
	

,

allora, per i ragionamenti precedenti, min g =minB .
Determiniamo gli zeri di g ′ . Per y ∈ [1,+∞[ si ha

g ′(y) = 2y − 5(y − 1)1/2 .

Si ha g ′(y) = 0 se e solo se 2y = 5(y − 1)1/2 . Poiché entrambi i membri sono non nega-
tivi, questa equazione equivale a 4y2 = 25(y − 1) , cioè 4y2 − 25y + 25 = 0 . Il trinomio
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4y2− 25y + 25 si annulla per

y =
25±
p

252− 4 · 4 · 25
2 · 4

=
25±
p

225
8

=
25± 15

8
=







5
4

,

5 .

Pertanto possono essere estremanti locali per g solo i punti 1 , 5/4 e 5 . Si ha

g (1) = 1 ,

g
�

5
4

�

=
�

5
4

�2

− 10
3

�

5
4
− 1
�3/2

=
25
16
− 10

3
1
8
=

55
48

,

g (5) = 52− 10
3
(5− 1)3/2 = 25− 10

3
8=− 5

3
.

Quindi

min g =min
�

g (1), g
�

5
4

�

, g (5)
�

=min
§

1,
55
48

,− 5
3

ª

=− 5
3

.

Pertanto

Im(g ) =
�

− 5
3

,+∞
�

.

30) Il dominio naturale di f è costituito dagli x reali diversi da 0 per cui è non negativo
l’argomento di ciascuna delle due radici, cioè x ∈R∗ deve verificare

¨

x2+ 5x + 4≥ 0 ,

x2− 10x + 16≥ 0 .

Il trinomio x2+ 5x + 4 si annulla per

x =
−5±
p

52− 4 · 4
2

=
−5± 3

2
=
�−4 ,
−1 .

Il trinomio x2− 10x + 16 si annulla per

x = 5±
p

52− 16= 5± 3=
�2 ,

8 .

Pertanto le soluzioni del sistema risultano dal seguente schema.

−4 −1 2 8

x2+ 5x + 4≥ 0

x2− 10x + 16≥ 0

sistema

Quindi
D( f ) = ]−∞,−4]∪ [−1,0[∪ ]0,2]∪ [8,+∞[ .

Pertanto
Im( f ) = f
�

]−∞,−4]
�

∪ f
�

[−1,0[
�

∪ f
�

]0,2]
�

∪ f
�

[8,+∞[
�

.
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Poiché f è continua, per il teorema dei valori intermedi, ognuno degli insiemi di cui si fa
l’unione è un intervallo. Per determinarli occorre trovarne estremo inferiore ed estremo su-
periore, e stabilire se essi appartengono all’immagine; a tal fine studiamo la monotonia di f
mediante il segno della derivata. Se x ∈R∗ non annulla l’argomento di una delle due radici,
allora f è derivabile in x . Quindi per x ∈ ]−∞,−4[∪ ]−1,0[∪ ]0,2[∪ ]8,+∞[ si ha

f ′(x) =

=
�

�

2x + 5
p

x2+ 5x + 4
− x − 5
p

x2− 10x + 16

�

x −
�

2
p

x2+ 5x + 4−
p

x2− 10x + 16
�

�

1
x2
=

=
�

x(2x + 5)
p

x2− 10x + 16− x(x − 5)
p

x2+ 5x + 4−

− 2(x2+ 5x + 4)
p

x2− 10x + 16+(x2− 10x + 16)
p

x2+ 5x + 4
�

×

× 1

x2
p

x2+ 5x + 4
p

x2− 10x + 16
=

=
(−5x − 8)

p
x2− 10x + 16+(−5x + 16)

p
x2+ 5x + 4

x2
p

x2+ 5x + 4
p

x2− 10x + 32
.

Il denominatore è sempre positivo, quindi il segno di f coincide con il segno del numera-
tore.

Se −5x − 8 > 0 e −5x + 16 > 0 , allora tale numeratore è positivo. La disequa-
zione −5x − 8 > 0 è verificata per x < −8/5 , mentre −5x + 16 > 0 è verificata per
x < 16/5 , pertanto per x ∈ ]−∞,−4[ si ha f ′(x)> 0 ; quindi f è strettamente crescente
in ]−∞,−4] .

Se x > 16/5 allora −5x − 8 < 0 e −5x + 16 < 0 , quindi il numeratore è negati-
vo. Pertanto per x ∈ ]8,+∞[ si ha f ′(x) < 0 ; quindi f è strettamente decrescente
in [8,+∞[ .

Consideriamo infine il caso −8/5 < x < 16/5 , cioè, x ∈ [−1,0[∪ ]0,2] , perché deve
essere anche x ∈D( f ) . Si ha −5x − 8< 0 e −5x + 16> 0 . La disequazione

(−5x − 8)
p

x2− 10x + 16+(−5x + 16)
p

x2+ 5x + 4> 0
equivale a

(5x + 8)
p

x2− 10x + 16< (−5x + 16)
p

x2+ 5x + 4 .

Poiché entrambi i membri sono non negativi, questa equivale a

(5x + 8)2(x2− 10x + 16)< (−5x + 16)2(x2+ 5x + 4) ,
cioè

(25x2+ 80x + 64)(x2− 10x + 16)< (25x2− 160x + 256)(x2+ 5x + 4) ,

25x4− 250x3+ 400x2+ 80x3− 800x2+ 1280x + 64x2− 640x + 1024<

< 25x4+ 125x3+ 100x2− 160x3− 800x2− 640x + 256x2+ 1280x + 1024 ,

135x3− 108x2 > 0 .

Questa disequazione è verificata per x > 108/135= 4/5 ; quindi, per x ∈ ]−1,0[∪ ]0,4/5[ ,
si ha f ′(x) < 0 , mentre per x ∈ ]4/5,2[ si ha f ′(x) > 0 . Perciò f è strettamente
decrescente in [−1,0[ e in ]0,4/5] ed è strettamente crescente in [4/5,2] .
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Poiché f è strettamente crescente in ]−∞,−4] , in tale intervallo non ha minimo e ha
massimo e si ha

f
�

]−∞,−4]
�

=
�

inf f
�

]−∞,−4]
�

,max f
�

]−∞,−4]
�

�

=
i

lim
x→−∞

f (x), f (−4)
i

.

Si ha

f (−4) =
2
p

16− 20+ 4−
p

16+ 40+ 16
−4

=
3
p

2

e per x→−∞ risulta

f (x) =
2|x|
p

1+(5/x)+ (4/x2)− |x|
p

1− (10/x)+ (16/x2)
x

=

=
|x|
x

�

�

2+ o(1)
�

−
�

1+ o(1)
�

�

→−1 .

Pertanto

f
�

]−∞,−2]
�

=
�

−1,
3
p

2

�

.

Poiché f è strettamente decrescente in [−1,0[ , in tale intervallo non ha minimo e ha
massimo e risulta

f
�

[−1,0[
�

=
�

inf f
�

[−1,0[
�

,max f
�

[−1,0[
�

�

=
i

lim
x→0−

f (x), f (−1)
i

.

Si ha

f (−1) =
p

1− 5+ 4−
p

1+ 10+ 16
−1

= 3
p

3

e per x→ 0 risulta

f (x) =
4(x2+ 5x + 4)− (x2− 10x + 16)

x
�

2
p

x2+ 5x + 4+
p

x2− 10x + 16
�
=

3x2+ 30x

x
�p

x2+ 5x + 4+
p

x2− 10x + 16
�
=

=
3x + 30

2
p

x2+ 5x + 4+
p

x2− 10x + 16
→ 30

8
=

15
4

.

Pertanto

f
�

[−1,0[
�

=
�

15
4

,3
p

3
�

.

La funzione f non è monotona in ]0,2] , pertanto per conoscere f
�

]0,2]
�

non è suffi-
ciente studiare il comportamento di f negli estremi dell’intervallo. Sappiamo però che f
è strettamente decrescente in ]0,4/5] e strettamente crescente in [4/5,2] , pertanto

f
�

]0,2]
�

= f
�

�

0,
4
5

�

�

∪ f
�

�

4
5

,2
�

�

=
�

f
�

4
5

�

, lim
x→0+

f (x)
�

∪
�

f
�

4
5

�

, f (2)
�

.

Si ha

f
�

4
5

�

=
2
p

16/25+ 5 · 4/5+ 4−
p

16/25− 10 · 4/5+ 16
4/5

=
5
4

�

2

p
216
p

25
−
p

216
p

25

�

=
3
p

3
p

2
,
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f (2) =
2
p

4+ 10+ 4−
p

4− 20+ 16
2

= 3
p

2 ;

inoltre, calcolando limx→0− f (x) abbiamo in realtà calcolato il limite bilatero, quindi si ha
limx→0− f (x) = limx→0 f (x) = 15/4 . Pertanto

f
�

]0,2]
�

=
�

3
p

3
p

2
,
15
4

�

∪
�

3
p

3
p

2
,3
p

2

�

.

Poiché f è strettamente decrescente in [8,+∞[ , in tale intervallo non ha minimo e
ha massimo e si ha

f
�

[8,+∞[
�

=
�

inf f
�

[8,+∞[
�

,max f
�

[8,+∞[
�

�

=
i

lim
x→+∞

f (x), f (8)
i

.

Si ha

f (8) =
2
p

64+ 40+ 4−
p

64− 80+ 16
8

=
3
p

3
2

e per x→+∞ risulta

f (x) =
2|x|
p

1+(5/x)+ (4/x2)− |x|
p

1− (10/x)+ (16/x2)
x

=

=
|x|
x

�

�

2+ o(1)
�

−
�

1+ o(1)
�

�

→ 1 .

Pertanto

f
�

[8,+∞[
�

=
�

1,
3
p

3
2

�

.

Si ha quindi

Im( f ) =
�

−1,
3
p

2

�

∪
�

15
4

,3
p

3
�

∪
�

3
p

3
p

2
,
15
4

�

∪
�

3
p

3
p

2
,3
p

2
�

∪
�

1,
3
p

3
2

�

.

Per determinare questa unione, osserviamo anzitutto che si ha

−1< 1<
3
p

2
<

3
p

3
2
<

3
p

3
p

2
<

15
4
< 3
p

2< 3
p

3 ,

come si verifica facilmente, confrontando eventualmente i quadrati di tali numeri. Risulta
quindi

−1 1 3p
2

3
p

3
2

3
p

3p
2

15
4 3
p

2 3
p

3
�

−1,3
p

2
�

�

15/4,3
p

3
�

�

3
p

3/
p

2,15/4
�

�

3
p

3/
p

2,6
p

2
�

�

1,3
p

3/2
�

unione
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Pertanto

Im( f ) =
�

−1,
3
p

3
2

�

∪
�

3
p

3
p

2
,3
p

3
�

.

Osserviamo che nel determinare l’unione occorre prestare attenzione agli estremi de-
gli intervalli che si uniscono. In particolare 15/4 appartiene a Im( f ) perché appartiene
a
�

3
p

3/
p

2,3
p

2
�

.

31) Poiché le funzione coseno è periodica di periodo 2π , anche f è periodica con lo
stesso periodo. Inoltre la funzione coseno è pari, pertanto anche f è pari. Perciò l’im-
magine di f coincide con l’immagine della restrizione di f all’intersezione del dominio
con [0,π] .

Determiniamo tale intersezione. Il dominio di f è costituito dagli x ∈R tali che risulta
cos x + 1/2≥ 0 e 1/2− cos x ≥ 0 , cioè

−1
2
≤ cos x ≤ 1

2
.

Si ha arccos(−1/2) = 2π/3 , arccos(1/2) = π/3 e la funzione coseno è decrescente in
[0,π] , quindi risulta

D( f )∩ [0,π] =
�

π

3
,
2
3
π
�

.

Poiché f è continua, f
�

[π/3,2π/3]
�

è un intervallo, per il teorema dei valori inter-
medi, e ha massimo e minimo, per il teorema di Weierstrass. Per determinare l’immagine
di f è quindi sufficiente trovarne il minimo e il massimo assoluti; per questo cerchiamo
anzitutto gli estremanti locali.

La funzione f è derivabile in x se x non annulla gli argomenti delle radici che de-
finiscono f , per quanto visto sopra questo avviene solo negli estremi di D( f ) ∩ [0,π] ,
pertanto nei punti interni di tale intervallo f è derivabile. Per il teorema di Fermat posso-
no essere estremanti locali per f solo gli estremi dell’intervallo e i punti interni a derivata
nulla. Per x ∈ ]π/3,2π/3[ si ha

f ′(x) =
− sen x

2
p

cos x + 1/2
+

2sen x

2
p

1/2− cos x
= sen x
�

1
p

1/2− cos x
− 1

2
p

cos x + 1/2

�

.

Poiché sen x 6= 0 per x ∈ ]π/3,2π/3[ , si ha f ′(x) = 0 se e solo se

1
p

1/2− cos x
− 1

2
p

cos x + 1/2
= 0 ,

cioè 1/2− cos x = 4cos x + 2 , quindi cos x =−3/10 , perciò x = arccos(−3/10) . Risulta

f
�

π

3

�

=
s

1
2
+

1
2
+ 2

s

1
2
− 1

2
= 1 ,

f
�

arccos
�

− 3
10

�

�

=
s

− 3
10
+

1
2
+ 2

s

1
2
+

3
10
=
s

1
5
+ 2

s

4
5
=
p

5 ,

f
�

2
3
π
�

=
s

− 1
2
+

1
2
+ 2

s

1
2
+

1
2
= 2 .
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Pertanto gli estremi locali di f sono 1 ,
p

5 e 2 . Il minimo e il massimo assoluto di f
sono tra questi valori. Poiché 1< 2<

p
5 , il minimo di f è 1 , mentre il massimo è

p
5 .

Quindi

Im( f ) = f
�

�

π

3
,
2
3
π
�

�

=
�

1,
p

5
�

.

32)

a.
�

−∞,−7arcsen
�

1
3

�

+ 2
p

2
�

∪

∪
�

7
6
π+ 4
p

3,+∞
�

b. ]−∞,−3π[∪ ]3π,+∞[

c.
�

−
p

3
2

,+∞
�

d.
�

−∞,
�

1−
p

5
�

exp
�
p

5+1
�

�

∪ [2,+∞[

e.
�

−∞,
p

5
�

f.
�

−∞,
1
2

�

∪ ]1,+∞[

g.
�

−∞,− 1
2

�

∪
�

3−
p

6,+∞
�

h.
�

−∞,
1
3

�

∪ [3,+∞[

33) Il dominio naturale di f è costituito dagli x che rendono positivi gli argomenti della
funzione logaritmo, quindi deve essere essere x > 0 e |x−4|> 0 ; la seconda disuguaglianza
è soddisfatta se e solo se x 6= 4 . Pertanto

D( f ) = ]0,4[∪ ]4,+∞[ .

La funzione f è continua, perché somma di funzioni continue, ed è derivabile in tutti
i punti del dominio per cui non si annullano gli argomenti della funzione valore assoluto,
cioè è derivabile in D( f ) \ {2,4}=D( f ) \ {2} . Per x in tale insieme risulta

f ′(x) =
1
x
+

1
|x − 4|

sgn(x − 4)− sgn(2− x) =
1
x
+

1
x − 4
− sgn(2− x) =

=
x − 4+ x − x(x − 4) sgn(2− x)

x(x − 4)
=

2x − 4− (x2− 4x) sgn(2− x)
x(x − 4)

.

Studiamo il segno di f ′ .
Se x ∈D( f ′)∩ ]−∞, 2[ = ]0,2[ allora è sgn(2− x) = 1 , quindi si ha

f ′(x) =
2x − 4− (x2− 4x)

x(x − 4)
=
−x2+ 6x − 4

x(x − 4)
.

Il numeratore si annulla per

x = 3±
p

(−3)2− 4= 3±
p

5 ,
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quindi è positivo in
�

3−
p

5,3+
p

5
�

e negativo in
�

−∞, 3−
p

5
�

∪
�

3+
p

5,+∞
�

. Il
segno di f ′ risulta dal seguente schema

0 3−
p

5 2

−x2+ 16x − 4 − − − − − − − − + + + + + + + + + + + + +
x + + + + + + + + + + + + + + + + + + + + +

x − 4 − − − − − − − − − − − − − − − − − − − − −
f ′(x) + + + + + + + + − − − − − − − − − − − − −

Se invece x ∈ D( f ′)∩ ]2,+∞[ = ]2,4[∪ ]4,+∞[ allora, è sgn(2− x) =−1 , quindi si
ha

f ′(x) =
2x − 4+(x2− 4x)

x(x − 4)
=

x2− 2x − 4
x(x − 4)

.

Il numeratore si annulla per

x = 1±
p

(−1)2− (−4) = 1±
p

5 ,

quindi è positivo in
�

−∞, 1−
p

5
�

∪
�

1+
p

5,+∞
�

e negativo in
�

1−
p

5,1+
p

5
�

. Il
segno di f ′ risulta dal seguente schema

2 1+
p

5 4

x2− 2x − 4 − − − − − − − − + + + + + + + + + + + +

x + + + + + + + + + + + + + + + + + + + +

x − 4 − − − − − − − − − − − − − + + + + + + +
f ′(x) + + + + + + + + − − − − − + + + + + + +

Quindi negli intervalli
�

0,3−
p

5
�

,
�

2,1+
p

5
�

e ]4,+∞[ f è strettamente crescente,
e negli intervalli

�

3−
p

5,2
�

e
�

3−
p

5,4
�

è strettamente decrescente. Per stabilire in quali
di questi intervalli f si annulla, studiamo il comportamento negli estremi di tali intervalli.

lim
x→0+

f (x) = lim
x→0+

�

log x + log(4− x)+ 2− x
�

=−∞ ,

f
�

3−
p

5
�

= log
�

3−
p

5
�

+ log
�

�3−
p

5− 4
�

�+
�

�2− 3+
p

5
�

�=

= log
��

3−
p

5
��

1+
p

5
��

+
p

5− 1= log
�

2
p

5− 2
�

+
p

5− 1 ,

f (2) = log2+ log|2− 4|+ |2− 2|= log4 ,

f
�

1+
p

5
�

= log
�

1+
p

5
�

+ log
�

�1+
p

5− 4
�

�+
�

�2− 1−
p

5
�

�=

= log
��

1+
p

5
��

3−
p

5
��

+
p

5− 1= log
�

2
p

5− 2
�

+
p

5− 1 ,

lim
x→4

f (x) = lim
x→4

�

log x + log|x − 4|+ x − 2
�

=−∞ ,

lim
x→+∞

f (x) = lim
x→+∞

�

log x + log(x − 4)+ x − 2
�

=+∞ .

Si ha limx→0+ f (x)< 0 e f
�

3−
p

5
�

> 0 , quindi f assume sia valori positivi che valori
negativi in
�

0,3−
p

5
�

, poiché è continua, per il teorema di Bolzano, essa si annulla in
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�

0,3−
p

5
�

. Poiché è strettamente monotona si annulla solo una volta. Un ragionamento
analogo vale per gli intervalli

�

1+
p

5,4
�

e ]4,+∞[ .
La funzione f è strettamente decrescente in

�

3−
p

5,2
�

, quindi assume valori maggiori
o uguali a f (2) in tale intervallo; poiché f (2)> 0 , f è positiva.

Analogamente in
�

2,1+
p

5
�

f è strettamente crescente, quindi assume valori maggiori
o uguali a f (2) , perciò f è positiva.

Quindi f si annulla in 3 punti, uno in ciascuno degli intervalli
�

0,3−
p

5
�

,
�

1+
p

5,4
�

e ]4,+∞[ .

34) Affinché x appartenga al dominio naturale di f debbono essere soddisfatte le seguen-
ti condizioni:

x 6= 0 ,

1
x
∈D(arcsen) = [−1,1] ,

x2− 1≥ 0 .

Per x 6= 0 si ha 1/x ∈ [−1,1] se e solo se x ∈ ]−∞,−1] ∪ [1,+∞[ . La condizione
x2− 1≥ 0 è anch’essa soddisfatta se e solo se x ∈ ]−∞,−1]∪ [1,+∞[ , quindi

D( f ) = ]−∞,−1]∪ [1,+∞[ .

La funzione f è continua perché somma di composizione di funzioni continue ed è
derivabile in tutti i punti del dominio tali che l’argomento della funzione arcoseno è diverso
sia da 1 che da −1 e l’argomento della radice quadrata è diverso da 0 . Deve quindi essere
1/x 6= ±1 e x2 − 1 6= 0 , cioè x 6= ±1 . Pertanto f è derivabile in ]−∞,−1[∪ ]1,+∞[ ;
per x in tale insieme si ha:

f ′(x) = 2
1
p

1− (1/x)2

�

− 1
x2

�

+
2x

2
p

x2− 1
=− 2
p

(x2− 1)/x2

1
x2
+

x
p

x2− 1
=

=−
2|x|

x2
p

x2− 1
+

x
p

x2− 1
=
−2+ x |x|
|x|
p

x2− 1
.

Per x ∈ ]−∞,−1[∪ ]1,+∞[ si ha f ′(x) = 0 se e solo se −2+ x |x|= 0 . In particolare se
x ∈ ]−∞,−1[ allora |x| = −x e quindi −2+ x |x| = −2− x2 che è sempre diverso da 0 ,
mentre se x ∈ ]1,+∞[ allora |x| = x e quindi −2+ x |x| = −2+ x2 che si annulla per
x =
p

2 (oltre a x =−
p

2 che non appartiene a ]1,+∞[ ). Pertanto, con l’esclusione dei
punti −1 e 1 in cui non abbiamo studiato la derivabilità di f , f ′(x) = 0 se e solo x =

p
2 .

Studiamo il comportamento di f negli estremi degli intervalli che costituiscono il suo
dominio e in

p
2 .

lim
x→−∞

f (x) = lim
x→−∞

�

2arcsen
�

1
x

�

+
p

x2− 1− 2
�

=+∞ ,

f (−1) = 2arcsen
�

1
−1

�

+
p

(−1)2− 1− 2= 2
�

− π
2

�

+ 0− 2=−π− 2 ,
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f (1) = 2arcsen
�

1
1

�

+
p

12− 1− 2= 2
π

2
+ 0− 2=π− 2 ,

f
�
p

2
�

= 2arcsen
�

1
p

2

�

+
Ç

�
p

2
�2− 1− 2= 2

π

4
+ 1− 2=

π

2
− 1 ,

lim
x→+∞

f (x) = lim
x→−∞

�

2arcsen
�

1
x

�

+
p

x2− 1− 2
�

=+∞ .

Quindi D( f ) è l’unione degli intervalli ]−∞,−1] ,
�

1,
p

2
�

e
�p

2,+∞
�

e nell’in-
terno di ciascuno di essi f è derivabile con derivata non nulla. In particolare, poiché
limx→−∞ f (x)> 0 e f (−1)< 0 , la funzione f si annulla una volta in ]−∞,−1[ , mentre
si ha f (1) > 0 , f

�p
2
�

> 0 e limx→+∞ f (x) > 0 , quindi f non si annulla né in
�

1,
p

2
�

né in
�p

2,+∞
�

.
Pertanto f si annulla in un punto che appartiene all’intervallo ]−∞,−1[ .

35) Il dominio naturale di f è costituito dagli x reali tali che il denominatore dell’ar-
gomento dell’esponenziale è non nullo, cioè x2 − 4 6= 0 , che equivale a x 6= −2 e x 6= 2 .
Pertanto

D( f ) = ]−∞,−2[∪ ]−2,2,∪[]2,+∞[ .

La funzione f è derivabile e, per x ∈D( f ) , si ha

f ′(x) = exp
�

2x − 2
x2− 4

�

+(x + 2)exp
�

2x − 2
x2− 4

�2(x2− 4)− (2x − 2)2x
(x2− 4)2

=

=
�

1+(x + 2)
−2x2+ 4x − 8
(x + 2)2(x − 2)2

�

exp
�

2x − 2
x2− 4

�

=

=
(x + 2)(x − 2)2− 2x2+ 4x − 8

(x + 2)(x − 2)2
exp
�

2x − 2
x2− 4

�

=

=
x3− 2x2− 4x + 8− 2x2+ 4x − 8

(x + 2)(x − 2)2
exp
�

2x − 2
x2− 4

�

=
x3− 4x2

(x + 2)(x − 2)2
exp
�

2x − 2
x2− 4

�

,

quindi f ′(x) = 0 se e solo se x = 0 o x = 4 . Inoltre il segno di f ′ risulta dal seguente
schema

−2 0 2 4

x − 4 − − − − − − − − − − − − − − − − + + + +
x + 2 − − − − + + + + + + + + + + + + + + + +

f ′(x) + + + + − − − − − − − − − − − − + + + +

Si ha

f (0) = 2exp
�−2
−4

�

− 3e1/2 =−e1/2 ,

f (4) = 6exp
�

6
12

�

− 3e1/2 = 3e1/2 .
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I limiti di f negli estremi degli intervalli che costituiscono il suo dominio si calcola-
no facilmente studiando il segno dell’argomento dell’esponenziale e ricordando che in una
forma indeterminata del tipo 0 ·∞ se la funzione convergente a 0 è di tipo polinomiale e
quella divergente è un esponenziale, allora il prodotto è divergente. Quindi risulta

lim
x→−∞

f (x) =−∞ , lim
x→−2−

f (x) =−e3/2 , lim
x→−2+

f (x) = +∞ ,

lim
x→2−

f (x) =−e3/2 , lim
x→2+

f (x) = +∞ , lim
x→+∞

f (x) = +∞ .

Nell’intervallo ]−∞,−2[ la funzione f è derivabile con derivata positiva, quindi stret-
tamente crescente, pertanto per x in tale intervallo sia ha f (x)< limx→−2− f (x)< 0 , quin-
di f non si annulla. Si ha limx→−2+ f (x) > 0 e f (0) < 0 ; per il teorema di Bolzano f si
annulla almeno una volta nell’intervallo ]−2,0[ ; poiché f è derivabile con derivata ne-
gativa in tale intervallo, è strettamente decrescente, quindi si annulla una volta sola. In
]0,2[ la funzione f è derivabile con derivata negativa, quindi per x in tale intervallo si ha
f (x) < f (0) < 0 , pertanto f non si annulla. Nell’intervallo ]2,4[ si ha f ′(x) < 0 , men-
tre nell’intervallo ]4,+∞[ si ha f ′(x) > 0 , pertanto in ]2,+∞[ si ha f (x) ≥ f (4) > 0 ,
pertanto f non si annulla in tale intervallo.

Quindi f si annulla in un solo punto che appartiene all’intervallo ]−2,0[ .

36)
a. f non si annulla

b. f si annulla in 3 punti, uno in ognuno degli intervalli
�

−∞,− 2
p

5
5

�

,
�

− 2
p

5
5

,
2
p

5
5

�

,
�

2
p

5
5

,+∞
�

c. f si annulla in 2 punti, uno dei quali è 2 e l’altro appartiene all’intervallo ]−2,1[

d. f si annulla in 2 punti, uno in ognuno degli intervalli ]−1,0[ e ]0,1[

e. f si annulla in un punto che appartiene all’intervallo
�

−
p

5,2
�

f. f si annulla in un punto che appartiene all’intervallo ]−∞,−1[

g. f si annulla in 4 punti, uno in ognuno degli intervalli ]−∞,−1[ , ]−1,0[ , ]0,1[ e
]1,+∞[

h. f si annulla in un punto che appartiene all’intervallo
�

− 1
2

,1
�
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Numeri complessi

2.1 Esercizi

Forma algebrica

La forma algebrica di un numero complesso z è la forma Re z + i Im z , o, equivalen-
temente, a+ i b , con a, b ∈R .

Scrivere in forma algebrica la somma o il prodotto di numeri complessi espressi in forma
algebrica non presenta alcuna difficoltà. Non presenta difficoltà neppure scrivere in forma
algebrica il quoziente di un numero complesso con un numero reale, perché se z ∈ C e
c ∈R , allora Re(z/c) = (Re z)/c e Im(z/c) = (Im z)/c . Non è invece immediato scrivere
in forma algebrica il quoziente di due numeri complessi, quando il divisore non è reale;
per fare questo occorre ricondursi al caso in cui il divisore è reale. A tal fine è sufficiente
moltiplicare i due numeri complessi di cui si fa la divisione per il complesso coniugato del
divisore. In questo modo il divisore diventa il prodotto di un numero complesso per il suo
coniugato, che è il quadrato del modulo e quindi è reale.

2.1.1 Esempio. Determiniamo la forma algebrica del numero complesso

1+ i
1− 2i

.

Si ha

1+ i
1− 2i

=
(1+ i)(1+ 2i)
(1− 2i)(1+ 2i)

=
1+ i + 2i − 2

12− (2i)2
=
−1+ 3i

5
=− 1

5
+ i

3
5

.

2.1.2 Esempio. Determiniamo la forma algebrica del numero complesso

p
3+ 2i

−2+ i
p

3
.

Si ha

p
3+ 2i

−2+ i
p

3
=

�p
3+ 2i
��

−2− i
p

3
�

�

−2+ i
p

3
��

−2− i
p

3
�
=
−2
p

3− 4i − 3i + 2
p

3

(−2)2−
�

i
p

3
�2 =

−7i
7
=−i .
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1) Scrivere in forma algebrica il numero complesso

2+ i
3− 2i

− (2+ 3i)2 .

2) Scrivere in forma algebrica i seguenti numeri complessi:

a.
3− i
4− i

b.
2− i
2+ i

c.
4− 3i
(2+ i)2 d.

�

2
p

3+ i
�3

p
3− i

Forma trigonometrica e forma esponenziale

Ogni numero complesso z 6= 0 può essere scritto nella forma

ρ(cosθ+ i sinθ) ,

che è detta forma trigonometrica. In tal caso ρ è il modulo e θ è uno degli argomenti
di z .

Il modulo di z , indicato con |z | , è il numero reale non negativo
p

(Re z)2+(Im z)2 .
Chiamiamo argomento di z ∈C∗ qualunque θ ∈R tale che z = |z |(cosθ+ i senθ) .
Ogni numero complesso z non nullo ha infiniti argomenti. Se θ ∈R è un argomento

di z , allora l’insieme degli argomenti di z è {ϕ ∈ R | ∃k ∈ Z : ϕ = θ+ 2kπ} : sono argo-
mento di z tutti e soli i numeri che si ottengono sommando a θ un multiplo intero di 2π .

La forma trigonometrica è utile calcolare il prodotto di numeri complessi, perché il
prodotto dei moduli è il modulo del prodotto e la somma di argomenti dei fattori è un
argomento del prodotto. In formule

z1 = ρ1(cosθ1+ i senθ1)

z2 = ρ2(cosθ2+ i senθ2)

«

=⇒ z1z2 = ρ1ρ2

�

cos(θ1+θ2)+ i sen(θ1+θ2)
�

.

Immediata conseguenza di questa formula sono la formula per il quoziente di numeri com-
plessi non nulli:

z1 = ρ1(cosθ1+ i senθ1)

z2 = ρ2(cosθ2+ i senθ2)

«

=⇒
z1

z2
=
ρ1

ρ2

�

cos(θ1−θ2)+ i sen(θ1−θ2)
�

,

e la formula di De Moivre relativa alle potenze:

z = ρ(cosθ+ i senθ) =⇒ zn = ρn�cos(nθ)+ i sen(nθ)
�

.

Un argomento del numero complesso non nullo z è:

arctan
�

Im z
Re z

�

, se Re z > 0 ,

arctan
�

Im z
Re z

�

+π , se Re z < 0 ,

π

2
se Re z = 0 e Im z > 0 ,

− π
2

se Re z = 0 e Im z < 0 .
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2.1.3 Esempio. Determiniamo la forma trigonometrica del numero complesso −
p

3+3i .
Si ha

�

�−
p

3+ 3i
�

�=
Ç

�

−
p

3
�2+ 32 =

p
12= 2

p
3 .

Poiché −
p

3+ i ha parte reale negativa, un suo argomento è

arctan

�

Im
�

−
p

3+ 3i
�

Re
�

−
p

3+ 3i
�

�

+π= arctan
�

3

−
p

3

�

+π=−arctan
�
p

3
�

+π=− π
3
+π=

2
3
π .

Pertanto

−
p

3+ 3i = 2
p

3
�

cos
�

2
3
π
�

+ i sen
�

2
3
π
�

�

.

Definiamo l’esponenziale in base e di un numero immaginario puro ponendo, ∀θ ∈R ,

e iθ = cosθ+ i senθ .

Questa notazione consente di scrivere in modo più compatto la forma trigonometrica
di un numero complesso non nullo. Il numero complesso di modulo ρ e argomento θ
può essere scritto comeρe iθ , anziché ρ(cosθ+ i senθ) . Questa scrittura è detta forma
esponenziale di un numero complesso.

2.1.4 Esempio. Nell’esempio 2.1.3 abbiamo espresso in forma trigonometrica il numero
complesso −

p
3+ 3i , ottenendo

−
p

3+ 3i = 2
p

3
�

cos
�

2
3
π
�

+ i sen
�

2
3
π
�

�

.

Passando alla forma esponenziale si ha

−
p

3+ 3i = 2
p

3 exp
�

i
2
3
π
�

.

3) Scrivere in forma trigonometrica il numero complesso

−4− 2i .

4) Scrivere in forma trigonometrica il numero complesso

(1− i)5
�

−
p

3+ i
�3 .
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5) Scrivere in forma trigonometrica i seguenti numeri complessi:

a.
p

3− i

b.
1

−1+ i
p

3

c. −1− 3i

d. −1+ 3i

e.
−1+ 2i

4i

f.
�

−
p

3+ i
�7

g. (1+ 4i)5

h. (−1− 2i)6

i.
1− i
�p

3− i
�4

j. (−1+ i)6
�
p

3− i
�3

k.
(1+ i)5
�

1− i
p

3
�3

l.
(1+ 2i)(1+ i)8

(4i)2

Radici n -sime

Per calcolare le radici n -sime di un numero complesso non nullo è utile scriverlo in
forma trigonometrica. Infatti se w = ρ(cosθ + i senθ) , con ρ ∈ R+ e θ ∈ R , allora
l’insieme delle radici n -sime di w è

§

n
p
ρ exp
�

i
θ+ 2kπ

n

�
�

�

�

�

k = 0,1, . . . , n− 1
ª

.

2.1.5 Esempio. Determiniamo le radici quadrate di −1+ 2i .
Il modulo di −1+2i è

p
5 e un suo argomento è π−arctan2 . Quindi le radici quadrate

di −1+ 2i sono

zk =
4p5
�

cos
�

π− arctan2+ 2kπ
2

�

+ i sen
�

π− arctan2+ 2kπ
2

�

�

, k = 0,1 .

Le due radici quadrate hanno argomenti che differiscono di π , quindi sono una l’opposto
dell’altra, pertanto possiamo scriverle nella forma

± 4p5
�

cos
�

π− arctan2
2

�

+ i sen
�

π− arctan2
2

�

�

.

2.1.6 Esempio. Determiniamo le radici quarte di −16 .
Il modulo di −16 è 16 e un argomento è π . Pertanto le radici quarte sono

zk =
4p

16
�

cos
�

π+ 2kπ
4

�

+ i sen
�

π+ 2kπ
4

�

�

, k = 0,1,2,3 .

È facile determinare esplicitamente seno e coseno degli argomenti dei numeri trovati;
quindi scriviamo tali numeri in forma algebrica.

z0 = 2
�

cos
�

π

4

�

+ i sen
�

π

4

�

�

= 2
�

1
p

2
+ i

1
p

2

�

=
p

2+ i
p

2 ,

z1 = 2
�

cos
�

3
4
π
�

+ i sen
�

3
4
π
�

�

= 2
�

− 1
p

2
+ i

1
p

2

�

=−
p

2+ i
p

2 ,
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z2 = 2
�

cos
�

5
4
π
�

+ i sen
�

5
4
π
�

�

= 2
�

− 1
p

2
− i

1
p

2

�

=−
p

2− i
p

2 ,

z3 = 2
�

cos
�

7
4
π
�

+ i sen
�

7
4
π
�

�

= 2
�

1
p

2
− i

1
p

2

�

=
p

2− i
p

2 .

6) Determinare le radici quadrate e cubiche del numero complesso

−3
p

3+ 9i .

7) Determinare le radici seste del numero complesso

−2− 4i .

8) Determinare le radici quadrate e cubiche dei seguenti numeri complessi:

a. −3 b. −i c. 1− i
p

3 d. 1− i e. −1+ 2i f. 2+ i

Equazioni algebriche

Le equazioni algebriche di primo grado in campo complesso si risolvono come quelle
in campo reale. Infatti, se a ∈C∗ e b ∈C , allora si ha

az + b = 0 ⇐⇒ z =− b
a

.

2.1.7 Esempio. Risolviamo l’equazione

(1+ i)z + 2− i = 0 .

Si ha (1+ i)z =−2+ i , quindi

z =
−2+ i
1+ i

=
(−2+ i)(1− i)
(1+ i)(1− i)

=
−2+ i + 2i + 1

2
=− 1

2
+ i

3
2

.

Per le equazioni algebriche di secondo grado in campo complesso c’è una formula riso-
lutiva simile a quella valida in campo reale. Infatti, se a ∈C∗ e b , c ∈C , allora si ha

4a(az2+ b z + c) = 4a2z2+ 4ab z + 4ac = 4a2z2+ 4ab z + b 2− b 2+ 4ac =

= (2az + b )2− (b 2− 4ac) .

Quindi az2+b z+c = 0 se e solo se 2az+b è una radice quadrata di b 2−4ac . Osserviamo
che b 2−4ac è il discriminante del trinomio az2+b z+c . Se il discriminante è nullo, allora
l’unica soluzione dell’equazione è −b/2a . Se il discriminante è non nullo, indicando con r
una delle radici quadrate complesse di b 2−4ac , deve essere 2az+b =±r , da cui si ottiene
z = (−b ± r )/2a .

La formula è analoga a quella per la soluzione delle equazioni di secondo grado in campo
reale; il calcolo esplicito delle soluzioni richiede in più di determinare le radici quadrate del
discriminante.
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2.1.8 Esempio. Risolviamo l’equazione

i z2+(2− i)z − 1− 7i = 0 .

Il discriminante è

(2− i)2− 4i(−1− 7i) = 4− 4i − 1+ 4i − 28=−25 .

Poiché i2 =−1 , una radice quadrata di −25 è 5i . Pertanto

z =
−2+ i ± 5i

2i
=















−2− 4i
2i

=−2+ i ,

−2+ 6i
2i

= 3+ i .

9) Risolvere la seguente equazione in campo complesso

2z2+
�

2
p

3+ 6i
�

z + 1− i
p

3= 0 .

10) Risolvere la seguente equazione in campo complesso

�

1
z2
− i4
p

3
�3

=
�

1− i3
p

3
�3 .

11) Risolvere la seguente equazione in campo complesso

�

(−1+ i)z − 1− i
z2+ 2i z − 1

�2

= (1+ i)6 .

12) Risolvere le seguenti equazioni in campo complesso:

a. z2+ z + 8= 0

b. z2+ i z − 2= 0

c. z2+ 2z + 1+ 2i = 0

d. (3+ 3i)z2+
p

5 (2− 2i)z + 1+ i = 0

e. 2z2+ 2
�
p

3+ 3i
�

z − 1+ i
p

3= 0

f. z2− i2
p

6 z − i = 0

g. i z2− 4z + 2− 4i = 0

h. z3+ i z = 0

i. z4− 4z2+ 4+ 2i = 0

j. z6− 7z3− 8= 0

k. (z − i)6 =−8

l. (z + 4)6 = (z − 4)6

m.
�

z2+ i2
p

2 z − 1
�2 =−1

n.
� z − i

2z + i

�2

= 8i
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o.
� z2+ 3i z

z2+ 2

�2

= 1

p.
�

z +
1
z

�2

= (1− i)4

q.
�

z2+
p

3
2
− i

1
2

�3

=−i

r.
�

z2+ 2i z − 1
2
+ i
p

3
2

�3

= 1

s.
�

(3+ 3i)z +
1+ i

z

�2

= 5(1+ i)6

t.
�

2i z − 1+ 2i
z

�2

= (6− 2i)2

Esponenziale

Estendiamo la funzione esponenziale in base e al campo complesso, ponendo, ∀z ∈C ,

e z = eRe z e i Im z .

Poiché abbiamo definito e i Im z = cos(Im z)+ i sen(Im z) , si ha

e z = eRe z�cos(Im z)+ i sen(Im z)
�

.

Quindi |e z |= eRe z e un argomento di e z è Im z .
Se z ∈ R , allora z = Re z e Im z = 0 , perciò da questa definizione si riottiene e z in

senso reale.
Anche per l’esponenziale in campo complesso vale la proprietà che l’esponenziale del-

la somma è uguale al prodotto degli esponenziali. Infatti, per le proprietà della forma
trigonometrica, ∀z, w ∈C , si ha

e z ew = eRe z�cos(Im z)+ i sen(Im z)
�

eRe w�cos(Im w)+ i sen(Im w)
�

=

= eRe z+Re w�cos(Im z + Im w)+ i sen(Im z + Im w)
�

=

= eRe(z+w)
�

cos
�

Im(z +w)
�

+ i sen
�

Im(z +w)
�

�

= e z+w .

2.1.9 Esempio. Calcoliamo e2+i . Si ha

e2+i = e2(cos1+ i sen1) .

2.1.10 Esempio. Calcoliamo e iπ/2 . Si ha

e iπ/2 = e0
�

cos
π

2
+ i sen

π

2

�

= i .

13) Scrivere in forma algebrica il numero complesso

exp
�

(2− i)2
�

e3i
.
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14) Scrivere in forma algebrica i seguenti numeri complessi:

a. e−2+3i b. exp
�

(2+ i)3
�

c.
e2+i

e3−2i
d. exp
�

(1− i)6
�

15) Scrivere in forma trigonometrica il numero complesso

(−3+ 4i) e1+i .

16) Scrivere in forma trigonometrica i seguenti numeri complessi:

a. 3e2−4i b.
�

e3−2i �2 c. e (3−2i)2 d. (1− i)e2+i

Logaritmo

In campo reale la funzione esponenziale è iniettiva e la sua inversa è la funzione loga-
ritmo: se y ∈ R+ , l’equazione e x = y ha come unica soluzione x = log y . In campo
complesso invece la funzione esponenziale non è iniettiva, infatti ∀z ∈C , ∀k ∈Z , risulta

e z+i2kπ = eRe z�cos(Im z+ 2kπ)+ i sen(Im z+ 2kπ)
�

= eRe z�cos(Im z)+ i sen(Im z)
�

= e z .

Sia w ∈ C . Cerchiamo z ∈ C , soluzione dell’equazione e z = w . Poiché e z ha una
forma trigonometrica semplice, per risolvere l’equazione uguagliamo modulo e argomenti
dei due membri. Qualunque sia z ∈ C si ha |e z | = eRe z 6= 0 , quindi l’equazione non ha
soluzione se w = 0 . Sia w 6= 0 ; indichiamo con θ ∈ R un argomento di w . Allora
w = |w|(cosθ+ i senθ) e l’equazione e z = w equivale a

eRe z�cos(Im z)+ i sen(Im z)
�

= |w|(cosθ+ i senθ) ,

che è verificata se e solo se eRe z = |w| e cos(Im z)+ i sen(Im z) = cosθ+ i senθ .
Da qui segue Re z = log|w| e Im z = θ+ 2kπ per un k ∈Z .

2.1.11 Esempio. Risolviamo l’equazione

e z =−1 .

Il numero −1 ha modulo 1 e un argomento è π . Pertanto

z = log1+ iπ+ 2xπ= i(2k + 1)π , k ∈Z .

2.1.12 Esempio. Risolviamo l’equazione

e z =−3+ i .

Si ha |3+i |=
p

32+ 12 =
p

10 e un argomento di −3+i è −arctan(1/3)+π . Pertanto

z = log
�
p

10
�

+ i
�

−arctan
1
3
+(2k + 1)π
�

, k ∈Z .

17) Risolvere la seguente equazione in campo complesso:

e1/z =−1− 2i .



2.1. Esercizi 93

18) Risolvere la seguente equazione in campo complesso:

�

e z + i
1
2

�3

= i .

19) Risolvere la seguente equazione in campo complesso:

e i z − 2i e−i z =−
p

2+ i
p

2 .

20) Risolvere le seguenti equazioni in campo complesso:

a. e z =−4i

b. e z =−3+ 2i

c. e i z = 2− 2i

d. e (2+i)z = 1

e. e2z + 6e z + 9+ 2i = 0

f. e i z + 4e−i z =−2

g. e z + e−z = i e−z + i − 2

h.
�

e2z + 4
�2 =
�

i e2z − 4
�2

i. (e−z + 1)3 =−1

j. e i z+(1−i)e−i z−i+2= 0

k. e (1+i)z = 1+ i

l. e4i z +(1− i)e2i z − i = 0

Equazioni non algebriche

Un’equazione in campo complesso nell’incognita z in cui compaiono |z | , Re z o Im z
può talvolta essere risolta scrivendo z in forma algebrica o in forma trigonometrica.

Infatti, scrivendo l’incognita z nella forma x+i y , dove x e y sono due incognite reali,
imponendo che siano uguali parte reale e coefficiente dell’immaginario dei due membri
dell’equazione, si ottiene un sistema di due equazioni reali nelle due incognite reali x e y .

2.1.13 Esempio. Risolviamo l’equazione

2z − 4z + |z |2+ 6i = 0 .

Posto z = x + i y , con x, y ∈R , l’equazione diventa, successivamente,

2(x + i y)− 4(x − i y)+ (x2+ y2)+ 6i = 0 ,

−2x + 6i y + x2+ y2+ 6i = 0 .

Imponendo che siano nulli parte reale e coefficiente dell’immaginario del primo membro
otteniamo il seguente sistema in R .

¨

−2x + x2+ y2 = 0 ,
6y + 6= 0 .

La seconda equazione ha la soluzione y =−1 . Sostituendo nella prima equazione si ottiene
x2− 2x + 1= 0 ; cioè (x − 1)2 = 0 , quindi si ha la soluzione x = 1 .

Pertanto l’equazione ha la soluzione 1− i .
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In modo analogo si può risolvere un’equazione uguagliando modulo e argomenti dei
due membri dell’equazione.

2.1.14 Esempio. Risolviamo l’equazione

z |z |= 1− i
p

3 .

Uguagliando i moduli dei due membri dell’equazione si ottiene

|z |2 =
Ç

12+
�

−
p

3
�2 = 2 .

Pertanto |z |=
p

2 .
Si ha arg
�

z |z |
�

= arg z , quindi arg z = arg
�

1− i
p

3
�

. Un argomento di 1− i
p

3 è

arctan
�

−
p

3
�

=− π
3

.

Quindi l’equazione ha la soluzione

p
2
�

cos
�

− π
3

�

+ i sen
�

− π
3

�

�

=
p

2
�

1
2
− i
p

3
2

�

=
1
p

2
− i
p

3
p

2
.

21) Risolvere la seguente equazione in campo complesso:

z2+ z + |z |2 = 1 .

22) Risolvere la seguente equazione in campo complesso:

z3+ z z2+ 3z Im z + 2Re z = 0 .

23) Risolvere la seguente equazione in campo complesso:

z4 =
�

1+ i
p

3
�

z2 .

24) Risolvere le seguenti equazioni in campo complesso:

a. z2z + z z2− (3+ i)|z |2− 3z2 = 0

b.
2
z
+

i
z
= 3

c.
z2− 4i
z2− 4i

= 3

d. z2+ |z |2 = 8− 2i

e. z2 Re z − z + i |z |2 = 0

f.
i z3

|z |2
=−1
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2.2 Soluzioni e risultati

1) Si ha

2+ i
3− 2i

− (2+ 3i)2 =
(2+ i)(3+ 2i)
(3− 2i)(3+ 2i)

−
�

22+ 2 · 2 · 3i +(3i)2
�

=

=
6+ 4i + 3i − 2

32− (2i)2
− (−5+ 12i) =

4+ 7i + 13(5− 12i)
13

=
69
13
− 149

13
i .

2)

a.
13
17
− 1

17
i

b.
3
5
− 4

5
i

c. −i

d.
19
4
+

53
p

3
4

i

3) Si ha
|−4− 2i |=
p

(−4)2+(−3)2 =
p

20 .

Poiché −4− 2i ha parte reale negativa, un suo argomento è

arctan
� Im(−4− 2i)

Re(−4− 2i)

�

+π= arctan
�−2
−4

�

+π= arctan
1
2
+π .

Pertanto

−4− 2i =
p

20
�

cos
�

arctan
1
2
+π
�

+ i sen
�

arctan
1
2
+π
�

�

.

4) Si ha
|1− i |=
p

12+(−1)2 =
p

2 ;

poiché 1− i ha parte reale positiva, un suo argomento è arctan(−1) =−π/4 . Inoltre
�

�−
p

3+ i
�

�=
Ç

�

−
p

3
�2+ 12 = 2 ;

un argomento di −
p

3+ i è arctan
�

−1/
p

3
�

+π= (5/6)π .
Pertanto

�

�

�

�

�

(1− i)5
�

−
p

3+ i
�3

�

�

�

�

�

=
�
p

2
�52−3 = 2−1/2 ;

un argomento del numero (1− i)5/
�

−
p

3+ i
�3 è

5
�

− π
4

�

− 3
5
6
π=
−5− 10

4
π=− 15

4
π .

Poiché −(15/4)π= (π/4)− 4π , anche π/4 è un argomento. Pertanto

(1− i)5
�

−
p

3+ i
�3 =

1
p

2

�

cos
π

4
+ i sen

π

4

�

.
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5)

a. 2
�

cos
�

11
6
π
�

+ i sen
�

11
6
π
�

�

b.
1
2

�

cos
�

− 2
3
π
�

+ i sen
�

− 2
3
π
�

�

c.
p

10
�

cos(arctan3+π)+ i sen(arctan3+π)
�

d.
p

10
�

cos(π− arctan3)+ i sen(π− arctan3)
�

e.
p

5
4

�

cos
�

arctan
1
2

�

+ i sen
�

arctan
1
2

�

�

f. 128
�

cos
�

− π
6

�

+ i sen
�

− π
6

�

�

g. 175/2�cos(5arctan4)+ i sen(5arctan4)
�

h. 53�cos(6arctan2+π)+ i sen(6arctan2+π)
�

i.
1

8
p

2

�

cos
�

5
12
π
�

+ i sen
�

5
12
π
�

�

j. 64(cos0+ i sin0)

k.
1
p

2

�

cos
π

4
+ i sen

π

4

�

l.
p

5
�

cos(arctan2+π)+ i sen(arctan2+π)
�

6) Si ha

�

�−3
p

3+ 9i
�

�= 3
�

�−
p

3+ 3i
�

�= 3
Ç

�

−
p

3
�2+ 32 = 3

p
12= 6

p
3 .

Poiché −3
p

3+ 9i ha parte reale negativa, un suo argomento è

arctan

�

Im
�

−3
p

3+ 9i
�

Re
�

−3
p

3+ 9i
�

�

+π= arctan
9

−3
p

3
+π=π− arctan

�
p

3
�

=
2
3
π .

Pertanto le radici quadrate di −3
p

3+ 9i sono

±
p

6 31/4
�

cos
π

3
+ i sen

π

3

�

=±
p

6 31/4
�

1
2
+ i
p

3
2

�

=±
�

33/4

p
2
+ i

35/4

p
2

�

.
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Le radici cubiche di −3
p

3+ 9i sono

61/331/6 exp
�

i
2+ 6k

9
π
�

, k = 0,1,2 .

7) Si ha
|−2− 4i |=
p

(−2)2+(−4)2 =
p

20 .

Poiché −2− 4i ha parte reale negativa, un suo argomento è

arctan
�

Im(−2− 4i)
Re(−2− 4i)

�

+π= arctan
�−4
−2

�

+π= arctan2+π .

Pertanto le radici seste di −2− 4i sono

201/12 exp
�

i
arctan2+(2k + 1)π

6

�

, k = 0,1,2,3,4,5 .

8)

a. ±i
p

3 ;
3p3
2
+ i

35/6

2
, − 3p

3 ,
3p3
2
− i

35/6

2

b. ±
�

1
p

2
− i

1
p

2

�

;
p

3
2
− i

1
2
, i , −

p
3

2
− i

1
2

c. ±
�
p

3
p

2
− i

1
p

2

�

; 3p
2 exp
�

i
5+ 6k

9
π
�

, k = 0,1,2

d. ±21/4
�

cos
�

7
8
π
�

+ i sen
�

7
8
π
�

�

;

21/6
�

cos
�

7
12
π
�

+ i sen
�

7
12
π
�

�

, − 1
3p2
− i

1
3p2

, 21/6
�

cos
�

23
12
π
�

+ i sen
�

23
12
π
�

�

e. ±51/4 exp
�

i
−arctan2+π

2

�

; 51/6 exp
�

i
−arctan2+ kπ

3

�

, k = 1,3,5

f. ±51/4 exp
�

i
arctan(1/2)

2

�

; 51/6 exp
�

i
arctan(1/2)+ 2kπ

3

�

, k = 0,1,2

9) L’equazione è di secondo grado, per risolverla occorre innanzitutto calcolare le radici
quadrate del discriminante (che indichiamo con ∆ ), o meglio, poiché nel coefficiente del
termine di primo grado si può raccogliere il fattore 2 , le radici quadrate di ∆/4 . Si ha

∆

4
=
�
p

3+ 3i
�2− 2
�

1− i
p

3
�

= 3+ i6
p

3− 9− 2+ i2
p

3=−8+ i8
p

3 .

Per calcolare le radici quadrate di ∆/4 dobbiamo trovarne il modulo e un argomento.
�

�

�

�

∆

4

�

�

�

�

=
Ç

(−8)2+
�

8
p

3
�2 = 8
Ç

(−1)2+
�
p

3
�2 = 8
p

4= 16 .
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Poiché ∆/4 ha parte reale negativa, un argomento è

arctan
� Im(∆/4)

Re(∆/4)

�

+π= arctan
�

8
p

3
−8

�

+π=−arctan
�
p

3
�

+π=− π
3
+π=

2
3
π .

Perciò le radici quadrate di ∆/4 sono

±
p

16
�

cos
�

1
2

2π
3

�

+ i sen
�

1
2

2π
3

�

�

=±4
�

cos
π

3
+ i sen

π

3

�

=±
�

2+ i2
p

3
�

.

Le soluzioni dell’equazione sono quindi

−
p

3− 3i ±
�

2+ i2
p

3
�

2
=















−
p

3− 3 i − 2− i2
p

3
2

=− 2+
p

3
2
− i

2
p

3+ 3
2

,

−
p

3− 3 i + 2+ i2
p

3
2

=
2−
p

3
2

+ i
2
p

3− 3
2

.

10) Se due numeri complessi elevati al cubo sono uguali, allora o sono entrambi nulli,
oppure il cubo del loro quoziente è 1 , quindi il quoziente è una radice cubica di 1 . In
ciascuno dei due casi ognuno dei due numeri è uguale all’altro moltiplicato per una delle
radici cubiche di 1 . Le radici cubiche di 1 sono

rk = cos
�

2k
3
π
�

+ i sen
�

2k
3
π
�

,

per k = 0,1,2 , quindi

r0 = cos0+ i sen0= 1 ,

r1 = cos
�

2
3
π
�

+ i sen
�

2
3
π
�

=− 1
2
+ i
p

3
2

,

r2 = cos
�

4
3
π
�

+ i sen
�

4
3
π
�

=− 1
2
− i
p

3
2

.

Perciò le soluzioni dell’equazione si ottengono risolvendo le tre equazioni

1
z2
− i4
p

3= 1− i3
p

3 ,

1
z2
− i4
p

3=
�

− 1
2
+ i
p

3
2

�

�

1− i3
p

3
�

,

1
z2
− i4
p

3=
�

− 1
2
− i
p

3
2

�

�

1− i3
p

3
�

.

La prima equazione equivale a

1
z2
= i4
p

3+ 1− i3
p

3= 1+ i
p

3 ,
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da cui z2 = 1/
�

1+ i
p

3
�

. Determiniamo le radici quadrate di 1/
�

1+ i
p

3
�

. Si ha
�

�

�

�

�

1

1+ i
p

3

�

�

�

�

�

=
1
q

12+
�p

3
�2
=

1
2

e un argomento di 1/
�

1+ i
p

3
�

è l’opposto di un argomento di 1+ i
p

3 , cioè l’opposto
di arctan

p
3 , quindi è −π/3 . Perciò si ha

z =±
s

1
2

�

cos
�

− π
6

�

+ i sen
�

− π
6

�

�

=±
s

1
2

�
p

3
2
− i

1
2

�

=±
�
p

3

2
p

2
− i

1

2
p

2

�

.

La seconda equazione equivale a

1
z2
= i4
p

3+
�

− 1
2
+ i
p

3
2

�

�

1− i3
p

3
�

= i4
p

3− 1
2
+ i
p

3
2
+ i

3
p

3
2
+

9
2
= 4+ i6

p
3 ,

da cui z2 = 1/
�

4+ i6
p

3
�

. Determiniamo le radici quadrate di 1/
�

4+ i6
p

3
�

. Si ha
�

�

�

�

�

1

4+ i6
p

3

�

�

�

�

�

=
1
q

42+
�

6
p

3
�2
=

1
p

124

e un argomento di 1/
�

4+ i6
p

3
�

è l’opposto di un argomento di 4+ i6
p

3 , cioè l’opposto
di arctan
�

6
p

3/4
�

, quindi −arctan
�

3
p

3/2
�

; perciò si ha

z =± 1
4p124

�

cos
�

1
2

arctan
3
p

3
2

�

− i sen
�

1
2

arctan
3
p

3
2

�

�

.

La terza equazione equivale a

1
z2
= i4
p

3+
�

− 1
2
− i
p

3
2

�

�

1− i3
p

3
�

= i4
p

3− 1
2
− i
p

3
2
+ i

3
p

3
2
− 9

2
=−5+ i5

p
3 ,

da cui z2 = 1/
�

−5+ i5
p

3
�

. Determiniamo le radici quadrate di 1/
�

−5+ i5
p

3
�

. Si ha
�

�

�

�

�

1

−5+ i5
p

3

�

�

�

�

�

=
1

q

(−5)2+
�

5
p

3
�2
=

1
10

mentre un argomento di 1/
�

−5+ i5
p

3
�

è l’opposto di un argomento di −5+ i5
p

3 , cioè
l’opposto di arctan

�

−5
p

3/5
�

−π , quindi (4/3)π ; perciò si ha

z =±
s

1
10

�

cos
�

2
3
π
�

+ i sen
�

2
3
π
�

�

=±
s

1
10

�

− 1
2
+ i
p

3
2

�

=±
�

− 1

2
p

10
+ i
p

3

2
p

10

�

.
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Perciò l’equazione ha le sei soluzioni

z =±
�
p

3

2
p

2
− i

1

2
p

2

�

,

z =±
�

1
4p124

cos
�

1
2

arctan
3
p

3
2

�

− i
1

4p124
sen
�

1
2

arctan
3
p

3
2

�

�

,

z =±
�

1

2
p

10
− i
p

3

2
p

10

�

.

11) Per risolvere l’equazione si può evitare di sviluppare il quadrato a primo membro,
perché la sesta potenza è il quadrato di un cubo, quindi l’equazione si può riscrivere come
uguaglianza tra potenze con esponenti uguali. Otteniamo l’equazione

�

(−1+ i)z − 1− i
z2+ 2i z − 1

�2

=
�

(1+ i)3
�2 .

Poiché
(1+ i)3 = 1+ 3i + 3i2+ i3 = 1+ 3i − 3− i =−2+ 2i ,

l’equazione equivale a
� (−1+ i)z − 1− i

z2+ 2i z − 1

�2

= (−2+ 2i)2 .

Il numero complesso z è soluzione di questa equazione se e solo se è soluzione di una delle
seguenti equazioni

(−1+ i)z − 1− i
z2+ 2i z − 1

=−2+ 2i ,

(−1+ i)z − 1− i
z2+ 2i z − 1

= 2− 2i .

La prima equazione equivale, successivamente, a

(−1+ i)z − 1− i − (z2+ 2i z − 1)(−2+ 2i)
z2+ 2i z − 1

= 0 ,

(−1+ i)z − 1− i +(2− 2i)z2+(4i + 4)z − 2+ 2i
z2+ 2i z − 1

= 0 ,

(2− 2i)z2+(3+ 5i)z − 3+ i
z2+ 2i z − 1

= 0 .

Il denominatore è il quadrato di z + i , perciò si annulla se e solo se z = −i . Quindi z è
soluzione se e solo se annulla il numeratore ed è diverso da −i . Risolviamo l’equazione

(2− 2i)z2+(3+ 5i)z − 3+ i = 0 .

Il discriminante del polinomio di secondo grado di cui cerchiamo gli zeri è

∆= (3+ 5i)2− 4(2− 2i)(−3+ i) = 9+ 30i − 25+ 24− 8i − 24i − 8=−2i .
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Poiché −2i ha modulo 2 e un suo argomento è (3/2)π , le sue radici quadrate sono

±
p

2
�

cos
�

3
4
π
�

+ i sen
�

3
4
π
�

�

=±
p

2
�

− 1
p

2
+ i

1
p

2

�

=±(−1+ i) .

Pertanto si ha

z =
−(3+ 5i)± (−1+ i)

2(2− 2i)
=















−2− 6i
2(2− 2i)

=
−1− 3i
2− 2i

,

−4− 4i
2(2− 2i)

=
−2− 2i
2− 2i

.

perciò vi sono le due soluzioni

−1− 3i
2− 2i

=
(−1− 3i)(2+ 2i)
|2− 2i |2

=
−2− 2i − 6i + 6

22+(−2)2
=

4− 8i
8
=

1
2
− i ,

−2− 2i
2− 2i

=
(−2− 2i)(2+ 2i)
|2− 2i |2

=
−4− 4i − 4i + 4

22+(−2)2
=
−8i

8
=−i .

La soluzione z =−i va scartata perché, come visto sopra, annulla il denominatore.
In modo analogo si procede per risolvere la seconda equazione, cioè

(−1+ i)z − 1− i
z2+ 2i z − 1

= 2− 2i ,

che è equivalente a

(−1+ i)z − 1− i − (z2+ 2i z − 1)(2− 2i)
z2+ 2i z − 1

= 0 ,

(−1+ i)z − 1− i − (2− 2i)z2− (4i + 4)z + 2− 2i
z2+ 2i z − 1

= 0 ,

(−2+ 2i)z2− (5+ 3i)z + 1− 3i
z2+ 2i z − 1

= 0 .

Risolviamo l’equazione

(−2+ 2i)z2− (5+ 3i)z + 1− 3i = 0 .

Il discriminante del trinomio è

∆= (5+ 3i)2− 4(−2+ 2i)(1− 3i) = 25+ 30i − 9+ 8− 24i − 8i − 24=−2i ;

sappiamo che le radici quadrate di −2i sono ±(−1+ i) e quindi l’equazione ha le soluzioni

z =
5+ 3i ± (−1+ i)

2(−2+ 2i)
=















6+ 2i
2(2− 2i)

=
3+ i
2− 2i

,

4+ 4i
2(2− 2i)

=
2+ 2i
2− 2i

.
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cioè
(3+ i)(−2− 2i)
|−2+ 2i |2

=
−6− 6i − 2i + 2
(−2)2+ 22

=− 4+ 8i
8
=− 1

2
− i ,

(3+ i)(−2− 2i)
|−2+ 2i |2

=
−6− 6i − 2i + 2
(−2)2+ 22

=− 4+ 8i
8
=− 1

2
− i .

La soluzione z =−i è da scartare.
Quindi l’equazione ha le due soluzioni

z =
1
2
− i , z =− 1

2
− i .

12)

a. − 1
2
− i
p

31
2

, − 1
2
+ i
p

31
2

b.
p

7
2
− i

1
2
, −
p

7
2
− i

1
2

c. −2+ i , −i

d. i
p

5+ 2
p

2
3

, i
p

5− 2
p

2
3

e.
p

2−
p

3
2

+ i
p

6− 3
2

, −
p

2+
p

3
2
− i
p

6+ 3
2

f. ±371/4 cos
�

π

2
− 1

2
arctan

1
6

�

+ i
�p

6± 371/4 sen
�

π

2
− 1

2
arctan

1
6

�

�

g. 1− i , −1− 3i

h. 0 ,
1
p

2
− i

1
p

2
, − 1
p

2
+ i

1
p

2

i. ±21/4 exp
�

i
π

8

�

, ±101/4 exp
�

i
arctan3

2

�

j. −1 ,
1
2
+ i
p

3
2

,
1
2
− i
p

3
2

, 2 , −1+ i
p

3 , −1− i
p

3

k.
p

3
p

2
+ i
�

1+
1
p

2

�

, −
p

3
p

2
+ i
�

1+
1
p

2

�

,
p

3
p

2
+ i
�

1− 1
p

2

�

, −
p

3
p

2
+ i
�

1− 1
p

2

�

,

i
�

1+
p

2
�

, i
�

1−
p

2
�

l. 0 , ±i
4
p

3
, ±i4
p

3
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m. 4p
2cos
�

5
8
π
�

+ i
�

−
p

2+ 4p
2sen
�

5
8
π
�

�

, − 4p
2cos
�

5
8
π
�

+ i
�

−
p

2− 4p
2sen
�

5
8
π
�

�

,

4p
2cos
�

3
8
π
�

+ i
�

−
p

2+ 4p
2sen
�

3
8
π
�

�

, − 4p
2cos
�

3
8
π
�

+ i
�

−
p

2− 4p
2sen
�

3
8
π
�

�

n.
6
41
− i

13
41

, − 6
25
− i

17
25

o. −2i , i
1
2
, −i

2
3

p. ±i
�
p

2+ 1
�

, ±i
�
p

2− 1
�

q. 0 , ±i
4p3
p

2
, ±
�

31/4

2
+ i

33/4

2

�

r.
p

3
2
− i

3
2
, −
p

3
2
− i

1
2
, 0 , −2i ,

1
p

2
− i
�

1+
p

3
p

2

�

, − 1
p

2
+ i
�

−1+
p

3
p

2

�

s. i
p

5+ 2
p

2
3

, i
−
p

5+ 2
p

2
3

, i
p

5− 2
p

2
3

, i
−
p

5− 2
p

2
3

t.
1
2
+ 4p

2cos
�

3
8
π
�

+ i
�

3
2
+ 4p

2sen
�

3
8
π
�

�

,
1
2
− 4p

2cos
�

3
8
π
�

+ i
�

3
2
− 4p

2sen
�

3
8
π
�

�

,

− 1
2
+ 4p

2cos
�

3
8
π
�

+i
�

− 3
2
+ 4p

2sen
�

3
8
π
�

�

, − 1
2
− 4p

2cos
�

3
8
π
�

+i
�

− 3
2
− 4p

2sen
�

3
8
π
�

�

13) Si ha

exp
�

(2− i)2
�

e3i
= exp(4−2i−1) e−3i = exp(4−4i−1−3i) = exp(3−7i) = e3 sen7−i e3 cos7 .

14)

a. e−2 cos3+ i e−2 sen3

b. e2 cos11+ i e2 sen11

c. e−1 cos3+ i e−1 sen3

d. cos8+ i sen8

15) Si ha

|(−3+ 4i) e1+i |= |−3+ 4i | |e1+i |=
p

(−3)2+ 42 eRe(1+i) =
p

25 e1 = 5e .

Poiché −3+4i ha parte reale negativa, un suo argomento è π−arctan(4/3) ; un argomento
di e1+i è Im(1+ i) = 1 . Quindi un argomento di (−3+4i) e1+i è π− arctan(4/3)+ 1 . Si
ha quindi

(−3+ 4i) e1+i = 5e
�

cos
�

π− arctan
4
3
+ 1
�

+ i sen
�

π− arctan
4
3
+ 1
�

�

.
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16)

a. 3e2�cos(−4)+ i sen(−4)
�

b. e6�cos(−4)+ i sen(−4)
�

c. e5�cos(−12)+ i sen(−12)
�

d.
p

2 e2
�

(cos
�

1− π
4

�

+ i sen
�

1− π
4

�

�

17) Se e1/z =−1−2i , allora 1/z ha parte reale uguale a log|−1−2i | e coefficiente dell’im-
maginario uguale a uno degli argomenti di −1−2i . Si ha |−1−2i |=

p

(−1)2+(−2)2 =
p

5
e un argomento di −1−2i è arctan2+π , quindi gli argomenti di tale numero sono i numeri
reali della forma arctan2+(2k + 1)π con k ∈Z ; perciò

1
z
= log
p

5+ i
�

arctan2+(2k + 1)π
�

.

Quindi si hanno le soluzioni

z =
1

log
p

5+ i
�

arctan2+(2k + 1)π
�
=

log
p

5− i
�

arctan2+(2k + 1)π
�

�

log
p

5
�2+
�

arctan2+(2k + 1)π
�2 , k ∈Z .

18) Il numero z è soluzione dell’equazione se e solo se e z+ i/2 è una delle radici cubiche
di i . Poiché i ha modulo 1 e un suo argomento è π/2 , le sue radici cubiche sono

cos
� (π/2)+ 2kπ

3

�

+ i sen
� (π/2)+ 2kπ

3

�

,

con k = 0,1,2 ; si ha
cos
π

6
+ i sen

π

6
=
p

3
2
+ i

1
2

,

cos
�

5
6
π
�

+ i sen
�

5
6
π
�

=−
p

3
2
+ i

1
2

,

cos
�

3
2
π
�

+ i sen
�

3
2
π
�

=−i .

Quindi abbiamo le seguenti equazioni:

e z + i
1
2
=
p

3
2
+ i

1
2

, e z + i
1
2
=−
p

3
2
+ i

1
2

, e z + i
1
2
=−i ,

cioè:

e z =
p

3
2

, e z =−
p

3
2

, e z =−i
3
2

.

Le soluzioni sono

z = log

p
3

2
+ i2kπ , k ∈Z ,

z = log

p
3

2
+ i(2k + 1)π , k ∈Z ,

z = log
3
2
+ i
�

2k − 1
2

�

π , k ∈Z .
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19) Moltiplicando entrambi i membri per e i z , l’equazione diventa

e2i z − 2i =
�

−
p

2+ i
p

2
�

e i z ,
cioè

e2i z +
�
p

2− i
p

2
�

e i z − 2i = 0 .

Ponendo w = e i z si ottiene l’equazione di secondo grado

w2+
�
p

2− i
p

2
�

w − 2i = 0 .

Il discriminante del trinomio a primo membro è

∆=
�
p

2− i
p

2
�2− 4 · (−2i) = 2− 4i − 2+ 8i = 4i .

Poiché |4i |= 4 e un argomento di 4i è π/2 , le radici quadrate del discriminante sono

±
p

4
�

cos
π

4
+ i sen

π

4

�

=±2
�

1
p

2
+ i

1
p

2

�

=±
�
p

2+ i
p

2
�

,

quindi si ha

w =
−
�p

2− i
p

2
�

±
�p

2+ i
p

2
�

2
=















−2
p

2
2
=−
p

2 ,

i2
p

2
2
= i
p

2 .

Perciò deve essere e i z =−
p

2 o e i z = i
p

2 .
Poiché −

p
2 ha modulo

p
2 e un suo argomento è π , la prima equazione è verificata

se
i z = log
�
p

2
�

+ iπ+ i2kπ , k ∈Z ,

cioè
z =π+ 2kπ− i

1
2

log2 , k ∈Z .

Poiché i
p

2 ha modulo
p

2 e un suo argomento è π/2 , la seconda equazione è verifi-
cata se

i z = log
�
p

2
�

+
π

2
i + i2kπ , k ∈Z ,

cioè
z =
π

2
+ 2kπ− i

1
2

log2 , k ∈Z .

20)

a. log4+ i
�

2k − 1
2

�

π , k ∈Z

b.
1
2

log13+ i
�

(2k + 1)π− arctan
2
3

�

, k ∈Z
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c.
�

2k − 1
4

�

π− i
1
2

log8 , k ∈Z

d.
2k
5
π+ i

4k
5
π , k ∈Z

e.
1
2

log5+ i
�

arctan
1
2
+(2k + 1)π
�

,
1
2

log17+ i
�

−arctan
1
4
+(2k + 1)π
�

, k ∈Z

f.
2
3
π+ 2kπ− i log2 , − 2

3
π+ 2kπ− i log2 , k ∈Z

g. i(2k + 1)π ,
1
2

log2+ i
�

3
4
+ 2k
�

π , k ∈Z

h.
1
4

log32+ i
�

5
8
+ k
�

π , k ∈Z

i. − log2− i(π+ 2kπ) , i
�

2
3
π+ 2kπ
�

, i
�

− 2
3
π+ 2kπ
�

, k ∈Z

j. π+ 2kπ ,
3
4
π+ 2kπ− i

1
2

log2 , k ∈Z

k.
1
4

log2+
�

k +
1
8

�

π+
�

− 1
4

log2+ i
�

k +
1
8

�

π

�

, k ∈Z .

l.
π

4
+ kπ ,

π

2
+ kπ , k ∈Z

21) Poiché nell’equazione compaiono il modulo e il coniugato dell’incognita z , è uti-
le esprimerla tramite parte reale e coefficiente dell’immaginario di z . Poniamo quindi
z = x + i y , con x, y ∈R . L’equazione diventa, successivamente,

(x + i y)2+ x + i y + |x + i y|2 = 1 ,

x2+ 2i xy − y2+ x − i y + x2+ y2 = 1 ,

2x2+ x + i(2xy − y) = 1 .

Uguagliando la parte reale e il coefficiente dell’immaginario dei due membri dell’equa-
zione, otteniamo il seguente sistema di due equazioni in campo reale

¨

2x2+ x = 1 ,
2xy − y = 0 .

La prima è un’equazione di secondo grado nella sola variabile x , che ha soluzione

x =
−1±
p

12− 4 · 2 · (−1)
4

=
−1± 3

4
=







−1 ,

1
2

.
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Per x = 1/2 la seconda equazione diventa y − y = 0 , quindi l’equazione è soddisfatta
qualunque sia y . Per x =−1 si ha invece −2y − y = 0 che è soddisfatta per y = 0 .

Quindi le soluzioni sono

z =−1 , z =
1
2
+ i y , y ∈R .

22) Risolviamo l’equazione esprimendo z in forma algebrica e trasformando l’equazio-
ne nel campo complesso in un sistema di due equazioni in campo reale. Posto quindi
z = x + i y , con x, y ∈R , l’equazione diventa, successivamente,

(x + i y)3+(x + i y)(x − i y)2+ 3(x − i y)y + 2x = 0 ,

x3+ 3i x2y − 3xy2− i y3+(x2+ y2)(x − i y)+ 3xy − 3i y2+ 2x = 0 ,

x3+ 3i x2y − 3xy2− i y3+ x3+ xy2− i x2y − i y3+ 3xy − 3i y2+ 2x = 0 ,

2x3+ 2i x2y − 2xy2− 2i y3+ 3xy − 3i y2+ 2x = 0 .

Uguagliando a 0 parte reale e coefficiente dell’immaginario del primo membro si ottiene
il sistema di due equazioni in campo reale

¨

2x3− 2xy2+ 3xy + 2x = 0 ,

2x2y − 2y3− 3y2 = 0 .

Questo sistema può essere scritto come
¨

x(2x2− 2y2+ 3y + 2) = 0 ,

y(2x2− 2y2− 3y) = 0 ;

ciascuna equazione è verificata se e solo se almeno uno dei fattori a primo membro si annul-
la, dunque si può scomporre in due equazioni. Quindi, considerando i vari casi possibili,
otteniamo quattro sistemi; l’insieme delle soluzioni del sistema è uguale all’unione degli
insiemi delle soluzioni dei quattro sistemi. Tali sistemi sono

�x = 0 ,
y = 0 ,
¨x = 0 ,

2x2− 2y2− 3y = 0 ,
¨

2x2− 2y2+ 3y + 2= 0 ,
y = 0 ,
¨

2x2− 2y2+ 3y + 2= 0 ,

2x2− 2y2− 3y = 0 .

Il primo sistema ha soluzione x = 0 , y = 0 , cioè z = 0 .
Ponendo x = 0 , la seconda equazione del secondo sistema diventa −2y2− 3y = 0 , che

ha le soluzioni y = 0 e y =−3/2 . Quindi si ha z = 0 (soluzione già trovata) e z =−i3/2 .
Ponendo y = 0 , la prima equazione del terzo sistema diventa 2x2+ 2= 0 che non ha

soluzioni reali.
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Infine nell’ultimo sistema, sottraendo membro a membro la seconda equazione dalla
prima, si ottiene 6y + 2 = 0 , quindi y = −1/3 . Sostituendo nella prima equazione si
ottiene 2x2+ 7/9= 0 che non ha soluzione.

Perciò l’equazione ha le due soluzioni

z = 0 , z =− 3
2

i .

23) Uguagliando i moduli dei due membri dell’equazione si ha

|z |4 =
�

�1+ i
p

3
�

�

�

�z
�

�

2 ,
cioè

|z |4 = 2|z |2 .

Pertanto o z = 0 , oppure |z |2 = 2 , cioè |z |=
p

2 .
Se |z |=

p
2 , allora esiste θ ∈R tale che z =

p
2 e iθ . Poiché un argomento di 1+ i

p
3

è arctan
�p

3
�

=π/3 e un argomento di z è −θ , l’equazione diventa

4e i4θ = 2e iπ/32e−i2θ = 4e i(π/3−2θ) ,
cioè

e i4θ = e i(π/3−2θ) .

Questa è soddisfatta se e solo se esiste k ∈Z tale che

4θ=
π

3
− 2θ+ 2kπ ,

cioè

θ=
π

18
+

k
3
π .

È sufficiente considerare k = 0,1,2,3,4,5 , perché per altri valori di k si ottengono valori
di θ che differiscono per un multiplo intero di 2π da valori già ottenuti.

Pertanto l’equazione ha le soluzioni

z = 0 , z =
p

2
�

cos
�

π

18
+

k
3
π
�

+ i sen
�

π

18
+

k
3
π
�

�

, k = 0,1,2,3,4,5 .

24)

a. 0 ,
3+ 2
p

2
2
− i

1
2
,

3− 2
p

2
2
− i

1
2

b.
2
5
+ i

1
5

c. 1− i , −1+ i

d. 2− i
1
2
, −2+ i

1
2

e. 0 , i ,
p

2− i , −
p

2− i

f. exp
�

i
π

6

�

, exp
�

i
5
6
π
�

, exp
�

i
3
2
π
�



3

Integrali

3.1 Esercizi

Primitive

Per il teorema di Torricelli, il calcolo degli integrali di funzioni continue si riduce alla
ricerca di una primitiva. Infatti, se : f [a, b ]→R è continua e F è una sua primitiva, allora

∫ b

a
f (x)d x = F (b )− F (a) .

Quindi l’integrale è uguale alla differenza tra i valori assunti dalla primitiva negli estremi del
dominio di integrazione. Per indicare tale differenza si utilizza una notazione particolare.
Poniamo

�

F (x)
�b

a = F (b )− F (a) .

Riportiamo una tabella di primitive che si ricava facilmente conoscendo le derivate delle
funzioni elementari.

Funzione Primitiva Funzione Primitiva

c
�

c ∈R
�

c x e x e x

x b �b ∈R \ {−1}
� 1

b + 1
x b+1 1

x
log|x|

sen x −cos x senh x cosh x
cos x sen x cosh x senh x
tan x − log|cos x| tanh x log(cosh x)
cot x log|sen x| coth x log|senh x|

1
cos2x

tan x
1

cosh2x
tanh x

1
sen2x

−cot x
1

senh2x
−coth x

1
p

1− x2
arcsen x

1
p

x2+ 1
settsenh x

1
x2+ 1

arctan x
1

p
x2− 1

settcosh x
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Sia f : I →R , con I intervallo di R , indichiamo l’insieme delle primitive di f con
∫

f (x)d x .

Se tale insieme è non vuoto ha infiniti elementi; due primitive qualunque differiscono per
una costante e sommando una costante a una primitiva si ottiene ancora una primitiva.
Pertanto, se F è una primitiva di f , allora

∫

f (x)d x =
�

x 7→ F (x)+ c
�

� c ∈R
	

.

Solitamente si utilizza una notazione meno precisa, ma più semplice, scrivendo:
∫

f (x)d x = F (x)+ c .

È utile ricordare che la derivata della somma di due funzioni è la somma delle derivate,
quindi la somma di primitive di due funzioni è una primitiva della somma. Analogamente
la derivata del prodotto di una costante per una funzione è il prodotto della costante per la
derivata della funzione, quindi un fatto analogo vale per le primitive. In formule si ha

∫

�

f (x)+ g (x)
�

d x =
∫

f (x)d x +
∫

g (x)d x ,
∫

λ f (x)d x = λ
∫

f (x)d x .

3.1.1 Esempio. Calcoliamo
∫

(3cos x + 2e x )d x .

Una primitiva della funzione coseno è la funzione seno, pertanto una primitiva della
funzione x 7→ 3cos x è la funzione x 7→ 3sen x . Una primitiva della funzione esponen-
ziale è la funzione esponenziale stessa, pertanto una primitiva della funzione x 7→ 2e x è la
funzione x 7→ 2e x . Quindi

∫

(3cos x + 2e x )d x = 3cos x + 2e x + c .

Possiamo esprimere in formule questo ragionamento come segue:
∫

(3cos x+2e x )d x =
∫

3cos x d x+
∫

2e x d x = 3
∫

cos x d x+2
∫

e x d x = 3sen x+2e x+c .

Utilizzando la tabella è facile ricavare altre primitive.
Ad esempio, sia F una primitiva della funzione f e siano a ∈ R∗ e b ∈ R ; poniamo

G(x) = F (ax + b ) , per gli x per cui tale scrittura ha senso. La funzione G è derivabile e si
ha G′(x) = F ′(ax + b )a = a f (ax + b ) . Pertanto la funzione x 7→G(x)/a è una primitiva
di x 7→ f (ax + b ) .



3.1. Esercizi 111

3.1.2 Esempio. Calcoliamo
∫ π

0
cos(3x +π)d x .

Una primitiva della funzione coseno è la funzione seno, quindi è facile verificare che una
primitiva della funzione x 7→ cos(3x+π) è la funzione x 7→ (1/3) sen(3x+π) , perciò si ha
∫ π/2

0
cos(3x +π)d x =

�

1
3

sen(3x +π)
�π/2

0
=

1
3

�

sen
�

5
2
π
�

− senπ
�

=
1
3

.

Inoltre, se f ∈ C
�

[a, b ],R
�

, F è una sua primitiva e g ∈ C 1�[α,β],R
�

è tale che
g
�

[α,β]
�

⊆ [a, b ] , allora, dal teorema sulla derivata della composizione, segue immediata-
mente che F ◦ g è una primitiva di ( f ◦ g )g ′ .

3.1.3 Esempio. Calcoliamo
∫

e x + 1
e x + x

d x .

La funzione integranda è della forma (1/g )g ′ , con g la funzione x 7→ e x + x . Poiché
una primitiva della funzione y 7→ 1/y è la funzione y 7→ log|y| , risulta

∫

e x + 1
e x + x

d x = log|e x + x|+ c .

Integrazione per parti

Un importante strumento per il calcolo degli integrali è la formula di integrazione per
parti.

Date f , g ∈C 1�[a, b ],R
�

, si ha
∫

f (x)g ′(x)d x = f (x)g (x)−
∫

f ′(x)g (x)d x , (3.1.1)

oppure, per gli integrali definiti,
∫ b

a
f (x)g ′(x)d x =
�

f (x)g (x)
�b

a −
∫ b

a
f ′(x)g (x)d x . (3.1.2)

Per utilizzare la formula la funzione integranda deve essere espressa come prodotto di
due funzioni, di una delle quali si conosce una primitiva; si ottiene la somma di due adden-
di, uno dei quali è ancora un integrale. L’applicazione della formula risulta utile quando
l’integrale che rimane da calcolare è più semplice di quello di partenza.

3.1.4 Esempio. Calcoliamo
∫

x cos x d x .

Una primitiva della funzione coseno è la funzione seno, pertanto si può applicare la
formula di integrazione per parti (3.1.1), con f (x) = x , g (x) = sen x . Risulta quindi

∫

x cos x d x = x sin x −
∫

sin x d x = x sin x + cos x + c .
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Osserviamo che è nota anche una primitiva della funzione x 7→ x , quindi si può appli-
care la formula di integrazione per parti anche con f (x) = cos x , g (x) = x2/2 . In tal modo
si ottiene

∫

x cos x d x =
x2

2
cos x +
∫

x2

2
sin x d x .

L’applicazione della formula in questomodo non è di alcuna utilità, perché resta da calcolare
un integrale più complicato di quello assegnato.

La formula di integrazione per parti risulta in alcuni casi utile anche per calcolare inte-
grali in cui la funzione integranda non è sotto forma di prodotto, come mostra il seguente
esempio.

3.1.5 Esempio. Calcoliamo
∫

log x d x .

Per la formula di integrazione per parti (3.1.1) con f (x) = log x e g (x) = x si ha
∫

log x d x =
∫

1 · log x d x = x log x −
∫

x
1
x

d x = x log x −
∫

1 d x = x log x − x + c .

Integrazione per sostituzione

Un secondo fondamentale strumento per il calcolo degli integrali è la formula di inte-
grazione per sostituzione.

Date f ∈C 1I ,R , g ∈C (J ,R) , con I , J ⊆R intervalli tali che f (I )⊆ J , si ha
∫

g
�

f (x)
�

f ′(x)d x =
∫

g (y)d y��
y= f (x)

, (3.1.3)

oppure, per gli integrali definiti, per a, b ∈ I si ha

∫ b

a
g
�

f (x)
�

f ′(x)d x =
∫ f (b )

f (a)
g (y)d y . (3.1.4)

Se inoltre f è iniettiva, per α,β ∈ f (I ) si ha

∫ β

α

g (y)d y =
∫ f −1(β)

f −1(α)
g
�

f (x)
�

f ′(x)d x . (3.1.5)

Con la formula di integrazione per sostituzione non si calcola direttamente l’integrale,
ma questo viene trasformato. Risulta utile solo quando si sa calcolare l’integrale ottenuto.
Nella forma (3.1.4) può essere utilizzata quando la funzione integranda ha una struttura
particolare: è il prodotto di una funzione in cui la variabile x compare solo come argo-
mento di una funzione f per la derivata di f . È evidente che in questo modo la funzione
integranda si semplifica.
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3.1.6 Esempio. Calcoliamo
∫ e

1
cos(log x)

1
x

d x .

Possiamo applicare la formula di integrazione per sostituzione (3.1.4), con f (x) = log x
e g (y) = cos y . Si ha

∫ e

1
cos(log x)

1
x

d x =
∫ log e

log1
cos y d y =
∫ 1

0
cos y d y =
�

sen y
�1

0 = sen1 .

La formula di integrazione per sostituzione (3.1.5) è più facile da applicare, perché non
è richiesta una particolare struttura della funzione integranda, ma solitamente l’integrale
viene trasformato in uno più complicato. Vi sono tuttavia numerose situazioni in cui, con
una opportuna scelta della funzione f , è possibile calcolare l’integrale trasformato.

3.1.7 Esempio. Calcoliamo
∫ 2

1
e
py d y .

Sia f : [0,+∞[ → R tale che f (x) = x2 . La funzione f è di classe C 1 , e si ha
f ′(x) = 2x ; inoltre f è iniettiva, con inversa f −1 : [0,+∞[→ R tale che f −1(y) =

p
y .

Quindi si ha
∫ 2

1
e
py d y =
∫

p
2

p
1

e
p

x2 2x d x =
∫

p
2

1
2xe x d x .

Si può facilmente calcolare questo integrale per parti:

∫

p
2

1
2xe x d x =
�

2xe x�
p

2
1 −
∫

p
2

1
2e x d x =
�

2xe x − 2e x�
p

2
1 = 2
�
p

2− 1
�

e
p

2 .

Nel seguito studieremo varie situazioni in cui è utile applicare la formula di integrazione
per sostituzione (3.1.5).

Integrali di funzioni polinomiali

È facile calcolare integrali di funzioni polinomiali, perché un polinomio è somma di
monomi, di cui si conosce una primitiva.

3.1.8 Esempio. Calcoliamo
∫

(3x4− 6x2+ 5x)d x .

Una primitiva di x4 è x5/5 , una primitiva di x3 è x3/3 e una primitiva della funzione x
è x2/2 , pertanto

∫

(3x4− 6x2+ 5x)d x =
3
5

x5− 2x3+
5
2

x2+ c .
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Integrali di funzioni razionali

Studiamo unmetodo generale per l’integrazione delle funzioni razionali fratte. Tale me-
todo richiede di conoscere una scomposizione del denominatore nel prodotto di polinomi
di primo grado e polinomi di secondo grado irriducibili (cioè privi di radici reali).

Osserviamo anzitutto che, se N e D sono polinomi tali che gr(N ) ≥ gr(D) , allora,
effettuando la divisione tra polinomi e indicando con Q il quoziente e con R il resto, si ha

N (x)
D(x)

=
Q(x)D(x)+R(x)

D(x)
=Q(x)+

R(x)
D(x)

,

e gr(R)< gr(D) . Poiché conosciamo una primitiva di ogni funzione polinomiale, se cono-
sciamo una primitiva di R/D , allora conosciamo anche una primitiva di N/D . Quindi è
sufficiente trattare il caso delle funzioni razionali in cui il grado del numeratore è minore
del grado del denominatore.

3.1.9 Esempio. Calcoliamo
∫

x3

x + 2
d x .

Il numeratore ha grado maggiore di quello del denominatore, che è di promo grado e si
annulla per x =−2 ; effettuando la divisione con la regola di Ruffini abbiamo

1 0 0 0
−2 −2 4 −8

1 −2 4 −8

quindi il quoziente è x2− 2x + 4 e il resto è −8 . Perciò si ha
∫

x3

x + 2
d x =
∫
�

x2− 2x + 4− 8
x + 2

�

d x =
1
3

x3− x2+ 4x − 8 log|x + 2|+ c .

Siano N e D polinomi tali che gr(N )< gr(D) . Sia x0 uno zero di molteplicità r del
polinomio D . Allora D può essere fattorizzato come

D(x) = (x − x0)
r P (x) ,

con P polinomio tale che P (x0) 6= 0 e r ∈N∗ . Si ha

N (x)
D(x)
−

N (x0)
(x − x0)r P (x0)

=
N (x)

(x − x0)r P (x)
−

N (x0)
(x − x0)r P (x0)

=
P (x0)N (x)−N (x0)P (x)
(x − x0)r P (x)P (x0)

.

Il polinomio P (x0)N (x)−N (x0)P (x) si annulla per x = x0 , quindi esiste un polinomio R
tale che P (x0)N (x)−N (x0)P (x) = (x − x0)R(x) . Pertanto

N (x)
D(x)

=
N (x0)

(x − x0)r P (x0)
+

P (x0)N (x)−N (x0)P (x)
(x − x0)r P (x)P (x0)

=

=
N (x0)

(x − x0)r P (x0)
+

R(x)
(x − x0)r−1P (x)P (x0)

.

Poiché il polinomio (x−x0)R(x) è combinazione lineare dei polinomi N e P , il suo grado
è minore o uguale al massimo tra gr(N ) e gr(P ) , pertanto è minore di gr(D) , quindi nella
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funzione razionale R(x)/
�

(x − a)r−1P (x)P (a)
�

il numeratore ha grado minore di quello
del denominatore. Quindi si può ripetere il ragionamento fatto sopra per questa funzione
razionale. Proseguendo, si prova che esistono r numeri a1,a2, . . . ,ar e un polinomio S
tale che gr(S)< gr(P ) per cui

N (x)
D(x)

=
r
∑

j=1

a j

(x − x0) j
+

S(x)
P (x)

.

Se P è costante, cioè di grado 0 , l’ultimo addendo è nullo, in caso contrario si può ripetere
il ragionamento con uno zero del polinomio P . Pertanto, se D può essere fattorizzato
come

D(x) =C
n
∏

`=1

(x − x`)
r` ,

con r` ∈N
∗ , x` ∈R tali che x` 6= xk per ` 6= k , allora per `= 1,2, . . . , n e j = 1,2, . . . , r`

esiste a` j ∈R tale che
N (x)
D(x)

=
n
∑

`=1

r
∑̀

j=1

a` j

(x − x`) j
. (3.1.6)

Abbiamo così scomposto la funzione razionale nella somma di funzioni di ciascuna delle
quali conosciamo una primitiva.

La determinazione dei coefficienti a` j nei casi concreti può essere fatta ripetendo il
ragionamento fatto sopra, alternativamente si può scrivere l’uguaglianza (3.1.6) con dei
coefficienti a` j incogniti e ridurre a denominatore comune il secondo membro; si ottiene
così una uguaglianza tra funzioni razionali con lo stesso denominatore (a meno di costanti
moltiplicative), imponendo l’identità tra i polinomi a numeratore si ottiene un sistema di
equazioni da cui si ricavano i coefficienti a` j .

3.1.10 Esempio. Calcoliamo
∫

4x2

x3+ x2− x − 1
d x .

Risulta

x3+ x2− x − 1= x2(x + 1)− (x + 1) = (x2− 1)(x + 1) = (x − 1)(x + 1)2 .

Come visto sopra, esistono a, b , c ∈R tali che

4x2

x3+ x2− x − 1
=

a
x − 1

+
b

(x + 1)2
+

c
x + 1

.

Per determinare a , b e c riduciamo a denominatore comune il secondo membro. Si ha

a
x − 1

+
b

(x + 1)2
+

c
x + 1

=
a(x + 1)2+ b (x − 1)+ c(x − 1)(x + 1)

(x − 1)(x + 1)2
=

=
ax2+ 2ax + a+ b x − b + c x2− c

(x − 1)(x + 1)2
=
(a+ c)x2+(2a+ b )x + a− b − c

(x − 1)(x + 1)2
.
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Deve essere
4x2 = (a+ c)x2+(2a+ b )x + a− b − c ,

quindi, per il principio di identità dei polinomi, a , b e c sono soluzione del sistema










a+ c = 4 ,

2a+ b = 0 ,

a− b − c = 0 .

Sommando membro a membro le tre equazioni si ottiene 4a = 4 , pertanto a = 1 . Dalla
prima equazione segue c = 3 e dalla seconda b =−2 . Pertanto
∫

4x2

x3+ x2− x − 1
d x =
∫
�

1
x − 1
− 2
(x + 1)2

+
3

x + 1

�

d x =

= log|x − 1|+ 2
x + 1

+ 3 log|x + 1|+ c .

Abbiamo visto come determinare una primitiva di una funzione razionale N/D quan-
do D ha solo zeri reali. Se D ha zeri complessi, allora non può essere fattorizzato in
polinomi di primo grado in campo reale; in tal caso la procedura illustrata sopra consen-
te la scomposizione di N/D solo passando in campo complesso. Dalla scomposizione in
campo complesso si può ottenere una scomposizione in campo reale con funzioni razionali
i cui denominatori sono potenze dei fattori di secondo grado irriducibili di D .

Infatti se z0 ∈C \R è una radice di D di molteplicità r , allora anche z0 è una radice
di D di molteplicità r . Quindi si ha la scomposizione

D(x) = (x − z0)
r (x − z0)

r P (x) ,

con P polinomio a coefficienti reali che non si annulla per x = z0 né per x = z0 . Per
quanto già visto si ha

N (x)
D(x)

=
r
∑

j=1

a j

(x − z0) j
+

r
∑

j=1

b j

(x − z0) j
+

S(x)
P (x)

=
R(x)

�

x2− 2Re z0 x + |z0|2
�r +

S(x)
P (x)

,

con R e S polinomi tali che gr(R)< 2r e gr(S)< gr(P ) . Proviamo che R e S hanno coef-
ficienti reali. Semplifichiamo la notazione ponendo α=−2Re z0 e β= |z0|

2 . Passando al
complesso coniugato si ha

N (x)
D(x)

=
R(x)

(x2+αx +β)r
+

S(x)
P (x)

,

dove R e S sono i polinomi ottenuti da R e S prendendo i complessi coniugati dei
coefficienti. Sottraendo membro a membro si ha

R(x)−R(x)
(x2+αx +β)r

+
S(x)− S(x)

P (x)
= 0 ,

cioè
�

R(x)−R(x)
�

P (x)+
�

S(x)− S(x)
�

(x2+αx +β)r = 0 .
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Poiché P (x) e (x2+αx+β)r non hanno fattori comuni, (x2+αx+β)r divide R(x)−R(x) ,
ma questo polinomio ha grado minore di 2r , quindi è identicamente nullo, perciò R è un
polinomio reale. Per motivi analoghi anche S è reale.

Scomponiamo R(x)/(x2+αx +β)r . Dividendo R(x) per x2+αx +β si ha

R(x)
(x2+αx +β)r

=
Q(x)(x2+αx +β)+T (x)

(x2+αx +β)r
=

Q(x)
(x2+αx +β)r−1

+
T (x)

(x2+αx +β)r
,

con T polinomio di grado al più 1 . Ripetendo il discorso si ottiene la scomposizione

R(x)
(x2+αx +β)r

=
r
∑

j=1

b j x + c j

(x2+αx +β) j
.

Sia quindi

D(x) =C
n
∏

`=1

(x − x`)
r`

m
∏

k=1

(x2+α`x +β`)
sk ,

dove C ∈R∗ , gli x` ∈R sono gli zeri reali di D , αk ,βk ∈R sono tali che α2
k − 4βk < 0

e sia N un polinomio tale che gr(N )< gr(D) . Allora esistono a` j , bki , cki ∈R tali che

N (x)
D(x)

=
n
∑

`=1

r
∑̀

j=1

a` j

(x − x`) j
+

m
∑

k=1

sk
∑

i=1

bki x + cki

(x2+αk x +βk )i
.

Questa scomposizione di una funzione razionale si chiama scomposizione in fratti
semplici.

Conosciamo una primitiva di ciascuno degli addendi della prima sommatoria. Vediamo
come determinare una primitiva degli addendi della seconda sommatoria. Consideriamo
anzitutto il caso i = 1 . Si ha

b x + c
x2+αx +β

=
b
2

2x +α
x2+αx +β

+
c − (αb/2)

x2+αx +β
.

Una primitiva del primo addendo è (b/2) log(x2+αx +β) . Inoltre

1
x2+αx +β

=
1

x2+αx +(α/2)2+β− (α2/4)
=

1
�

x +(α/2)
�2+β− (α2/4)

=

=
1

β− (α2/4)
1

�

(2x +α)/
p

4β−α2
�2+ 1

.

Si verifica facilmente che una primitiva di questa funzione è

1
p

β− (α2/4)
arctan
�

2x +α
p

4β−α2

�

.

Nel caso in cui sia i > 1 si ha

b x + c
(x2+αx +β)i

=
b
2

2x +α
(x2+αx +β)i

+
c − (αb/2)
(x2+αx +β)i

.
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Una primitiva del primo addendo è

− b
2

1
i − 1

1
(x2+αx +β)i−1

.

È possibile determinare una primitiva del secondo addendo con lo stesso metodo usato nel
caso i = 1 se si conosce una primitiva di 1/(x2 + 1)i . Determiniamo una primitiva di
questa funzione. Per i ∈N \ {0,1} , si ha
∫

1
(x2+ 1)i

d x =
∫

1+ x2− x2

(x2+ 1)i
d x =
∫

1
(x2+ 1)i−1

d x −
∫

x
x

(x2+ 1)i
d x =

=
∫

1
(x2+ 1)i−1

d x + x
1

2(i − 1)
1

(x2+ 1)i−1
−
∫

1
2(i − 1)

1
(x2+ 1)i−1

d x =

=
2i − 3

2(i − 1)

∫

1
(x2+ 1)i−1

d x +
1

2(i − 1)
x

(x2+ 1)i−1
.

Questa formula consente di determinare una primitiva per 1/(x2 + 1)i se si conosce una
primitiva di 1/(x2 + 1)i−1 . Poiché conosciamo una primitiva di 1/(x2 + 1) , applicando
ripetutamente la formula si può determinare una primitiva qualunque sia i .

In particolare
∫

1
(x2+ 1)2

d x =
1
2

∫

1
x2+ 1

d x +
1
2

x
x2+ 1

=
1
2

arctan x +
1
2

x
x2+ 1

+ c . (3.1.7)

3.1.11 Esempio. Calcoliamo
∫

x3

(x2+ 2x + 5)2
d x .

Si ha

x3

(x2+ 2x + 5)2
=

x3+ 2x2+ 5x − 2x2− 5x
(x2+ 2x + 5)2

=
x

x2+ 2x + 5
+
−2x2− 4x − 10− x + 10

(x2+ 2x + 5)2
=

=
x − 2

x2+ 2x + 5
+
−x + 10

(x2+ 2x + 5)2
=

=
1
2

2x + 2
x2+ 2x + 5

− 3
x2+ 2x + 5

− 1
2

2x + 2
(x2+ 2x + 5)2

+
11

(x2+ 2x + 5)2
.

Si ha, osservando che il trinomio x2+ 2x + 5 è sempre positivo,
∫

2x + 2
x2+ 2x + 5

d x = log(x2+ 2x + 5)+ c ;

Inoltre
∫

1
x2+ 2x + 5

d x =
∫

1
(x + 1)2+ 4

d x =
∫

1
4

1
�

(x + 1)/2
�2+ 1

d x =
1
2

arctan
� x + 1

2

�

+ c ;

∫

2x + 2
(x2+ 2x + 5)2

d x =− 1
x2+ 2x + 5

+ c .
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Poiché
∫

1
(x2+ 2x + 5)2

d x =
∫

1
16

1
�

�

(x + 1)/2
�2+ 1
�2 d x ,

effettuando la sostituzione t = (x + 1)/2 , quindi x = 2t − 1 , da (3.1.7) segue
∫

1
(x2+ 2x + 5)2

d x =
∫

1
16

1
(t 2+ 1)2

2 d t
�

�

�

t=(x+1)/2
=

=
1
16

�

arctan t +
t

t 2+ 1
+ c
�

�

�

�

t=(x+1)/2
=

1
16

�

arctan
� x + 1

2

�

+
(x + 1)/2
�

(x + 1)/2
�2+ 1

�

+ c =

=
1
16

arctan
� x + 1

2

�

+
1
8

x + 1
x2+ 2x + 5

+ c .

Pertanto
∫

2x + 2
(x2+ 2x + 5)2

d x =
1
2

log(x2+ 2x + 5)− 3
2

arctan
� x + 1

2

�

+
1
2

1
x2+ 2x + 5

+

+
11
16

arctan
� x + 1

2

�

+
11
8

x + 1
x2+ 2x + 5

+ c =

=
1
2

log(x2+ 2x + 5)− 13
16

arctan
� x + 1

2

�

+
1
8

11x + 15
x2+ 2x + 5

+ c .

1) Calcolare
∫ 4

1

x + 3
4x2+ 3x

d x .

2) Calcolare
∫ 1

0

x2− 2
x3+ 5x2+ 12x + 8

d x .

3) Calcolare i seguenti integrali:

a.
∫ 2

1

x2+ 1
x + 1

d x

b.
∫ 5

2

x + 3
x2+ 9

d x

c.
∫ 2

0

1
x2+ 4x + 3

d x

d.
∫ 2

0

x3+ x2+ 1
4x2+ 4x + 1

d x

e.
∫ 3

2

1
x3− x

d x

f.
∫ 3

0

2x
x2− x + 2

d x

g.
∫ 2

1

x + 5
x2+ 4x + 4

d x

h.
∫ 2

0

x2+ 1
3x2+ 5

d x
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i.
∫ 6

1

5
x3+ 5x

d x

j.
∫ 3

0

4x
x4+ 5x2+ 6

d x

k.
∫ 3

0

10x3

x4+ 4x2+ 4
d x

l.
∫ 3

1

x + 10
x3− 25x

d x

Integrali contenenti seni e coseni

Consideriamo integrali del tipo
∫

sinm x cosn x d x ,

con m, n ∈N .
Se n è dispari, cioè n = 2k + 1 con k ∈N , allora si ha

sinm x cosn x = sinm x (cos2x)k cos x = sinm x (1− sin2x)k cos x .

La funzione integranda risulta quindi essere il prodotto di una funzione polinomiale rispetto
al seno per la derivata della funzione seno. Con la sostituzione t = sen x si ottiene
∫

sinm x cosn x d x =
∫

sinm x (1− sin2x)k
d sen x

d x
d x =
∫

t m(1− t 2)k d t ��
t=sen x

.

Abbiamo così ottenuto l’integrale di una funzione polinomiale.
Se m è dispari si procede in modo analogo, scambiando il ruolo di seno e coseno.

3.1.12 Esempio. Calcoliamo
∫

cos3x d x .

Poiché si ha cos3x = (1− sen2x)cos x , risulta evidente, anche senza effettuare esplicita-
mente una sostituzione, che si ha
∫

cos3x d x =
∫

(1− sen2x)cos x d x = sen x − 1
3

sen3x + c .

Se sia m che n sono pari, cioè m = 2h e n = 2k , con h, k ∈ N , allora, dalle
uguaglianze

sen2x =
1− cos(2x)

2
, cos2x =

1+ cos(2x)
2

,

segue

sinm x cosn x =
1

2h+k

�

1− cos(2x)
�h�1+ cos(2x)
�k .

Sviluppando le potenze dei binomi, si ottiene una somma di potenze di cos(2x) . Con il
metodo esposto sopra si trova una primitiva delle potenze con esponente dispari. Le potenze
con esponente pari possono essere trasformate ulteriormente esprimendole in funzione di
cos(4x) . Il passaggio a cos(2x) dimezza l’esponente massimo presente, passando a cos(4x)
l’esponente viene ulteriormente dimezzato. Ripetendo il ragionamento, dopo un numero
finito di passi l’esponente massimo diventa 1 e quindi si può trovare una primitiva.
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3.1.13 Esempio. Calcoliamo
∫

cos4x d x .

Si ha

cos4x = (cos2x)2 =
�

1+ cos(2x)
2

�2

=
1
4
+

1
2

cos(2x)+
1
4

cos2(2x) =

=
1
4
+

1
2

cos(2x)+
1
4

1+ cos(4x)
2

=
3
8
+

1
2

cos(2x)+
1
8

cos(4x) .

Pertanto si ha
∫

cos4x d x =
∫
�

3
8
+

1
2

cos(2x)+
1
8

cos(4x)
�

d x =
3
8

x +
1
4

sen(2x)+
1
32

sen(4x)+ c .

Se nell’integrale di una funzione che dipende da funzioni trigonometriche si riesce a
esprimere la funzione integranda solo mediante la funzione tangente (o cotangente) la so-
stituzione t = tan x (o t = cot x ) solitamente semplifica l’integrale. Supponiamo, in
particolare, che R sia una funzione razionale. Se si pone x = ϕ(t ) = arctan t , quindi
ϕ′(t ) = 1/(t 2+ 1) , allora si ha

∫

R(tan x)d x =
∫

R(t )
1

t 2+ 1
d t
�

�

�

t=tan x
.

quindi l’integrale si trasforma nell’integrale di una funzione razionale.
Nel caso che si calcoli un integrale definito, potrebbe non essere corretto effettuare la

sostituzione individuata sopra. Infatti questa comporta che x appartiene all’immagine della
funzione arcotangente, cioè a ]−π/2,π/2[ . Se l’intervallo di integrazione non è contenuto
in ]−π/2,π/2[ , la sostituzione corretta è x = ϕ(t ) = arctan t + kπ per un opportuno
k ∈Z , in modo che l’immagine di ϕ contenga l’intervallo di integrazione.

3.1.14 Esempio. Calcoliamo
∫ π/4

0

sen x
sen x + cos x

d x .

Dividendo numeratore e denominatore per cos x , che non si annulla nell’intervallo di
integrazione, si ottiene

∫ π/4

0

sen x
sen x + cos x

d x =
∫ π/4

0

sen x
cos x

sen x
cos x

+
cos x
cos x

d x =
∫ π/4

0

tan x
tan x + 1

d x .

Con la sostituzione t = tan x , cioè x = ϕ(t ) = arctan t , si ha
∫ π/4

0

tan x
tan x + 1

d x =
∫ tan(π/4)

tan0

t
t + 1

1
t 2+ 1

d t =
∫ 1

0

t
(t + 1)(t 2+ 1)

d t .

Dobbiamo integrare una funzione razionale con numeratore di grado minore del deno-
minatore, che è già scomposto in fattori irriducibili. Per scomporre la funzione in fratti
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semplici determiniamo a, b , c ∈R tali che

t
(t + 1)(t 2+ 1)

=
a

t + 1
+

b t + c
t 2+ 1

.

Poiché

a
t + 1

+
b t + c
t 2+ 1

=
a(t 2+ 1)+ (b t + c)(t + 1)

(t + 1)(t 2+ 1)
=
(a+ b )t 2+(b + c)t + a+ c

(t + 1)(t 2+ 1)
,

deve essere
t = (a+ b )t 2+(b + c)t + a+ c ,

quindi a, b , c devono verificare il sistema










a+ b = 0 ,

b + c = 1 ,
a+ c = 0 .

Dalla prima equazione risulta b =−a e dalla terza c =−a . Pertanto dalla seconda si ricava
−2a = 1 , da cui a =−1/2 e b = c = 1/2 .

Quindi si ha
∫ 1

0

t
(t + 1)(t 2+ 1)

d t =
1
2

∫ 1

0

�

− 1
t + 1

+
t + 1
t 2+ 1

�

d t =

=
1
2

�

− log|t + 1|+ 1
2

log|t 2+ 1|+ arctan t
�1

0
=

=
1
2

�

− log2+
1
2

log2+ arctan1
�

=− 1
4

log2+
π

8
.

Utilizzando l’identità sen2x + cos2x = 1 , si può di esprimere la funzione integranda
mediante la funzione tangente anche in situazioni in cui questa possibilità non è evidente.

3.1.15 Esempio. Calcoliamo
∫ π/3

0

1
1+ cos2x

d x .

Si ha

1
1+ cos2x

=
sen2x + cos2x

sen2x + 2cos2x
=

sen2x
cos2x

+
cos2x
cos2x

sen2x
cos2x

+ 2
cos2x
cos2x

=
tan2x + 1
tan2x + 2

.

Con la sostituzione t = tan x , cioè x = ϕ(t ) = arctan t , si ha
∫ π/3

0

tan2x + 1
tan2x + 2

d x =
∫ tan(π/3)

tan0

t 2+ 1
t 2+ 2

1
t 2+ 1

d t =
∫

p
3

0

1
t 2+ 2

d t =

=
∫

p
3

0

1
2

1
�

t/
p

2
�2+ 1

d t =
�

1
p

2
arctan
�

t
p

2

�

�

p
3

0

=
1
p

2
arctan
�
p

3
p

2

�

.
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Consideriamo integrali del tipo
∫

R(sen x, cos x)d x ,

con R è una funzione razionale di due variabili.
Effettuiamo la sostituzione t = tan(x/2) . Da tale uguaglianza si ricava, se x ∈ ]−π,π[ ,

x = ϕ(t ) = 2arctan t , quindi ϕ′(t ) = 2(1+ t 2) . Si ha, per x ∈ ]−π,π[ ,

sen x =
2sen(x/2)cos(x/2)

cos2(x/2)+ sen2(x/2)
=

2
sen(x/2)
cos(x/2)

cos(x/2)
cos(x/2)

cos2(x/2)
cos2(x/2)

+
sen2(x/2)
cos2(x/2)

=
2tan(x/2)

1+ tan2(x/2)
,

cos x =
cos2(x/2)− sen2(x/2)
cos2(x/2)+ sen2(x/2)

=

cos2(x/2)
cos2(x/2)

−
sen2(x/2)
cos2(x/2)

cos2(x/2)
cos2(x/2)

+
sen2(x/2)
cos2(x/2)

=
1− tan2(x/2)
1+ tan2(x/2)

.

Pertanto
∫

R(sen x, cos x)d x =
∫

R
�

2t
1+ t 2

,
1− t 2

1+ t 2

�

2
1+ t 2

d t
�

�

�

t=tan(x/2)
;

in quest’ultimo integrale la funzione integranda è razionale.

3.1.16 Esempio. Calcoliamo
∫ π/2

π/3

1
sen x

d x .

Effettuiamo la sostituzione t = tan(x/2) , da cui si ricava x = ϕ(t ) = 2arctan t . Si
ha ϕ′(t ) = 2/(1 + t 2) , per x = π/3 si ha t = tan(π/6) = 1/

p
3 , per x = π/2 si ha

t = tan(π/4) = 1 . Pertanto

∫ π/2

π/3

1
sen x

d x =
∫ 1

1/
p

3

1
2t/(1+ t 2)

2
1+ t 2

d t =
∫ 1

1/
p

3

1
t

d t =
�

log|t |
�1

1/
p

3 =

=− log
1
p

3
=

1
2

log3 .

Se l’intervallo di integrazione non è contenuto in ]−π,π[ , ma è contenuto in ]0,2π[ ,
si può effettuare la sostituzione t = cot(x/2) . In tal caso si ha x = ϕ(t ) = 2arccot t ,
ϕ′(t ) =−1/(1+ t 2) , sin x = 2t/(1+ t 2) e cos x = (t 2− 1)/(1+ t 2) .

In generale se in tutto l’intervallo di integrazione è definita una delle due funzioni
tan(x/2) o cot(x/2) , allora si utilizza tale funzione per la sostituzione. Se invece c’è sia
un punto in cui non è definita tan(x/2) che un punto in cui non è definita cot(x/2) , allora
si può spezzare l’integrale nella somma di più integrali per ciascuno dei quali si può fare
una delle due sostituzioni.
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4) Calcolare
∫ π/2

0

sen x cos x
cos x + 2

d x .

5) Calcolare
∫ π/2

0

3cos x + 2sin x
2+ cos x

d x .

6) Calcolare
∫ π/4

0

1

sin2x + 6sin x cos x + 8cos2x
d x .

7) Calcolare i seguenti integrali:

a.
∫ π/2

π/4
(sen4x + cos4x)d x

b.
∫ π/2

0

cos x
1+ sen2x

d x

c.
∫ π/2

π/6

cos x
2sen2x + cos2x − 5

d x

d.
∫ π/3

0

sen x − 2cos x
2sen x + cos x

d x

e.
∫ π/4

0

cos x
sen x + 2cos x

d x

f.
∫ π/2

0

1
sen x − 2

d x

g.
∫ π/4

0

sen x + sen x cos x
−2cos x + cos x sen2x

d x

h.
∫ π/3

π/4

sen x
sen2x + cos3x − cos x

d x

Integrali contenenti esponenziali

Consideriamo integrali del tipo

∫

R(e x )d x ,

con R funzione razionale.
Per semplificare l’integrale effettuiamo la sostituzione t = e x , cioè x = ϕ(t ) = log t .

Si ha ϕ′(t ) = 1/t , quindi risulta

∫

R(e x )d x =
∫

R(t )
1
t

d t
�

�

�

t=e x

Abbiamo così ottenuto l’integrale di una funzione razionale.
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3.1.17 Esempio. Calcoliamo
∫

1
e2x + e x

d x .

Ponendo t = e x , quindi x = log t , otteniamo
∫

1
e2x + e x

d x =
∫

1
t 2+ t

1
t

d t
�

�

�

t=e x
=
∫

1
t 2(t + 1)

d t
�

�

�

t=e x
.

Scomponiamo la funzione integranda in fratti semplici. Si ha

1
t 2(t + 1)

=
1+ t − t
t 2(t + 1)

=
1
t 2
− 1

t (t + 1)
=

1
t 2
− 1+ t − t

t (t + 1)
=

1
t 2
− 1

t
+

1
t + 1

.

Pertanto
∫

1
t 2(t + 1)

d t =
∫
�

1
t 2
− 1

t
+

1
t + 1

�

d t =− 1
t
− log|t |+ log|t + 1|+ c ,

quindi
∫

1
e2x + e x

d x =−e−x − x + log(e x + 1)+ c .

8) Calcolare
∫ 2

0

cosh x
e x + 2

d x .

9) Calcolare
∫ 1

0

e x + 2e−x

e x + 4e−x
d x .

10) Calcolare i seguenti integrali:

a.
∫ 1

0

e x

e2x + 1
d x

b.
∫ 1

0

e x − e−x

e2x + 1
d x

c.
∫ 1

0

e x + 2
e−x + 3

d x

d.
∫ 1/2

0

1
e2x − 2e x

d x

e.
∫ 1

0

e x + 1
2e x + 3

d x

f.
∫ 1

0

e3x

e2x + 8e−x
d x

g.
∫ 1

0

cosh x + 4senh x
cosh x − senh x

d x

h.
∫ 1

0

senh2x + 2
cosh x

d x
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Integrali contenenti radici

Consideriamo integrali del tipo

∫

R
�

x,
p

ax + b
�

d x ,

con R funzione razionale di due variabili e a ∈R∗ , b ∈R .
Effettuiamo la sostituzione t =

p

ax + b , da cui si ricava x = ϕ(t ) = (t 2− b )/a . Si ha
ϕ′(t ) = 2t/a , quindi

∫

R
�

x,
p

ax + b
�

d x =
∫

R
� t 2− b

a
, t
�

2
a

t d t
�

�

�

t=
p

ax+b
.

L’integrale è così trasformato nell’integrale di una funzione razionale.

3.1.18 Esempio. Calcoliamo
∫

1

x
p

2x + 3
d x .

Effettuiamo la sostituzione t =
p

2x + 3 , cioè x = ϕ(t ) = (t 2− 3)/2 ; si ha ϕ′(t ) = t .
Quindi

∫

1

x
p

2x + 3
d x =
∫

1
�

(t 2− 3)/2
�

t
t d t
�

�

�

t=
p

2x+3
=
∫

2
t 2− 3

d t
�

�

�

t=
p

2x+3
.

Si ha

2
t 2− 3

=
2

�

t +
p

3
��

t −
p

3
�
=

1
p

3

p
3+ t +

p
3− t

�

t +
p

3
��

t −
p

3
�
=

1
p

3

1

t −
p

3
− 1
p

3

1

t +
p

3
,

pertanto

∫

1

x
p

2x + 3
d x =

1
p

3

∫ �

1

t −
p

3
− 1

t +
p

3

�

d t
�

�

�

t=
p

2x+3
=

=
1
p

3

�

log
�

�t −
p

3
�

�− log
�

�t +
p

3
�

�

�
�

�

�

t=
p

2x+3
+ c =

=
1
p

3
log

� �

t −
p

3
�2

�

�

�

t +
p

3
��

t −
p

3
��

�

�

�

�

�

�

t=
p

2x+3

+ c =

=
1
p

3
log
�

t 2− 2
p

3 t + 3
|t 2− 3|

�

�

�

�

�

t=
p

2x+3

+ c =
1
p

3
log
�

2x + 3− 2
p

3
p

2x + 3+ 3
|2x|

�

+ c =

=
1
p

3
log
�

x + 3−
p

6x + 9
|x|

�

+ c .
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Consideriamo integrali del tipo
∫

R

�

x,

√

√

√ax + b
c x + d

�

d x ,

con R funzione razionale di due variabili e a, b , c , d ∈ R tali che ad − b c 6= 0 . Questa
condizione assicura che la funzione sotto radice non è costante.

Effettuiamo la sostituzione t =
Æ

(ax + b )/(c x + d ) . Da qui si ha ax+b = t 2(c x+d ) ,
cioè (c t 2− a)x = b − d t 2 , quindi x = ϕ(t ) = (b − d t 2)/(c t 2− a) . Si ha

ϕ′(t ) =
−2d t (c t 2− a)− 2c t (b − d t 2)

(c t 2− a)2
=

2(ad − b c)t
(c t 2− a)2

.

Quindi
∫

R

�

x,

√

√

√ax + b
c x + d

�

d x =
∫

R
� b − d t 2

c t 2− a
, t
� 2(ad − b c)t
(c t 2− a)2

d t
�

�

�

t=
p

(ax+b )/(c x+d )
.

L’integrale è quindi trasformato nell’integrale di una funzione razionale.

3.1.19 Esempio. Calcoliamo
∫

√

√

√4x + 1
x − 1

d x .

Effettuiamo la sostituzione t =
p

(4x + 1)/(x − 1) . Quindi si ha 4x + 1 = t 2(x − 1) ,
cioè (t 2− 4)x = t 2+ 1 , quindi x = ϕ(t ) = (t 2+ 1)/(t 2− 4) . Si ha

ϕ′(t ) =
2t (t 2− 4)− 2t (t 2+ 1)

(t 2− 4)2
=− 10t

(t 2− 4)2
.

Quindi
∫

√

√

√4x + 1
x − 1

d x =−
∫

t
10t

(t 2− 4)2
d t
�

�

�

t=
p

(4x+1)/(x−1)
=−10
∫

t 2

(t 2− 4)2
d t
�

�

�

t=
p

(4x+1)/(x−1)
.

La funzione integranda è razionale con numeratore di grado minore del denominatore;
scomponiamola in fratti semplici. Si ha (t 2 − 4)2 = (t − 2)2(t + 2)2 , quindi dobbiamo
determinare a, b , c , d ∈R tali che

a
(t − 2)2

+
b

t − 2
+

c
(t + 2)2

+
d

t + 2
=

t 2

(t − 2)2(t + 2)2
.

Si ha
a

(t − 2)2
+

b
t − 2

+
c

(t + 2)2
+

d
t + 2

=

=
a(t + 2)2+ b (t 2− 4)(t + 2)+ c(t − 2)2+ d (t 2− 4)(t − 2)

(t − 2)2(t + 2)2

=
(b + d )t 3+(a+ 2b + c − 2d )t 2+(4a− 4b − 4c − 4d )t + 4a− 8b + 4c + 8d

(t − 2)2(t + 2)2
.
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Pertanto deve essere






















b + d = 0 ,

a+ 2b + c − 2d = 1 ,

a− b − c − d = 0 ,

a− 2b + c + 2d = 0 .

Sommando membro a membro la prima e la terza equazione si ottiene a − c = 0 , som-
mando la seconda e la quarta si ottiene 2a + 2c = 1 , pertanto a = c = 1/4 . Dalla prima
equazione si ha d = −b e sostituendo quanto ricavato finora nella seconda equazione si
ottiene 1/2+ 4b = 1 , quindi b = 1/8 e d =−1/8 . Pertanto

∫

t 2

(t 2− 4)2
d t =

1
8

∫
�

2
(t − 2)2

+
1

t − 2
+

2
(t + 2)2

− 1
t + 2

�

d t =

=
1
8

�

− 2
t − 2

+ log|t − 2| − 2
t + 2
− log|t + 2|
�

.

Quindi

∫

√

√

√4x + 1
x − 1

d x =−10
∫

t 2

(t 2− 4)2
d t
�

�

�

t=
p

(4x+1)/(x−1)
=

=
5
4

�

2
p

(4x + 1)/(x − 1)− 2
− log

�

�

�

�

�

√

√

√4x + 1
x − 1

− 2

�

�

�

�

�

+

+
2

p

(4x + 1)/(x − 1)+ 2
+ log

�

�

�

�

�

√

√

√4x + 1
x − 1

+ 2

�

�

�

�

�

�

+ c =

=
5
4

�

4
p

(4x + 1)/(x − 1)
(4x + 1)/(x − 1)− 4

+ log

�

�

�

�

�

p

(4x + 1)/(x − 1)+ 2
p

(4x + 1)/(x − 1)− 2

�

�

�

�

�

�

+ c =

=
5
4

�

4
p

(4x + 1)(x − 1)
5

+ log

�

�

�

�

�

�
p

(4x + 1)/(x − 1)+ 2
�2

(4x + 1)/(x − 1)− 4

�

�

�

�

�

�

+ c =

=
p

(4x + 1)(x − 1)+
5
4

log

�

8x + 4
p

(4x + 1)(x − 1)
5

�

+ c .

Consideriamo integrali del tipo

∫

R
�

x,
p

a2− x2
�

d x ,

con R funzione razionale di due variabili e a ∈R+ .
Effettuiamo la sostituzione x = ϕ(t ) = a sen t , quindi ϕ′(t ) = a cos t . Si ha

p

a2− x2 =
p

a2− a2 sen2 t =
p

a2 cos2 t = a|cos t | .
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Se si sceglie t ∈ [−π/2,π/2] si ha |cos t |= cos t . Inoltre per tali t risulta t = arcsen(x/a) .
Quindi si ha
∫

R
�

x,
p

a2− x2
�

d x =
∫

R(a sen t ,a cos t )a cos t d t ��
t=arcsen(x/a)

.

L’integrale è così trasformato nell’integrale di una funzione razionale di seni e coseni.

3.1.20 Esempio. Calcoliamo
∫

x + 3
p

4− x2
d x .

Effettuiamo la sostituzione x = ϕ(t ) = 2sen t , quindi ϕ′(t ) = 2cos t . Considerando
t ∈ [−π/2,π/2] si ha t = arcsen(x/2) . Pertanto
∫

x + 3
p

4− x2
d x =
∫

2sen t + 3
p

4− 4sen2 t
2cos t d t
�

�

�

t=arcsen(x/2)
=
∫

(2sen t + 3)d t ��
t=arcsen(x/2)

=

= (−2cos t + 3t + c)��
t=arcsen(x/2)

=−2cos
�

arcsen
x
2

�

+ 3arcsen
x
2
+ c =

=−2

√

√

√

1− sen2
�

arcsen
x
2

�

+ 3arcsen x + c = 3arcsen
x
2
−
p

4− x2+ c .

Consideriamo integrali del tipo
∫

R
�

x,
p

x2− a2
�

d x ,

con R funzione razionale di due variabili e a ∈R+ .
Effettuiamo la sostituzione x = ϕ(t ) = a cosh t , quindi ϕ′(t ) = a sinh t . Si ha
p

x2− a2 =
p

a2 cosh2 t − a2 =
p

a2 sinh2 t = a|sinh t | .

Se si sceglie t ∈ [0,+∞[ si ha |sinh t |= sinh t . Inoltre per tali t risulta t = settcosh(x/a) .
Quindi si ha
∫

R
�

x,
p

x2− a2
�

d x =
∫

R(a cosh t ,a sinh t )a sinh t d t ��
t=settcosh(x/a)

.

Poiché senh e cosh sono funzioni razionali dell’esponenziale, l’integrale è trasformato
nell’integrale di una funzione razionale dell’esponenziale.

La sostituzione è corretta se nell’intervallo di integrazione risulta x ≥ a ; se invece
x ≤−a occorre porre x =−a cosh t .

3.1.21 Esempio. Calcoliamo
∫

p

x2− 9 d x .

Effettuiamo la sostituzione x = ϕ(t ) = 3cosh t , quindi ϕ′(t ) = 3senh t . Si ha

t = settcosh
� x

3

�

= log

�

x
3
+

√

√

√

� x
3

�2

− 1

�

= log
�

x +
p

x2− 9
�

− log3 .
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Pertanto
∫

p

x2− 9 d x =
∫

p

3cosh2 t − 9 3senh t d t ��
t=settcosh(x/3)

= 9
∫

senh2 t d t ��
t=settcosh(x/3)

=

= 9
∫
� e t − e−t

2

�2

d t
�

�

�

t=settcosh(x/3)
=

9
4

∫

(e2t − 2+ e−2t )d t ��
t=settcosh(x/3)

=

=
�

9
8

e2t − 9
2

t − 9
8

e−2t + c
�

�

�

�

t=settcosh(x/3)
=

=
9
8

�

x +
p

x2− 9
3

�2

− 9
2

log
�

x +
p

x2− 9
�

− 9
8

�

3

x +
p

x2− 9

�2

+ c =

=
1
8

�

2x2− 9+ 2x
p

x2− 9
�

− 9
2

log
�

x +
p

x2− 9
�

− 81
8

�

x −
p

x2− 9
x2− (x2− 9)

�2

+ c =

=
1
8

�

2x2− 9+ 2x
p

x2− 9
�

− 9
2

log
�

x +
p

x2− 9
�

− 1
8

�

2x2− 9− 2x
p

x2− 9
�

+ c =

=
1
2

x
p

x2− 9− 9
2

log
�

x +
p

x2− 9
�

+ c .

Consideriamo integrali del tipo
∫

R
�

x,
p

x2+ a2
�

d x ,

con R funzione razionale di due variabili e a ∈R+ .
Effettuiamo la sostituzione x = ϕ(t ) = a sinh t , quindi ϕ′(t ) = a cosh t . Si ha
p

x2+ a2 =
p

a2 sinh2 t + a2 =
p

a2 cosh2 t = a cosh t .

Se si sceglie t ∈ [0,+∞[ risulta t = settsenh(x/a) . Quindi si ha
∫

R
�

x,
p

x2+ a2
�

d x =
∫

R(a sinh t ,a cosh t )a cosh t d t ��
t=settsenh(x/a)

.

Poiché senh e cosh sono funzioni razionali dell’esponenziale, l’integrale è trasformato
nell’integrale di una funzione razionale dell’esponenziale.

3.1.22 Esempio. Calcoliamo
∫

x2
p

x2+ 1 d x .

Effettuiamo la sostituzione x = ϕ(t ) = sinh t , quindi ϕ′(t ) = cosh t . Si ha

t = settsenh x = log
�

x +
p

x2+ 1
�

.

Pertanto
∫

x2
p

x2+ 1 d x =
∫

senh2 t
p

sinh2 t + 1 cosh t d t ��
t=settsenh x

=

=
∫

senh2 t cosh2 t d t ��
t=settsenh x

=
∫
� e t − e−t

2

�2� e t + e−t

2

�2

d t
�

�

�

t=settsenh x
=
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=
1
16

∫

(e4t − 2+ e−4t )d t ��
t=settsenh x

=
�

1
64

e4t − 1
8

t − 1
64

e−4t + c
�

�

�

�

t=settsenh x
=

=
1
64

�

x +
p

x2+ 1
�4
− 1

8
log
�

x +
p

x2+ 1
�

− 1
64

�

x +
p

x2+ 1
�−4
+ c =

=
1
64

�

x +
p

x2+ 1
�4
− 1

8
log
�

x +
p

x2+ 1
�

− 1
64

�

x −
p

x2+ 1
x2− (x2+ 1)

�4

+ c =

=
1
64

�

x4+ 4x3
p

x2+ 1+ 6x2(x2+ 1)+ 4x(x2+ 1)
p

x2+ 1+(x2+ 1)2
�

−

− 1
8

log
�

x +
p

x2+ 1
�

−

− 1
64

�

x4− 4x3
p

x2+ 1+ 6x2(x2+ 1)− 4x(x2+ 1)
p

x2+ 1+(x2+ 1)2
�

+ c =

=
1
8
(2x3+ x)
p

x2+ 1− 1
8

log
�

x +
p

x2+ 1
�

+ c .

Osserviamo che la radice quadrata di un polinomio di secondo grado, che non sia un
quadrato di un polinomio di primo grado, può sempre essere ricondotta ad uno dei tre casi
p

a2− x2 ,
p

x2− a2 ,
p

x2+ a2 .
Infatti, siano α ∈R∗ , β,γ ∈R . Si ha

αx2+βx + γ = α
�

x2+
β

α
x +
β2

4α2
−
β2

4α2
+
γ

α

�

= α
�

�

x +
β

2α

�2

−
β2− 4αγ

4α2

�

.

Se α > 0 e β2− 4αγ > 0 allora, posto a =
Æ

β2− 4αγ/(2α) risulta

Æ

αx2+βx + γ =
p
α

√

√

√

�

x +
β

2α

�2

− a2 .

La presenza del termine x + (β/2α) al posto di x richiede di modificare la sostituzione
ponendo x +(β/2α) = a cosh t .

Se α > 0 e β2− 4αγ < 0 allora, posto a =
Æ

−β2+ 4αγ/(2α) risulta

Æ

αx2+βx + γ =
p
α

√

√

√

�

x +
β

2α

�2

+ a2 .

Se α < 0 e β2− 4αγ > 0 allora, posto a =
Æ

−β2+ 4αγ/(2α) risulta

Æ

αx2+βx + γ =
p
−α

√

√

√

a2−
�

x +
β

2α

�2

.

Non può essere α < 0 e β2− 4αγ < 0 perché in tal caso il polinomio sarebbe sempre
negativo.
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11) Calcolare
∫ 2

1

x + 2
p

x + 2

x +
p

x + 2
d x .

12) Calcolare
∫ 1

1/2

1
x

√

√

√ x + 1
3x − 1

d x .

13) Calcolare
∫ 2

1

p
−x2+ 4

x
d x .

14) Calcolare
∫ 6

0

1

5+
p

x2+ 9
d x .

15) Calcolare
∫ 9

6

2x2+ 9

(2x2− 9)
p

x2− 9
d x .

16) Calcolare
∫ 3

2

4+
p
−x2+ 2x + 3

x − 1
d x .

17) Calcolare i seguenti integrali:

a.
∫ 1

0

p
x

4+ 2
p

x
d x

b.
∫ 0

−3

1

(2− x)
p

1− x
d x

c.
∫ 2

0

x − 1
p

x + 2
d x

d.
∫ 2

1

1

x
p

2x + 1
d x

e.
∫ 2

1

p
x2− 1

x
d x

f.
∫ 3/2

1/2

x − 2
p
−x2+ 2x

d x

g.
∫ 2

0

p
16− x2

2+ x2
d x

h.
∫ 2

0

x
p

x2+ 4+ 2
d x

i.
∫ 1/3

0

p

4− 9x2 d x

j.
∫ 2

0

p
16+ x2

2+ x2
d x
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k.
∫ 1

0

x
p

1+ 8x2

1+ 4x2
d x

l.
∫ 1

0
(x2+ 4)−3/2 d x

m.
∫ 3

2

x2

p
x2− 1

d x

n.
∫ 0

−1/2
x
p

−x2− 4x + 5 d x

o.
∫ 1

0

x3

p
x4+ 2x2+ 2

d x

p.
∫ 3

1

1

x
�
p

4x/(x + 3)+ 2
�

d x

Integrali vari

18) Calcolare
∫ 2

1

log x

3x(log2 x + 4)
d x .

19) Calcolare
∫ π/6

0
2x
−2sen x + 3cos x
(3sen x + 2cos x)3

d x .

20) Calcolare
∫ 2

0

arctan(x + 1)
(4x + 1)3/2

d x .

21) Calcolare
∫ 1

0

xe3x

(e3x + 2)4
d x .

22) Calcolare
∫ 0

−1
(x + 5)

e x + 4e−x

(e x − 4e−x )3
d x .

23) Calcolare
∫ π/4

π/12

p

2+ sen2(2x)
sen(2x)

d x .

24) Calcolare i seguenti integrali:

a.
∫ 2

p
2
arctan
�p

x2− 1
�

d x

b.
∫ 2

0
sen
�p

x
�

cos
�p

x
�

d x

c.
∫ 1

0
e2xpe x + 1 d x

d.
∫ π/2

π/4

x cos x
sen3x

d x
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e.
∫ π2/4

0

1
p

x
1

1+ cos
�p

x
� d x

f.
∫ π/2

π/4
x sen x cos2x d x

g.
∫ 0

−2
2x log(x + 5)d x

h.
∫ π/2

π/4

x
sen2x

d x

i.
∫ 2

1
(x + 1)

e x − 3 e−x

(e x + 4+ 3 e−x )2
d x

j.
∫ 1/2

0
(6x2+ 2) arcsen x d x

k.
∫ log3

log2
(2cosh x + senh x) log(senh x)d x

l.
∫ e

1

cos(π log x)
x

d x

m.
∫ 0

− log2
e2x exp(e2x + 1)d x

n.
∫ 2

1
(x2− 2x)e2x d x

o.
∫ 2/5

0
(5x − 2)2e−5x d x

p.
∫ 2

0
x2 arctan x d x

q.
∫ 1

0
x2 arctan(x3)d x

r.
∫ 2

0
x5e x3

d x

s.
∫ (2/3)π

0
(2x sen3x + x2 cos x)d x

t.
∫ 1/4

0
(4x2+ 1)arcsen(2x)d x

u.
∫ 4

1

1
(x + 1)2

arctan
�p

x
�

d x

v.
∫ 4

0

cosh
�p

x
�

+ 2senh
�p

x
�

�

senh
�p

x
�

+ 2cosh
�p

x
�

�2 d x

w.
∫ π2

π2/4
sen
�p

x
�

cos
�p

x
�

d x

x.
∫ π/4

0

sen(4x)cos(4x)
�

9+ cos2(4x)
�2 log
�

9+cos2(4x)
�

d x

y.
∫ 2

1

x
(9− x2)3/2

log(3x)d x

z.
∫ 3

2
log
�
s

4x − 6
x
+ 3
�

d x
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3.2 Soluzioni e risultati

1) La funzione integranda è razionale, il grado del numeratore è minore del grado del
denominatore. Per calcolarne l’integrale scomponiamola in fratti semplici.

Il denominatore si fattorizza in x(4x + 3) . La scomposizione si può ottenere con un
semplice artificio:

x + 3
x(4x + 3)

=
4x + 3− 3x

x(4x + 3)
=

4x + 3
x(4x + 3)

+
−3x

x(4x + 3)
=

1
x
− 3

4x + 3
.

Quindi una primitiva della funzione integranda è

x 7→ log|x| − 3
4

log|4x + 3| .

Pertanto l’integrale è uguale a
�

log|x| − 3
4

log|4x + 3|
�4

1
= log4− 3

4
log19+

3
4

log7 .

2) La funzione integranda è razionale, il grado del numeratore è minore del grado del
denominatore. Per calcolarne l’integrale scomponiamola in fratti semplici.

Fattorizziamo il denominatore. Il polinomio x3+5x2+12x+8 si annulla per x =−1 ,
quindi è divisibile per (x + 1) . Effettuiamo la divisione con il metodo di Ruffini. Si ha

1 5 12 8
−1 −1 −4 −8

1 4 8 0
Pertanto risulta

x3+ 5x2+ 12x + 8= (x + 1)(x2+ 4x + 8) .

Per il polinomio x2+ 4x + 8 si ha ∆/4= 22− 8=−4< 0 , quindi è irriducibile.
Per scomporre la funzione razionale in fratti semplici determiniamo a, b , c ∈R tali che

x2− 2
x3+ 5x2+ 12x + 8

=
a

x + 1
+

b x + c
x2+ 4x + 8

.

Riducendo a denominatore comune si ottiene

a
x + 1

+
b x + c

x2+ 4x + 8
=

a(x2+ 4x + 8)+ (b x + c)(x + 1)
(x + 1)(x2+ 4x + 8)

=

=
(a+ b )x2+(4a+ b + c)x + 8a+ c

(x + 1)(x2+ 4x + 8)
;

quindi deve essere
x2− 2= (a+ b )x2+(4a+ b + c)x + 8a+ c .

Uguagliando i coefficienti dei due polinomi si ottiene il sistema










a+ b = 1 ,

4a+ b + c = 0 ,
8a+ c =−2 .
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Sottraendo la prima e la terza equazione dalla seconda si ottiene −5a = 1 , quindi a =−1/5 .
Sostituendo tale valore nella prima equazione si ricava b = 6/5 , sostituendo nella terza si
ricava c =−2/5 . Quindi risulta
∫ 1

0

x2− 2
x3+ 5x2+ 12x + 8

d x =
1
5

∫ 1

0

�

− 1
x + 1

+
6x − 2

x2+ 4x + 8

�

d x =

=
1
5

�

− log|x + 1|
�1

0
+

1
5

∫ 1

0

3(2x + 4)− 14
x2+ 4x + 8

d x =

=
1
5

�

− log|x + 1|+ 3 log|x2+ 4x + 8|
�1

0
− 1

5

∫ 1

0

14
x2+ 4x + 8

d x .

Poiché il trinomio x2 + 4x + 8 è irriducibile, per calcolare l’ultimo integrale scriviamolo
sotto forma di un quadrato più una costante. Si ha

x2+ 4x + 8= x2+ 4x + 4+ 4= (x + 2)2+ 4= 4
�

� x + 2
2

�2

+ 1
�

,

pertanto

∫ 1

0

14
x2+ 4x + 8

d x =
∫ 1

0

7

2
�

�

(x + 2)/2
�2+ 1
� d x =
�

7arctan
� x + 2

2

�

�1

0

.

Quindi

∫ 1

0

x2− 2
x3+ 5x2+ 12x + 8

d x =
1
5

�

− log|x + 1|+ 3 log|x2+ 4x + 8| − 7arctan
� x + 2

2

�

�1

0

=

=
1
5

�

− log2+ 3 log13− 7arctan
3
2
− 3 log8+ 7arctan1

�

=

=
1
5

�

−10 log2+ 3 log13− 7arctan
3
2
+

7
4
π
�

.

3)

a.
�

1
2

x2− x + 2 log|x + 1|
�2

1
=

1
2
+ 2 log3− 2 log2

b.
�

1
2

log|x2+ 9|+ arctan
� x

3

�

�5

2

=
1
2

log
34
13
+ arctan

5
3
− arctan

2
3

c.
�

1
2

log|x + 1| − 1
2
|x + 3|
�2

0
= log3− 1

2
log5

d.
�

1
8

x2− 9
16(2x + 1)

− 1
16

log|2x + 1|
�2

0
=

19
20
− 1

16
log5
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e.
�

1
2

log|x + 1|+ 1
2

log|x − 1| − log|x|
�3

2
=

5
2

log2− 3
2

log3

f.
�

log|x2− x+2|+ 2
p

7
arctan
�

2x − 1
p

7

�

�3

0

= log4+
2
p

7
arctan
�

5
p

7

�

+
2
p

7
arctan
�

1
p

7

�

g.
�

− 3
x + 2

+ log|x + 2|
�2

1
=

1
4
+ log4− log3

h.
�

1
3

x − 2

3
p

15
arctan
�
p

3
p

5
x
�

�2

0

=
2
3
− 2

3
p

15
arctan
�

2
p

3
p

5

�

i.
�

log|x| − 1
2

log|x2+ 5|
�6

1
=

3
2

log6− 1
2

log41

j.
�

2 log|x2+ 2| − 2 log|x2+ 3|
�3

0 = 2 log
11
8

k.
�

5 log|x2+ 2|+ 10
1

x2+ 2

�3

0
= 5 log

11
2
− 45

11

l.
�

− 2
5

log|x|+ 3
10

log|x − 5|+ 1
10

log|x + 5|
�3

1
=− 2

5
log3− 1

10
log6

4) La derivata della funzione coseno è la funzione x 7→ − sen x , quindi la funzione inte-
granda è il prodotto tra una funzione in cui la variabile x compare solo come argomento del
coseno e la derivata di tale funzione. È allora evidente che la sostituzione t = ϕ(x) = cos x
trasforma l’integrale in uno più semplice. Abbiamo

∫ π/2

0

sen x cos x
cos x + 2

d x =−
∫ π/2

0

cos x
cos x + 2

d cos x
d x

d x =−
∫ cos(π/2)

cos0

t
t + 2

d t =

=−
∫ 0

1

t + 2− 2
t + 2

d t =
∫ 1

0

�

1− 2
t + 2

�

d t =
�

t − 2 log|t + 2|
�1

0
= 1− 2 log3+ 2 log2 .

5) Trasformiamo l’integrale in modo che la funzione integranda sia razionale effettuando
la sostituzione t = tan(x/2) , cioè x = ϕ(t ) = 2arctan t . Risulta ϕ′(t ) = 2/(1+ t 2) ; per
x = 0 si ha t = tan0= 0 , per x =π/2 si ha t = tan(π/4) = 1 . Quindi si ha

∫ π/2

0

3cos x + 2sin x
2+ cos x

d x =
∫ 1

0

3(1− t 2)/(1+ t 2)+ 4t/(1+ t 2)
2+(1− t 2)/(1+ t 2)

2
1+ t 2

d t =

= 2
∫ 1

0

−3t 2+ 4t + 3
(t 2+ 3)(t 2+ 1)

d t .
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Il denominatore è scomposto nel prodotto di due polinomi di secondo grado irriducibili.
Scomponiamo la funzione integranda in fratti semplici determinando a, b , c , d ∈R tali che

−3t 2+ 4t + 3
(t 2+ 3)(t 2+ 1)

=
at + b
t 2+ 3

+
c t + d
t 2+ 1

.

Si ha
at + b
t 2+ 3

+
c t + d
t 2+ 1

=
(at + b )(t 2+ 1)+ (c t + d )(t 2+ 3)

(t 2+ 3)(t 2+ 1)
=

=
(a+ c)t 3+(b + d )t 2+(a+ 3c)t + b + 3d

(t 2+ 3)(t 2+ 1)
.

Pertanto deve essere


















a+ c = 0 ,

b + d =−3 ,
a+ 3c = 4 ,

b + 3d = 3 .

Sottraendo la prima equazione dalla terza si ha 2c = 4 , quindi c = 2 e a =−c =−2 . Sot-
traendo la seconda equazione dalla quarta si ha 2d = 6 , quindi d = 3 e b =−3− d =−6 .

Quindi si ha
∫ π/2

0

3cos x + 2sin x
2+ cos x

d x = 2
∫ 1

0

�

− 2t + 6
t 2+ 3

+
2t + 3
t 2+ 1

�

d t =

= 2

�

− log|t 2+ 3| − 2
p

3 arctan
�

t
p

3

�

+ log(t 2+ 1)+ 3arctan t

�1

0

=

= 2

�

− log4− 2
p

3 arctan
�

1
p

3

�

+ log2+ 3arctan1+ log3

�

= 2 log
3
2
+
�

3
2
− 2
p

3

�

π .

6) Trasformiamo la funzione integranda, in modo da esprimerla in funzione di tan x .
Si ha

1

sin2x + 6sin x cos x + 8cos2x
=

sin2x + cos2x
sin2x + 6sin x cos x + 8cos2x

=

=

sin2x
cos2x

+ 1

sin2x
cos2x

+ 6
sin x
cos x

+ 8

=
tan2x + 1

tan2x + 6tan x + 8
.

Effettuiamo la sostituzione t = tan x , cioè x = ϕ(t ) = arctan t . Risulta ϕ′(t ) = 1/(t 2+1) ;
per x = 0 si ha t = tan0= 0 , per x =π/4 si ha t = tan(π/4) = 1 . Pertanto
∫ π/4

0

1

sin2x + 6sin x cos x + 8cos2x
d x =
∫ π/4

0

tan2x + 1
tan2x + 6tan x + 8

d x =

=
∫ 1

0

t 2+ 1
t 2+ 6t + 8

1
t 2+ 1

d t =
∫ 1

0

1
t 2+ 6t + 8

d t .
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Scomponiamo la funzione integranda in fratti semplici. Il trinomio t 2+6t+8 si annulla
per

t =−3±
p

32− 8=−3± 1=
�−4 .
−2 .

Pertanto t 2+ 6t + 8= (t + 4)(t + 2) . Si ha

1
(t + 4)(t + 2)

=
1
2

2
(t + 4)(t + 2)

=
1
2

4+ t − 2− t
(t + 4)(t + 2)

=
1
2

1
t + 2
− 1

2
1

t + 4
.

Pertanto
∫ π/4

0

1

sin2x + 6sin x cos x + 8cos2x
d x =

1
2

∫ 1

0

�

1
t + 2
− 1

t + 4

�

d t =

=
1
2

�

log|t + 2| − log|t + 4|
�1

0
=

1
2
(log3− log5− log2+ log4) =

1
2

log
6
5

.

7)

a.
�

3
4

x +
1
16

sen(4x)
�π/2

π/4
=

3
16
π

b.
�

arctan(sen x)
�π/2

0 =
π

4

c.
�

1
4

log|sen x − 2| − 1
4

log|sen x + 2|
�π/2

π/6
=− 1

2
log3+

1
4

log5

d.
�

− log|2sen x + cos x|
�π/3

0 =− log
�p

3+
1
2

�

e.
�

1
5

log|tan x + 2| − 1
10

log|tan2x + 1|+ 2
5

x
�π/4

0
=

1
5

log3− 3
10

log2+
π

10

f.
�

− 2
p

3
arctan
�

2
p

3
tan
� x

2

�

− 1
p

3

�

�π/2

0

=− 2

3
p

3
π

g.
�

log|cos x| − 1
2

log|cos2x + 1|+ arctan(cos x)
�π/4

0
=

1
2

log2− 1
2

log3− π
4
+ arctan

1
p

2

h.
�

1
4

log|1− cos x| − 1
4

log|cos x + 1|+ 1
2cos x − 2

�π/3

π/4
=

1
4

log
�

1+
2
p

2
3

�

+
1
p

2
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8) L’integrale è uguale a
∫ 2

0

e x + e−x

2(e x + 2)
d x =
∫ 2

0

e2x + 1
2e x (e x + 2)

d x .

Con la sostituzione t = e x l’integrale si trasforma nell’integrale di una funzione razionale.
Poniamo quindi x = ϕ(t ) = log t , per cui ϕ′(t ) = 1/t . Per x = 0 si ha t = 1 e per x = 2
si ha t = e2 . Pertanto

∫ 2

0

cosh x
e x + 2

d x =
∫ e2

1

t 2+ 1
2t (t + 2)

1
t

d t =
1
2

∫ e2

1

t 2+ 1
t 2(t + 2)

d t .

Scomponiamo la funzione integranda in fratti semplici, cioè cerchiamo a, b , c ∈R tali
che

t 2+ 1
(t + 2)t 2

=
a
t 2
+

b
t
+

c
t + 2

.

Si ha

a
t 2
+

b
t
+

c
t + 2

=
a(t + 2)+ b t (t + 2)+ c t 2

(t + 2)t 2
=
(b + c)t 2+(a+ 2b )t + 2a

(t + 2)t 2
.

Pertanto deve essere










b + c = 1 ,

a+ 2b = 0 ,
2a = 1 ,

da cui si ricava a = 1/2 , b =−a/2=−1/4 e c = 1− b = 5/4 . Quindi
∫ 2

0

cosh x
e x + 2

d x =
1
2

∫ e2

1

t 2+ 1
t 2(t + 2)

d t =
∫ e2

1

�

1
4

1
t 2
− 1

8
1
t
+

5
8

1
t + 2

�

d t =

=
�

− 1
4

1
t
− 1

8
log|t |+ 5

8
log|t + 2|
�e2

1
=

=− 1
4

e−2− 1
4
+

5
8

log(e2+ 2)+
1
4
− 5

8
log3=− 1

4
e−2+

5
8

log
� e2+ 2

3

�

.

9) Si ha
∫ 1

0

e x + 2e−x

e x + 4e−x
d x =
∫ 1

0

e2x + 2
e2x + 4

d x .

Possiamo trasformare l’integrale in quello di una funzione razionale con la sostituzione
t = e x , tuttavia, poiché l’esponente è sempre 2x , è più utile effettuare la sostituzione
t = e2x ; in questo modo si ottengono polinomi di grado più basso, rendendo più semplice
il calcolo dell’integrale. Quindi poniamo t = e2x , cioè x = ϕ(t ) = (1/2) log t . Risulta
ϕ′(t ) = 1/(2t ) , se x = 0 si ha t = 1 , se x = 1 si ha t = e2 . Pertanto risulta

∫ 1

0

e x + 2e−x

e x + 4e−x
d x =
∫ e2

1

t + 2
t + 4

1
2t

d t =
1
2

∫ e2

1

t + 2
t (t + 4)

d t .



3.2. Soluzioni e risultati 141

Scomponiamo in fratti semplici la funzione integranda. Si ha

t + 2
t (t + 4)

=
1
2

t + t + 4
t (t + 4)

=
1
2

�

1
t + 4

+
1
t

�

.

Pertanto
∫ 1

0

e x + 2e−x

e x + 4e−x
d x =

1
4

∫ e2

1

�

1
t
+

1
t + 4

�

d t =
1
4

�

log|t |+ log|t + 4|
�e2

1 =

=
1
4

�

log(e2)+ log(e2+ 4)− log1− log5
�

=
1
2
+

1
4

log
� e2+ 4

5

�

.

10)

a.
�

arctan(e x )
�1

0 = arctan e − π
4

b.
�

2arctan(e x )+ e−x�1
0 = 2arctan e +

1
e
− π

2
− 1

c.
�

1
3

e x +
5
9

log|3e x + 1|
�1

0
=

1
3

e +
5
9

log(3e + 1)− 1
3
− 5

9
log4

d.
�

1
2

e−x − 1
4

x +
1
4

log|e x − 2|
�1/2

0
=

1
2

e−1/2− 5
8
+

1
4

log(2− e1/2)

e.
�

1
6

log|2e x + 3|+ 1
3

x
�1

0
=

1
6

log(2e + 3)+
1
3
− 1

6
log5

f.
�

e x − 2
3

log|e x + 2|+ 1
3

log|e2x − 2e x + 4| − 2
p

3
arctan
�

e x − 1
p

3

�

�1

0

=

= e − 2
3

log(e + 2)+
1
3

log(e2− 2e + 4)− 2
p

3
arctan
�

e − 1
p

3

�

− 1+
1
3

log3

g.
�

5
4

e2x − 3
2

x
�1

0
=

5
4

e2− 11
4

h.
�

senh x + 2arctan(e x )
�1

0 = senh1+ 2arctan e − π
2

11) Per eliminare la radice dalla funzione integranda, è opportuno effettuare la sostituzio-
ne
p

x + 2= t 2 , cioè x = ϕ(t ) = t 2−2 . Risulta ϕ′(t ) = 2t ; per x = 1 si ha t =
p

3 e per
x = 2 si ha t = 2 . Pertanto
∫ 2

1

x + 2
p

x + 2

x +
p

x + 2
d x =
∫ 2

p
3

t 2− 2+ 2t
t 2− 2+ t

2t d t = 2
∫ 2

p
3

t 3+ 2t 2− 2t
t 2+ t − 2

d t .

La funzione integranda è razionale, il grado del numeratore è maggiore del grado del de-
nominatore, occorre anzitutto scomporla nella somma di un polinomio con una funzione
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razionale avente il numeratore di grado minore di quello del denominatore. Si ha

t 3+ 2t 2− 2t
t 2+ t − 2

=
t 3+ t 2− 2t + t 2

t 2+ t − 2
= t +

t 2+ t − 2− t + 2
t 2+ t − 2

= t + 1+
−t + 2

t 2+ t − 2
.

Il denominatore si annulla per

t =
−1±
p

12− 4 · (−2)
2

=
−1± 3

2
=
�−2 ,

1 ;

pertanto t 2+ t − 2= (t + 2)(t − 1) . Per scomporre in fratti semplici la funzione razionale
integranda dobbiamo determinare a, b ∈R tali che

a
t + 2

+
b

t − 1
=
−t + 2

t 2+ t − 2
.

Riducendo a denominatore comune risulta
a

t + 2
+

b
t − 1

=
a(t − 1)+ b (t + 2)
(t + 2)(t − 1)

=
(a+ b )t − a+ 2b
(t + 2)(t − 1)

,

pertanto deve essere
¨

a+ b =−1 ,

−a+ 2b = 2 .

Sommando membro a membro le due equazioni si ottiene 3b = 1 , quindi b = 1/3 e dalla
prima equazione si ha a =−1− b =−4/3 . Pertanto
∫ 2

1

x + 2
p

x + 2

x +
p

x + 2
d x = 2
∫ 2

p
3

�

t + 1− 4
3

1
t + 2

+
1
3

1
t − 1

�

d t =

=
�

t 2+ 2t − 8
3

log|t + 2|+ 2
3

log|t − 1|
�2

p
3
=

= 4+ 4− 8
3

log4+
2
3

log1− 3− 2
p

3+
8
3

log
�
p

3+ 2
�

− 2
3

log
�
p

3− 1
�

=

= 5− 2
p

3+
8
3

log
�
p

3+ 2
�

− 8
3

log4− 2
3

log
�
p

3− 1
�

.

12) Nella funzione integranda compare la radice quadrata del quoziente di due polinomi
di primo grado; per eliminare la radice è opportuno effettuare una sostituzione in modo che
la nuova variabile di integrazione sia tale radice. Perciò poniamo t =

p

(x + 1)/(3x − 1) ,
quindi (3x − 1)t 2 = x + 1 , da cui si ricava (3t 2 − 1)x = t 2 + 1 . Pertanto effettuiamo la
sostituzione x = ϕ(t ) = (t 2+ 1)/(3t 2− 1) . Si ha

ϕ′(t ) =
2t (3t 2− 1)− 6t (t 2+ 1)

(3t 2− 1)2
=

6t 3− 2t − 6t 3− 6t
(3t 2− 1)2

=
−8t

(3t 2− 1)2
;

per x = 1/2 risulta t =
p

3 , per x = 1 risulta t = 1 , per cui si ha
∫ 1

1/2

1
x

√

√

√ x + 1
3x − 1

d x =
∫ 1

p
3

3t 2− 1
t 2+ 1

t
−8t

(3t 2− 1)2
d t =
∫

p
3

1

8t 2

(t 2+ 1)(3t 2− 1)
d t .
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La funzione integranda è razionale con numeratore di grado minore del denominatore.
Anzitutto è necessario fattorizzare il denominatore. Il polinomio t 2 + 1 è irriducibile,
mentre il polinomio 3t 2 − 1 si scompone in

�
p

3 t + 1
��
p

3 t − 1
�

, perciò la funzione
integranda si scompone in fratti semplici nella forma

8t 2

(t 2+ 1)(3t 2− 1)
=

a
p

3 t − 1
+

b
p

3 t + 1
+

c t + d
t 2+ 1

,

con a , b , c e d opportuni numeri reali. Riducendo a denominatore comune l’espressione
a secondo membro, il numeratore diventa

a
�
p

3 t + 1
�

(t 2+ 1)+ b
�
p

3 t − 1
�

(t 2+ 1)+ (c t + d )(3t 2− 1) =

=
p

3at 3+
p

3 at + at 2+ a+
p

3 b t 3+
p

3 b t − b t 2− b + 3c t 3− c t + 3d t 2− d =

=
�
p

3 a+
p

3 b + 3c
�

t 3+(a− b + 3d )t 2+
�
p

3 a+
p

3 b − c
�

t +(a− b − d ) .

Questo numeratore deve essere uguale a 8t 2 , quindi a , b , c e d debbono soddisfare il
sistema



























p
3 a+
p

3 b + 3c = 0 ,

a− b + 3d = 8 ,
p

3 a+
p

3 b − c = 0 ,

a− b − d = 0 .

Sottraendo membro a membro la terza equazione dalla prima si ottiene 4c = 0 , quindi
c = 0 . Sottraendo membro a membro la quarta equazione dalla seconda si ottiene 4d = 8 ,
quindi d = 2 . La prima equazione diventa

p
3 a+
p

3 b = 0 , quindi b =−a , sostituendo
nell’ultima si ha 2a− 2= 0 , quindi a = 1 e b =−1 .

Perciò si ha

∫ 1

1/2

1
x

√

√

√ x + 1
3x − 1

d x =
∫

p
3

1

8t 2

(t 2+ 1)(3t 2− 1)
d t =

=
∫

p
3

1

�

1
p

3 t − 1
− 1
p

3 t + 1
+

2
t 2+ 1

�

d t =

=
�

1
p

3
log
�

�

p
3 t − 1
�

�− 1
p

3
log
�

�

p
3 t + 1
�

�+ 2arctan t
�

p
3

1

=

=
1
p

3
log2− 1

p
3

log4+ 2arctan
p

3− 1
p

3
log
�
p

3− 1
�

+
1
p

3
log
�
p

3+ 1
�

− 2arctan1=

=− 1
p

3
log2+ 2

π

3
+

1
p

3
log

� �
p

3+ 1
�2

�p
3− 1
��p

3+ 1
�

�

− 2
π

4
=

=− 2
p

3
log2+

2
p

3
log
�
p

3+ 1
�

+
π

6
.
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13) Nella funzione integranda compare il termine
p

−x2+ 4 ; eliminiamo la radice con
una opportuna sostituzione. Poniamo x = ϕ(t ) = 2sen t ; se x appartiene al dominio di in-
tegrazione, allora si ha x/2 ∈ [1/2,1]⊆D(arcsen) , quindi risulta t = ϕ−1(x) = arcsen(x/2)
e gli estremi di integrazione diventano arcsen(1/2) e arcsen1 . Poiché t ∈ [π/6,π/2] si ha
cos t ≥ 0 , quindi
∫ 2

1

p
−x2+ 4

x
d x =
∫ arcsen1

arcsen(1/2)

p

4− (2sen t )2

2sen t
2cos t d t =
∫ π/2

π/6

2cos2 t
sen t

d t .

La funzione integranda può essere scritta come prodotto tra una funzione razionale
di cos t e sen t ; quindi la sostituzione cos t = s trasforma l’integrale in quello di in una
funzione razionale. Si ha infatti
∫ π/2

π/6

2cos2 t
sen t

d t =
∫ π/2

π/6

2cos2 t
sen2 t

sen t d t =
∫ π/2

π/6

2cos2 t
1− cos2 t

sen t d t .

Poiché la derivata della funzione coseno è la funzione x 7→ − sen x , con la sostituzione
s = cos t si ottiene
∫ π/2

π/6

2cos2 t
1− cos2 t

sen t d t =−
∫ cos(π/2)

cos(π/6)

2s2

1− s2
d s =
∫

p
3/2

0

2s2

1− s2
d s .

Il polinomio a numeratore ha lo stesso grado di quello a denominatore, quindi bisogna
scomporre la frazione nella somma di un polinomio e di una frazione il cui numeratore
abbia grado minore di quello del denominatore. Si ha

2s2

1− s2
=

2s2− 2+ 2
1− s2

=−2+
2

1− s2
.

Inoltre
2

1− s2
=
(1+ s)+ (1− s)

1− s2
=

1+ s
1− s2

+
1− s
1− s2

=
1

1− s
+

1
1+ s

.

Pertanto si ha
∫ 2

1

p
−x2+ 4

x
d x =
∫

p
3/2

0

2s2

1− s2
d s =
∫

p
3/2

0

�

−2+
1

1+ s
+

1
1− s

�

d s =

=
�

−2s + log|1+ s | − log|1− s |
�

p
3/2

0 =−
p

3+ log
�
p

3+ 2
2

�

− log
�

2−
p

3
2

�

=

=−
p

3+ log

� �
p

3+ 2
�2

�

2−
p

3
��

2+
p

3
�

�

=−
p

3+ log
�

7+ 4
p

3
�

.

14) Per eliminare la radice è opportuno effettuare la sostituzione x = ϕ(t ) = 3senh t ,
quindi ϕ′(t ) = 3cosh t . Si ha t = settsenh(x/3) , quindi per x = 0 risulta t = 0 , mentre
per x = 6 risulta t = arcsen2= log

�

2+
p

22+ 1
�

= log
�

2+
p

5
�

. Pertanto

∫ 6

0

1

5+
p

x2+ 9
d x =
∫ settsenh2

settsenh0

1

5+
p

9senh2 t + 9
3cosh t d t =
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=
∫ log(2+

p
5)

0

3cosh t
5+ 3cosh t

d t =
∫ log(2+

p
5)

0

3e t + 3e−t

10+ 3e t + 3e−t
d t =

=
∫ log(2+

p
5)

0

3e2t + 3
3e2t + 10e t + 3

d t .

Per calcolare l’integrale è opportuno eliminare l’esponenziale, ponendo s = e t ; quindi
effettuiamo la sostituzione t = h(s) = log s ; poiché h ′(s) = 1/s , si ha

∫ log(2+
p

5)

0

3e2t + 3
3e2t + 10e t + 3

d t =
∫ exp(log(2+

p
5))

e0

3s2+ 3
3s2+ 10s + 3

1
s

d s =

=
∫ 2+

p
5

1

3s2+ 3
(3s2+ 10s + 3)s

d s .

Dobbiamo integrare una funzione razionale con numeratore di grado minore del deno-
minatore. Fattorizziamo il denominatore. Il trinomio 3s2+ 10s + 3 si annulla per

s =
−5±
p

25− 9
3

=
−5± 4

3
=







−3 ,

− 1
3

,

pertanto si ha la fattorizzazione

3s2+ 10s + 3= 3(s + 3)
�

s +
1
3

�

= (s + 3)(3s + 1) .

Per scomporre la funzione integranda in fratti semplici determiniamo a, b , c ∈ R tali
che risulti

a
s
+

b
s + 3

+
c

3s + 1
=

3s2+ 3
(3s2+ 10s + 3)s

,

Si ha

a
s
+

b
s + 3

+
c

3s + 1
=

a(s + 3)(3s + 1)+ b s(3s + 1)+ c s(s + 3)
s(3s2+ 10s + 3)

=

=
(3a+ 3b + c)s2+(10a+ b + 3c)s + 3a

s(3s2+ 10s + 3)
.

Pertanto a, b , c devono verificare il sistema










3a+ 3b + c = 3 ,

10a+ b + 3c = 0 ,
3a = 3 .

Quindi a = 1 e rimane il sistema
¨

3b + c = 0 ,

b + 3c =−10 .
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Dalla prima equazione segue c =−3b ; sostituendo nella seconda si ottiene b − 9b =−10 ,
da cui segue b = 5/4 e c =−15/4 . Perciò risulta

∫ 6

0

1

5+
p

x2+ 9
d x =

1
4

∫ 2+
p

5

1

�

4
s
+

5
s + 3
− 15

3s + 1

�

d s =

=
1
4

�

4 log|s |+ 5 log|s + 3| − 5 log|3s + 1|
�2+
p

5
1 =

= log
�

2+
p

5
�

+
5
4

log
�

5+
p

5
�

− 5
4

log
�

7+ 3
p

5
�

− 5
4

log4+
5
4

log4=

= log
�

2+
p

5
�

+
5
4

log

� �

5+
p

5
��

7− 3
p

5
�

�

7+ 3
p

5
��

7− 3
p

5
�

�

= log
�

2+
p

5
�

+
5
4

log
�

5− 2
p

5
�

.

15) La funzione integranda è funzione razionale di x e
p

x2− 9 , quindi è utile effettuare
la sostituzione x = ϕ(t ) = 3cosh t , quindi ϕ′(t ) = 3senh t . Si ha t = settcosh(x/3) , quin-
di per x = 6 risulta t = settcosh2 = log

�

2+
p

22− 1
�

= log
�

2+
p

3
�

, mentre per x = 3

risulta t = settcosh3= log
�

2+
p

32− 1
�

= log
�

2+
p

8
�

. Pertanto

∫ 9

6

2x2+ 9

(2x2− 9)
p

x2− 9
d x =
∫ settcosh3

settcosh2

18cosh2 t + 9

(18cosh2 t − 9)
p

9cosh2 t − 9
3senh t d t =

=
∫ log
�

2+
p

8
�

log
�

2+
p

3
�

2cosh2 t + 1

2cosh2 t − 1
d t =
∫ log
�

2+
p

8
�

log
�

2+
p

3
�

2(e t + e−t )2/4+ 1
2(e t + e−t )2/4− 1

d t =

=
∫ log
�

2+
p

8
�

log
�

2+
p

3
�

e2t + 2+ e−2t + 2
e2t + 2+ e−2t − 2

d t =
∫ log
�

2+
p

8
�

log
�

2+
p

3
�

e4t + 4e2t + 1
e4t + 1

d t .

Rimane da integrare una funzione razionale di e2t ; per eliminare gli esponenziali si può por-
re s = e2t , perciò effettuiamo la sostituzione t = h(s) = (1/2) log s . Si ha h ′(s) = 1/(2s) ,
gli estremi di integrazione diventano

exp
�

2 log
�

2+
p

3
�

�

=
�

2+
p

3
�2 = 7+ 4

p
3 ,

exp
�

2 log
�

3+
p

8
�

�

=
�

3+
p

8
�2 = 17+ 12

p
2 .

quindi risulta

∫ log
�

2+
p

8
�

log
�

2+
p

3
�

e4t + 4e2t + 1
e4t + 1

d t =
∫ 17+12

p
2

7+4
p

3

s2+ 4s + 1
s2+ 1

1
2s

d s =
1
2

∫ 17+12
p

2

7+4
p

3

s2+ 4s + 1
s(s2+ 1)

d s .

La funzione integranda è razionale e il suo denominatore è già fattorizzato; per scomporre
in fratti semplici è sufficiente osservare che

s2+ 4s + 1
s(s2+ 1)

=
s2+ 1

s(s2+ 1)
+

4s
s(s2+ 1)

=
1
s
+

4
s2+ 1

.
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Quindi l’integrale è uguale a

1
2

∫ 17+12
p

2

7+4
p

3

�

1
s
+

4
s2+ 1

�

d s =
1
2

�

log|s |+ 4arctan s
�17+12

p
2

7+4
p

3 =

=
1
2

log
�

17+ 12
p

2
�

+ 2arctan
�

17+ 12
p

2
�

− 1
2

log
�

7+ 4
p

3
�

− 2arctan
�

7+ 4
p

3
�

.

16) La funzione integranda è funzione razionale della variabile x e della radice quadrata
di un polinomio di secondo grado in x ; occorre innanzitutto effettuare una sostituzione
che consenta di eliminare tale radice, trasformando l’integranda in una funzione razionale.
Si ha

−x2+ 2x + 3=−(x2− 2x − 3) =−(x2− 2x + 1)+ 4= 4− (x − 1)2 ;

quindi, per eliminare la radice dalla funzione integranda, risulta utile porre x − 1= 2sen t ,
cioè x = ϕ(t ) = 1+2sen t e ϕ′(t ) = 2cos t . Poiché (x − 1)/2 ∈ [1/2,1]⊆D(arcsen) , si ha
t = ϕ−1(x) = arcsen

�

(x−1)/2
�

, quindi per x = 2 si ha t = arcsen(1/2) =π/6 e per x = 3

si ha t = arcsen1 = π/2 . Se t ∈ [π/6,π/2] si ha cos t ≥ 0 , quindi
p

1− sen2 t = cos t ;
pertanto risulta

∫ 3

2

4+
p
−x2+ 2x + 3

x − 1
d x =
∫ π/2

π/6

4+
p

4− (2sen t )2

2sen t
2cos t d t =

=
∫ π/2

π/6

4+ 2cos t
2sen t

2cos t d t =
∫ π/2

π/6

4cos t + 2cos2 t
sen t

d t .

Questa funzione integranda può essere facilmente trasformata nel prodotto di una fun-
zione razionale di cos t moltiplicata per sen t . Abbiamo infatti

∫ π/2

π/6

4cos t + 2cos2 t
sen t

d t =
∫ π/2

π/6

4cos t + 2cos2 t
sen2 t

sen t d t =

=
∫ π/2

π/6

4cos t + 2cos2 t
1− cos2 t

sen t d t .

Poiché la derivata della funzione coseno è l’opposto della funzione seno, con la sostituzione
s = cos t , si ottiene l’integrale di una funzione razionale:

∫ π/2

π/6

4cos t + 2cos2 t
1− cos2 t

sen t d t =−
∫ cos(π/2)

cos(π/6)

4s + 2s2

1− s2
d s =
∫

p
3/2

0

2s2+ 4s
1− s2

d s ,

La funzione integranda è razionale, il polinomio a numeratore ha lo stesso grado di
quello a denominatore, quindi occorre scomporre la frazione nella somma di un polinomio
e di una frazione il cui numeratore abbia grado minore di quello del denominatore. Si ha

2s2+ 4s
1− s2

=
2s2− 2+ 2+ 4s

1− s2
=−2+

4s + 2
1− s2

,
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Dobbiamo scomporre in fratti semplici la funzione
4s + 2
1− s2

. Poiché 1− s2 si fattorizza in

(1+ s)(1− s) , la scomposizione in fratti semplici è della forma

a
1+ s

+
b

1− s
,

con a e b numeri reali da determinare. Si ha

a
1+ s

+
b

1− s
=

a(1− s)+ b (1+ s)
(1+ s)(1− s)

=
(b − a)s + a+ b

1− s2
;

affinché questo sia uguale a (4s + 2)/(1− s2) , i coefficienti a e b soddisfare il sistema
¨

b − a = 4 ,

a+ b = 2 .

Sommando membro a membro si ottiene 2b = 6 , da cui b = 3 ; sottraendo membro a
membro si ottiene −2a = 2 , da cui a =−1 . Quindi si ha

∫ 3

2

4+
p
−x2+ 2x + 3

x − 1
d x =
∫

p
3/2

0

4s + 2s2

1− s2
d s =
∫

p
3/2

0

�

−2− 1
1+ s

+
3

1− s

�

d s =

=
�

−2s − log|1+ s | − 3 log|1− s |
�

p
3/2

0
=−
p

3− log
�
p

3+ 2
2

�

− 3 log
�

2−
p

3
2

�

.

17)

a.
�

1
2

x − 2
p

x + 4 log
�

�2+
p

x
�

�

�1

0
=− 3

2
+ 4 log3− 4 log2

b.
�

−2arctan
�p

1− x
�

�0

−3
=− π

2
+ 2arctan2

c.
�

2
3
(x + 2)3/2− 6

p
x + 2
�2

0
=− 20

3
+

14
3

p
2

d.
�

log
�

�

p
2x + 1− 1
�

�− log
�

�

p
2x + 1+ 1
�

�

�2

1
= log

��
p

5− 1
��p

3+ 1
�

�p
5+ 1
��p

3− 1
�

�

e.
h

p

x2− 1− arctan
�p

x2− 1
�

i2

1
=
p

3− π
3

f.
�

−arcsen(x − 1)−
p

−x2+ 2x
�3/2

1/2
=− π

3

g.
�

3arctan
�

3x
p

16− x2

�

− arcsen
�

1
4

x
�

�2

0

=
5
6
π
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h.
h

p

x2+ 4− 2 log
�p

x2+ 4+ 2
�

i2

0
= 2
p

2− 2 log
�
p

8+ 2
�

− 2+ 2 log4

i.
�

x

s

1− 9
4

x2+
2
3

arcsen
�

3
2

x
�

�1/3

0

=
1

2
p

3
+
π

9

j.
�p

7 arctan
�
p

7 x
p

16+ x2

�

+ settsenh
�

1
4

x
�

�2

0

=
p

7 arctan
p

7
p

5
+ settsenh

1
2

k.
�

1
4

p

1+ 8x2− 1
4

arctan
�p

1+ 8x2
�

�1

0
= 1− 1

4
arctan5+

π

16

l.
�

x

4
p

x2+ 4

�1

0

=
1

4
p

5

m.
�

1
2

x
p

x2− 1+
1
2

log
�

x +
p

x2− 1
�

�3

2
= 3
p

2+
1
2

log
�

3+ 2
p

2
�

−
p

3− 1
2

log
�

2+
p

3
�

n.
�

− 1
3
(−x2− 4x + 5)3/2− (x + 2)

p

−x2− 4x + 5− 9arcsen
� x + 2

3

�

�0

−1/2

=

=− 11
3

p
5− 9arcsen

2
3
+

45
8

p
3+

3
2
π

o.
�

1
2

p

x4+ 2x2+ 2− 1
2

log
�p

x4+ 2 x2+ 2+ x2+ 1
�

�1

0
=

=
p

5
2
− 1

2
log
�
p

5+ 2
�

− 1
p

2
+

1
2

log
�
p

2+ 1
�

p.





1
p

4x/(x + 3)+ 2
− 3

4
log

�

�

�

�

�

√

√

√ 4x
x + 3

+ 2

�

�

�

�

�

− 1
4

log

�

�

�

�

�

√

√

√ 4x
x + 3
− 2

�

�

�

�

�

+ log

�

�

�

�

�

√

√

√ 4x
x + 3

�

�

�

�

�





3

1

=

=
1
p

2+ 2
− 3

4
log
�
p

2+ 2
�

− 1
4

log
�

2−
p

2
�

+
1
2

log2− 1
3
+

3
4

log3

18) La funzione integranda è il prodotto tra una funzione in cui la variabile x compa-
re solo come argomento del logaritmo e la derivata della funzione logaritmo; ponendo
ϕ(x) = log x , si ha

log x

3x(log2 x + 4)
=

ϕ(x)

3
�

�

ϕ(x)
�2+ 4
� ϕ′(x) .

Pertanto è utile effettuare la sostituzione t = ϕ(x) = log x . Si ha
∫ 2

1

log x

3x(log2 x + 4)
d x =
∫ log2

0

t
3(t 2+ 4)

d t .
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Ameno di costanti moltiplicative, il numeratore della funzione integranda è la derivata del
denominatore, quindi si trova facilmente una primitiva. Si ha
∫ log2

0

t
3(t 2+ 4)

d t =
∫ log2

0

1
6

2t
t 2+ 4

d t =
�

1
6

log|t 2+ 4|
�log2

0
=

1
6

log(log2 2+ 4)− 1
6

log4 .

19) La funzione integranda è il prodotto di due funzioni di ciascuna delle quali si trova
facilmente una primitiva: il primo fattore ha la primitiva x2 , mentre il secondo fattore si
presenta nella forma g ′(x)

�

g (x)
�−3 , con g (x) = 3sen x+2cos x , quindi una sua primitiva è

−(1/2)
�

g (x)
�−2 . Pertanto è possibile integrare per parti in duemodi diversi; evidentemente

è opportuno derivare il fattore 2x , perché con tale scelta rimane da integrare una funzione
in cui la variabile x compare esclusivamente come argomento delle funzioni seno e coseno,
cosa che non accade nell’altro caso. Si ha
∫ π/6

0
2x
−2sen x + 3cos x
(3sen x + 2cos x)3

d x =

=
�

2x
−1

2(3sen x + 2cos x)2

�π/6

0
−
∫ π/6

0
2

−1
2(3sen x + 2cos x)2

d x =

=
� −x
(3sen x + 2cos x)2

�π/6

0
+
∫ π/6

0

1
(3sen x + 2cos x)2

d x .

Il primo addendo è uguale a

−π/6
�

3(1/2)+ 2
�p

3/2
�

�2 =−
π

6
4

21+ 12
p

3
=− 2

9
7− 4
p

3
�

7+ 4
p

3
��

7− 4
p

3
�
π=

=
2
9

�

4
p

3− 7
�

π .

Rimane da calcolare l’integrale del quoziente tra una costante e una funzione omogenea
di grado 2 in seno e coseno. Si può esprimere tale funzione tramite la funzione tangente,
poiché l’intervallo di integrazione è incluso nel suo dominio. Si ha

1
(3sen x + 2cos x)2

=
sen2x + cos2x
(3sen x + 2cos x)2

=

sen2x
cos2x

+ 1

�

3
sen x
cos x

+ 2
�2 =

tan2x + 1
(3tan x + 2)2

;

pertanto è utile effettuare la sostituzione tan x = t . Poiché [0,π/6] è incluso nell’imma-
gine della funzione arcotangente, si ha x = ϕ(t ) = arctan t , da cui ϕ′(t ) = 1/(1+ t 2) . Per
x = 0 si ha t = tan0= 0 , per x =π/6 si ha t = tan(π/6) = 1/

p
3 . Pertanto risulta

∫ π/6

0

1
(3sen x + 2cos x)2

d x =
∫ π/6

0

tan2x + 1
(3tan x + 2)2

d x =
∫ 1/
p

3

0

t 2+ 1
(3t + 2)2

1
1+ t 2

d t =

=
∫ 1/
p

3

0

1
(3t + 2)2

d t =
�

− 1
3

1
3t + 2

�1/
p

3

0
=− 1

3
1
�

3/
p

3
�

+ 2
+

1
3

1
2
=− 1

3
p

3+ 6
+

1
6
=
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=− 6− 3
p

3
�

6+ 3
p

3
��

6− 3
p

3
�
+

1
6
=− 2−

p
3

3
+

1
6
=

1
p

3
− 1

2
.

Quindi
∫ π/6

0
2x
−2sen x + 5cos x
(5sen x + 2cos x)3

d x =
� −x
(5sen x + 2cos x)2

�π/6

0
−
�

1
5(5t + 2)

�1/
p

3

0
=

=
2
9

�

4
p

3− 7
�

π+
1
p

3
− 1

2
.

20) La funzione integranda si può esprimere sotto forma di prodotto

arctan(x + 1) (4x + 1)−3/2 ,

ed è facile trovare una primitiva del secondo fattore, mentre il primo fattore ha come deriva-
ta una funzione razionale. Per questo è utile integrare per parti, derivando il primo fattore.
Una primitiva di (4x + 1)−3/2 è −(1/2)(4x + 1)−1/2 . Quindi si ha
∫ 2

0

arctan(x + 1)
(4x + 1)3/2

d x =
�

− 1
2

arctan(x + 1)
1

p
4x + 1

�2

0

+
1
2

∫ 2

0

1
(x + 1)2+ 1

1
p

4x + 1
d x =

=− 1
6

arctan3+
1
2

arctan1+
1
2

∫ 2

0

1
x2+ 2x + 2

1
p

4x + 1
d x =

=− 1
6

arctan3+
π

8
+

1
2

∫ 2

0

1

(x2+ 2x + 2)
p

4x + 1
d x .

In questo integrale compare il termine
p

4x + 1 , per ricondurci all’integrale di una
funzione razionale poniamo t =

p
4x + 1 , cioè 4x+1= t 2 , da cui x = (t 2−1)/4 . Quindi

effettuiamo la sostituzione x = ϕ(t ) = (t 2−1)/4 ; si ha ϕ′(t ) = t/2 . Per x = 0 si ha t = 1 ,
mentre per x = 2 si ha t = 3 , perciò risulta

1
2

∫ 2

0

1

(x2+ 2x + 2)
p

4x + 1
d x =

1
2

∫ 3

1

1
�

(t 2− 1)2/16+ 2(t 2− 1)/4+ 2
�

t
1
2

t d t =

=
∫ 3

1

4
t 4− 2t 2+ 1+ 8t 2− 8+ 32

d t =
∫ 3

1

4
t 4+ 6t 2+ 25

d t .

Abbiamo l’integrale di una funzione razionale, che ha numeratore di grado minore
del denominatore, quindi può essere scomposta in fratti semplici. Occorre fattorizzare il
denominatore t 4 + 6t 2 + 25 ; tale polinomio è biquadratico. Ponendo s = t 2 si ottiene il
polinomio s2 + 6s + 25 il cui discriminante è 62− 4 · 25=−64< 0 , quindi il polinomio
non ha radici reali. Perciò il polinomio t 4 + 6t 2 + 25 si fattorizza nel prodotto di due
trinomi di secondo grado irriducibili.

La ricerca dei due fattori può essere effettuata in vari modi. Si possono determinare le
radici complesse del polinomio e quindi fattorizzarlo nel campo complesso; infine, combi-
nando opportunamente a due a due i fattori trovati, si ricava la fattorizzazione reale. Alter-
nativamente si può esprimere il polinomio come prodotto di due trinomi con coefficienti
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incogniti, imporre la condizione che il prodotto sia uguale al polinomio da scomporre e
ricavare i coefficienti.

Si può anche ottenere la fattorizzazione ricorrendo ad un semplice artificio. Si ha infatti

t 4+ 6t 2+ 25= t 4+ 10t 2+ 25− 4t 2 = (t 2+ 5)2− (2t )2 = (t 2+ 5+ 2t )(t 2+ 5− 2t ) .

Per calcolare l’integrale dobbiamo scomporre la funzione integranda in fratti semplici, cioè
dobbiamo determinare i numeri reali a , b , c e d tali che

4
t 4+ 6t 2+ 25

=
at + b

t 2+ 2t + 5
+

c t + d
t 2− 2t + 5

.

Si ha

at + b
t 2+ 2t + 5

+
c t + d

t 2− 2t + 5
=
(at + b )(t 2− 2t + 5)+ (c t + d )(t 2+ 2t + 5)

(t 2+ 2t + 5)(t 2− 2t + 5)
=

=
at 3− 2at 2+ 5at + b t 2− 2b t + 5b + c t 3+ 2c t 2+ 5c t + d t 2+ 2d t + 5d

(t 2+ 2t + 5)(t 2− 2t + 5)
=

=
(a+ c)t 3+(−2a+ b + 2c + d )t 2+(5a− 2b + 5c + 2d )t + 5b + 5d

(t 2+ 2t + 5)(t 2− 2t + 5)
,

quindi a , b , c e d devono verificare il sistema






















a+ c = 0 ,

−2a+ b + 2c + d = 0 ,

5a− 2b + 5c + 2d = 0 ,

5b + 5d = 4 .

Dalla prima equazione si ha c =−a e, sostituendo, il sistema diventa






















c =−a ,

−2a+ b − 2a+ d = 0 ,

−2b + 2d = 0 ,

5b + 5d = 4 .

Dalla terza equazione si ottiene d = b , quindi restano le equazioni 10b = 4 e 4a = 2b .
Pertanto b = 2/5 e a = 1/5 , da cui segue d = 2/5 e c =−1/5 . Si ha quindi

4
t 4+ 6t 2+ 25

=
1
5

� t + 2
t 2+ 2t + 5

+
−t + 2

t 2− 2t + 5

�

.

Quindi si ha
∫ 3

1

4
t 4+ 6t 2+ 25

d t =
1
5

∫ 3

1

� t + 2
t 2+ 2t + 5

+
−t + 2

t 2− 2t + 5

�

d t =

=
1
10

∫ 3

1

�

2t + 2
t 2+ 2t + 5

+
2

t 2+ 2t + 5
− 2t − 2

t 2− 2t + 5
+

2
t 2− 2t + 5

�

d t =
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=
1
10

∫ 3

1

�

2t + 2
t 2+ 2t + 5

+
2

(t + 1)2+ 4
− 2t − 2

t 2− 2t + 5
+

2
(t − 1)2+ 4

�

d t =

=
1
10

∫ 3

1

�

2t + 2
t 2+ 2t + 5

+
1
2

1
�

(t + 1)/2
�2+ 1

− 2t − 2
t 2− 2t + 5

+
1
2

1
�

(t − 1)/2
�2+ 1

�

d t =

=
1
10

�

log|t 2+ 2t + 5|+ arctan
� t + 1

2

�

− log|t 2− 2t + 5|+ arctan
� t − 1

2

�

�3

1

=

=
1
10

�

log20+ arctan2− log8+ arctan1− log8− arctan1+ log4
�

=

=
1
10

�

log
5
4
+ arctan2
�

.

Pertanto
∫ 2

0

arctan(x + 1)
(4x + 1)3/2

d x =
π

8
− 1

6
arctan3+

1
10

arctan2+
1
10

log
5
4

.

21) Si ha
∫ 1

0

xe3x

(e3x + 2)4
d x =

1
3

∫ 1

0
x

3e3x

(e3x + 2)4
d x ;

la funzione integranda è prodotto di due funzioni di ciascuna delle quali si trova facilmen-
te una primitiva: il primo fattore ammette la primitiva x2/2 , il secondo è nella forma
g ′(x)
�

g (x)
�−4 , con g (x) = e3x + 2x , quindi una sua primitiva è −

�

g (x)
�−3
/3 . Si può

integrare per parti in due modi diversi; evidentemente conviene derivare il fattore x , per-
ché in tal caso nell’integrale che rimane da calcolare la variabile x compare solo in un
esponenziale. Si ha
∫ 1

0

xe3x

(e3x + 2)4
d x =

1
3

�

−x
1

3(e3x + 2)3

�1

0
+

1
3

∫ 1

0

1
3(e3x + 2)3

d x .

Per calcolare l’integrale rimasto è utile porre t = e3x , cioè effettuare la sostituzione
x = ϕ(t ) = (1/3) log t . Si ha ϕ′(t ) = 1/(3t ) , quindi risulta
∫ 1

0

1
(e3x + 2)3

d x =
∫ e3

1

1
(t + 2)3

1
3t

d t =
1
3

∫ e3

1

1
t (t + 2)3

d t .

Dobbiamo integrare una funzione razionale con numeratore di grado minore del de-
nominatore, che è già scomposto in fattori irriducibili. Per scomporre la funzione in fratti
semplici determiniamo a, b , c , d ∈R tali che

1
t (t + 2)3

=
a
t
+

b
t + 2

+
c

(t + 2)2
+

d
(t + 2)3

,

cioè

1= a(t 3+ 6t 2+ 12t + 8)+ b t (t 2+ 4t + 4)+ c t (t + 2)+ d t =

= (a+ b )t 3+(6a+ 4b + c)t 2+(12a+ 4b + 2c + d )t + 8a .
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Quindi deve essere






















a+ b = 0 ,

6a+ 4b + c = 0 ,

12a+ 4b + 2c + d = 0 ,
8a = 1 .

Dall’ultima equazione si ricava a = 1/8 , quindi dalla prima si ha b = −a = −1/8 ; sosti-
tuendo nella seconda si ottiene c = −2a = −1/4 e quindi, dalla terza, d = −4a = −1/2 .
Pertanto

∫ e3

1

1
t (t + 2)3

d t =
∫ e3

1

�

1
8t
− 1

8(t + 2)
− 1

4(t + 2)2
− 1

2(t + 2)3

�

d t =

=
�

1
8

log|t | − 1
8

log|t + 2|+ 1
4(t + 2)

+
1

4(t + 2)2

�e3

1
.

Quindi

∫ 1

0

xe3x

(e3x + 2)4
d x =

1
3

�

−x
1

3(e3x + 2)3

�1

0
+

1
3

∫ 1

0

1
3(e3x + 2)3

d x =

=
1
3

�

−x
1

3(e3x + 2)3

�1

0
+

1
27

�

1
8

log|t | − 1
8

log|t + 2|+ 1
4(t + 2)

+
1

4(t + 2)2

�e3

1
=

=− 1
9

1
(e3+ 2)3

+

+
1
27

�

1
8

log(e3)− 1
8

log(e3+ 2)+
1

4(e3+ 2)
+

1
4(e3+ 2)2

+
1
8

log3− 1
12
− 1

36

�

=

=
1
27

� e6+ 5e3− 6
4(e3+ 2)3

+
1
8

log
�

3
e3+ 2

�

+
19
72

�

.

22) La funzione integranda è prodotto di due fattori; Il secondo fattore è nella forma
g ′(x)/
�

g (x)
�3 , con g (x) = e x − 4e−x , quindi una sua primitiva è (−1/2)/

�

g (x)
�2 . Perciò,

integrando per parti, risulta

∫ 0

−1
(x + 5)

e x + 4e−x

(e x − 4e−x )3
d x =
�

− 1
2
(x + 5)

1
(e x − 4e−x )2

�0

−1

+
1
2

∫ 0

−1

1
(e x − 4e−x )2

d x .

La variabile di integrazione x compare solo all’esponente, eventualmente con un segno
meno. Quindi è utile effettuare la sostituzione t = e x , cioè x = ϕ(t ) = log t . Si ha
ϕ′(t ) = 1/t , quindi risulta

∫ 0

−1

1
(e x − 4e−x )2

d x =
∫ 1

e−1

1
(t − 4t−1)2

1
t

d t =
∫ 1

e−1

t
(t 2− 4)2

d t =− 1
2

�

1
t 2− 4

�1

e−1

.
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Quindi l’integrale è uguale a
�

− 1
2
(x + 5)

1
(e x − 4e−x )2

�0

−1

− 1
2

�

1
t 2− 4

�1

e−1

=

=− 5
2

1
(1− 4)2

+ 2
1

(e−1− 4e)2
− 1

4
1

1− 4
+

1
4

1
e−2− 4

=

=− 5
18
+

2e2

(1− 4e2)2
+

1
12
+

e2

4(1− 4e2)
=− 7

36
+

9e2− 4e4

4(1− 4e2)2
.

23) È facile trasformare la funzione integranda nel prodotto di una funzione in cui la
variabile x compare solo nella forma cos(2x) per la derivata della funzione x 7→ cos(2x) .
Infatti si ha
p

2+ sen2(2x)
sen(2x)

=

p

2+ sen2(2x)
sen2(2x)

sen(2x) =

p

3− cos2(2x)
1− cos2(2x)

�

− 1
2

d cos(2x)
d x

�

.

Quindi effettuiamo la sostituzione t = cos(2x) . Per x =π/12 si ha t = cos(π/6) =
p

3/2 ,
mentre per x =π/4 si ha x = cos(π/2) = 0 . Pertanto
∫ π/4

π/12

p

2+ sen2(2x)
sen(2x)

d x =− 1
2

∫ 0

p
3/2

p
3− t 2

1− t 2
d t =

1
2

∫

p
3/2

0

p
3− t 2

1− t 2
d t .

Eliminiamo la radice con un’ulteriore sostituzione. Poniamo t = ϕ(s) =
p

3 sen s ,
quindi, considerando s ∈ [−π/2,π/2] , si ha s = arcsen

�

t/
p

3
�

e ϕ′(s) =
p

3 cos s . Per-
tanto

1
2

∫

p
3/2

0

p
3− t 2

1− t 2
d t =

1
2

∫ arcsen(1/2)

arcsen0

p
3− 3sen2 s

1− 3sen2 s

p
3 cos s d s =

=
1
2

∫ π/6

0

p
3cos2 s

1− 3sen2 s

p
3 cos s d s =

3
2

∫ π/6

0

cos2 s
1− 3sen2 s

d s .

La funzione integranda può facilmente essere trasformata in una funzione che dipende
solo da tan s . Infatti si ha

cos2 s
1− 3sen2 s

=
cos2 s

cos2 s − 2sen2 s
=

1
1− (2sen2 s/cos2 s)

=
1

1− 2tan2 s
.

Quindi

3
2

∫ π/6

0

cos2 s
1− 3sen2 s

d s =
3
2

∫ π/6

0

1
1− 2tan2 s

d s =
3
2

∫ π/6

0

1
(1− 2tan2 s)(1+ tan2 s)

d tan s
d s

d s .

Pertanto, ponendo σ = tan s , si ottiene

3
2

∫ π/6

0

cos2 s
1− 3sen2 s

d s =
3
2

∫ tan(π/6)

tan0

1
(1− 2σ2)(1+σ2)

dσ =
3
2

∫ 1/
p

3

0

1
(1− 2σ2)(1+σ2)

dσ .

La funzione integranda è razionale. Il denominatore si fattorizza come
�

1+
p

2 σ
��

1−
p

2 σ
�

(σ2+ 1) .
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Scomponiamo la funzione integranda in fratti semplici, determinando a, b , c , d ∈ R tali
che risulti

1
(1− 2σ2)(1+σ2)

=
a

1+
p

2 σ
+

b

1−
p

2 σ
+

cσ + d
σ2+ 1

.

Poiché la funzione a primo membro è pari rispetto a σ anche quella a secondo membro
deve esserlo, quindi si ha c = 0 . Passando a denominatore comune si ha

a

1+
p

2 σ
+

b

1−
p

2 σ
+

d
σ2+ 1

=

=
a
�

1−
p

2 σ
�

(σ2+ 1)+ b
�

1+
p

2 σ
�

(σ2+ 1)+ d
�

1+
p

2 σ
��

1−
p

2 σ
�

(1− 2σ2)(1+σ2)
=

=
a
�

−
p

2 σ3+σ2−
p

2 σ + 1
�

+ b
�p

2 σ3+σ2+
p

2 σ + 1
�

+ d (−2σ2+ 1)
(1− 2σ2)(1+σ2)

=

=

�

−
p

2 a+
p

2 b
�

σ3+(a+ b − 2d )σ2+
�

−
p

2 a+
p

2 b
�

σ + a+ b + d

(1− 2σ2)(1+σ2)
.

Il numeratore è uguale a 1 , se i coefficienti a, b , d verificano il seguente sistema






















−a+ b = 0 ,

a+ b − 2d = 0 ,

−a+ b = 0 ,

a+ b + d = 1 .

Dalla prima equazione si ha a = b , sostituendo nella seconda si ricava d = a . Sostituendo
nella quarta si ottiene 3a = 1 , pertanto a = b = d = 1/3 . Quindi

3
2

∫ 1/
p

3

0

1
(1− 2σ2)(1+σ2)

dσ =
1
2

∫ 1/
p

3

0

�

1

1+
p

2 σ
+

1

1−
p

2 σ
+

1
σ2+ 1

�

dσ =

=
1
2

�

1
p

2
log
�

�

p
2 σ + 1
�

�− 1
p

2
log
�

�

p
2 σ − 1
�

�+ arctanσ
�1/
p

3

0

=

=
1

2
p

2
log

�p
2
p

3
+ 1

�

− 1

2
p

2
log

�

1−
p

2
p

3

�

+
1
2

arctan
�

1
p

3

�

=

=
1

2
p

2
log
�
p

3+
p

2
p

3−
p

2

�

+
π

12
.

24)

a.
�

x arctan
�p

x2− 1
�

− settcosh x
�2
p

2
=

2
3
π− log
�

2+
p

3
�

− π

2
p

2
+ log
�
p

2+ 1
�

b.
�

− 1
2

p
x cos
�

2
p

x
�

+
1
4

sen
�

2
p

x
�

�2

0
=− 1
p

2
cos
�

2
p

2
�

+
1
4

sen
�

2
p

2
�
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c.
�

2
5
(e x + 1)5/2− 2

3
(e x + 1)3/2
�1

0
=

2
5
(e + 1)5/2− 2

3
(e + 1)3/2− 4

p
2

15

d.
�

− x
2sen2x

− 1
2

cot x
�π/2

π/4
=

1
2

e.
�

2tan
�p

x
2

�

�π2/4

0

= 2

f.
�

− 1
3

x cos3x +
1
3

sen x − 1
9

sen3x
�π/2

π/4
=

2
9
+
π

24
p

2
− 5

18
p

2

g.
�

(x2− 25) log(x + 5)− 1
2

x2+ 5x
�0

−2
=−25 log5+ 21 log3+ 12

h.
�

−x cot x + log|sen x|
�π/2
π/4 =

π

4
+

1
2

log2

i.
�

−(x + 1)
1

e x + 4+ 3 e−x
+

1
2

log|e x + 1| − 1
2

log|e x + 3|
�2

1
=

=−3
1

e2+ 4+ 3 e−2
+ 2

1
e + 4+ 3 e−1

+
1
2

log
�

(e2+ 1)(e + 3)
(e2+ 3)(e + 1)

�

j.
�

(2x3+ 2x)arcsen x +
2
3

x2
p

1− x2+
10
3

p

1− x2
�1/2

0
=

5
24
π+

7
p

3
4
− 10

3

k.
�

(2senh x + cosh x) log(senh x)− 3
2

e x +
1
2

e−x + log|e x + 1| − log|e x − 1|
�log3

log2
=

=
91
6

log2− 97
12

log3− 19
12

l.
�

1
π

sen(π log x)
�e

1
= 0

m.
�

1
2

exp(e2x + 1)
�0

− log2
=

1
2
(e2− e5/4)

n.
�

1
4
(2x2− 6x + 3)e2x

�2

1
=

1
4
(e2− e4)

o.
�

− 1
5
(25x2− 10x + 2)e−5x

�2/5

0
=

2
5
(1− e−2)
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p.
�

1
3

x3 arctan x − 1
6

x2+
1
6

log|1+ x2|
�2

0
=

8
3

arctan2− 2
3
+

1
6

log5

q.
�

1
3

x3 arctan(x3)− 1
6

log|1+ x6|
�1

0
=
π

12
− 1

6
log2

r.
�

1
3
(x3− 1)e x3
�2

0
=

7
3

e8+
1
3

s.
�

2x
�

− cos x sen2x
3

+
cos x

3

�

+
2 sen3x

9
− 2sen x

3
+x2 sen x
�(2/3)π

0

=− π
18
−
p

3
4
+

2

3
p

3
π2

t.
�

�

4
3

x3+ x
�

arcsen(2x)+
�

2
9

x2+
11
18

�

p

1− 4x2

�1/4

0

=
13
288
π+

5
p

3
16
− 11

18

u.
�

−
arctan
�p

x
�

x + 1
+
p

x
2x + 2

+
arctan
�p

x
�

2

�4

1

=
3
10

arctan2− 1
20

v.
�

− 2
p

x
senh
�p

x
�

+ 2cosh
�p

x
� +

4
p

3
arctan
�p

3 exp
�p

x
�

�

�4

0

=

=− 4
senh2+ 2 cosh2

+
4
p

3
arctan
�
p

3 e2�− 4

3
p

3
π

w.
�

−
p

x cos2�px
�

+
1
2

sen
�p

x
�

cos
�p

x
�

+
1
2

p
x
�π2

π2/4
=− 3

4
π

x.
�

log
�

9+ cos2(4x)
�

72+ 8cos2(4x)
+

1
72+ 8cos2(4x)

�π/8

0

= 0

y.
�

log(3x)
p

9− x2
+

1
6

log
�

�

�3+
p

9− x2
�

�

�−
1
6

log
�

�

�3−
p

9− x2
�

�

�

�2

1

=

=
1
p

5
log6+

1
6

log
�

3+
p

5
�

−1
6

log
�

3−
p

5
�

− 1

2
p

2
log3−1

6
log
�

3+2
p

2
�

+
1
6

log
�

3−2
p

2
�

z.
�

�

x +
6
5

�

log
�
s

4x − 6
x
+ 3
�

+
3
10

log
�

�

�

�

s

4x − 6
x
− 2
�

�

�

�

− 3
2

log
�
s

4x − 6
x
+ 2
�

�3

2

=

=
21
5

log
�
p

2+ 3
�

+
3
10

log
�

2−
p

2
�

− 3
2

log
�

2+
p

2
�

− 16
5

log4+
3
2

log3



4

Integrali generalizzati

4.1 Esercizi

Illustriamo lo studio dell’integrabilità in senso generalizzato di funzioni definite in un
intervallo che ha minimo, ma non ha massimo, sia nel caso in cui l’intervallo sia limitato
che nel caso che esso sia superiormente illimitato. Lo studio dell’integrabilità in intervalli
che hanno massimo, ma non hanno minimo è del tutto analogo. Il caso degli intervalli
privi sia di massimo che di minimo va trattato spezzando l’intervallo nell’unione di due
intervalli con un punto in comune, che è il massimo di un intervallo e il minimo dell’altro,
e studiando l’integrabilità in ciascuno dei due sottoinervalli.

Lo studio della convergenza dell’integrale generalizzato di una funzione sull’interval-
lo [a, b [ , dove a ∈ R , b ∈ ]a,+∞] , può essere fatto direttamente determinando una
primitiva della funzione integranda e studiandone il limite in b .

4.1.1 Esempio. Studiamo la convergenza dell’integrale generalizzato
∫ 1

0

x
1− x2

d x .

L’integrale è generalizzato, perché la funzione integranda non è definita in 1 . Si ha
∫

x
1− x2

d x =− 1
2

∫

1
x2− 1

d x2

d x
d x =− 1

2
log|x2− 1|+ c

quindi

lim
y→1−

∫ y

0

x
1− x2

d x = lim
y→1−

�

− 1
2

log|x2− 1|
�y

0
= lim

y→1−

�

− 1
2

log|y2− 1|
�

=+∞ .

Pertanto l’integrale è divergente.

4.1.2 Esempio. Studiamo la convergenza dell’integrale generalizzato
∫ +∞

0
xe−x d x .

L’integrale è generalizzato, perché l’intervallo di integrazione è superiormente illimita-
to, occorre quindi studiare

lim
y→+∞

∫ y

0
xe−x d x .



160 Capitolo 4. Integrali generalizzati

Integrando per parti si ha
∫

xe−x d x =−xe−x +
∫

e−x d x =−xe−x − e−x + c ,

quindi

lim
y→+∞

∫ y

0
xe−x d x = lim

y→+∞

�

−xe−x − e−x�y
0 = lim

y→+∞
(−ye−y − e−y + 1) = 1 .

Pertanto l’integrale è convergente e
∫ +∞

0
xe−x d x = 1 .

Nel caso in cui non si possa calcolare esplicitamente l’integrale risultano utili alcuni
criteri che consentono di stabilire se un integrale generalizzato è convergente o divergente.

Nel caso di integrale generalizzato su un intervallo superiormente illimitato, se esiste il
limite a +∞ della funzione integranda e questo è diverso da 0 , allora l’integrale è diver-
gente. In particolare divergente a +∞ se il limite è positivo e divergente a −∞ se il limite
è negativo.

4.1.3 Esempio. Studiamo la convergenza dell’integrale generalizzato
∫ +∞

0
arctan x d x .

L’integrale è generalizzato, perché l’intervallo di integrazione è superiormente illimita-
to. Si ha limx→+∞ arctan x =π/2 , quindi l’integrale diverge a +∞ .

La maggioranza dei criteri che si possono utilizzare consente di ricondurre la convergen-
za o divergenza dell’integrale generalizzato di una funzione alla convergenza o divergenza
dell’integrale generalizzato di un’altra funzione. Per poterli applicare è utile conoscere il
carattere dell’integrale generalizzato di alcune funzioni campione.

Tra le funzioni campione più di frequente utilizzate vi sono le funzioni di tipo potenza.
Sia α ∈R+ . Risulta

∫ +∞

1

1
xα

d x
�converge se α > 1,

diverge se α≤ 1,

∫ b

b−1

1
(b − x)α

d x
�converge se α < 1,

diverge se α≥ 1.

Nel seguito [a, b [ indicherà sempre un intervallo con a ∈ R e b ∈ ]a,+∞] e f , g
saranno funzioni da [a, b [ a R continue.

Il criterio del confronto afferma che se, ∀x ∈ [a, b [ , si ha 0≤ f (x)≤ g (x) , allora
∫ b

a
g (x)d x converge =⇒

∫ b

a
f (x)d x converge ;

∫ b

a
f (x)d x diverge =⇒

∫ b

a
g (x)d x diverge .



4.1. Esercizi 161

4.1.4 Esempio. Studiamo la convergenza dell’integrale generalizzato

∫ +∞

1

1
x − log x

d x .

L’integrale è generalizzato, perché l’intervallo di integrazione è superiormente illimita-
to. La funzione integranda ha valori positivi, non è possibile calcolare esplicitamente l’inte-
grale. Possiamo facilmente minorare la funzione integranda con una funzione di cui cono-
sciamo l’integrabilità. Si ha, ∀x ∈ [1,+∞[ , 1/(x− log x)≥ 1/x e la funzione x 7→ 1/x ha
integrale in [1,+∞[ divergente. Pertanto, per il criterio del confronto, anche l’integrale
studiato diverge.

4.1.5 Esempio. Studiamo la convergenza dell’integrale generalizzato

∫ 1

0

e x

p
1− x2

d x .

L’integrale è generalizzato, perché la funzione integranda non è definita in 1 . La fun-
zione integranda ha valori positivi, non è possibile calcolare esplicitamente l’integrale. Pos-
siamo facilmente maggiorare la funzione integranda con una funzione di cui conosciamo
l’integrabilità. Si ha, ∀x ∈ [0,1[ , e x/

p
1− x2 ≤ e/

p
1− x2 e risulta

lim
y→1

∫ y

0

e
p

1− x2
d x = lim

y→1

�

e arcsen x
�y

0 = lim
y→1

e arcsen y =
eπ
2

.

Quindi
∫ 1

0 e/
p

1− x2 d x converge, pertanto, per il criterio del confronto, anche l’integrale
studiato converge.

Il criterio del confronto asintotico afferma che se, ∀x ∈ [a, b [ , si ha f (x) ≥ 0 ,
g (x)≥ 0 e f (x)∼ g (x) , per x→ b , allora

∫ b

a
f (x)d x converge ⇐⇒

∫ b

a
g (x)d x converge .

4.1.6 Esempio. Studiamo la convergenza dell’integrale generalizzato

∫ +∞

1

x + 1
p

x4+ 2
d x .

L’integrale è generalizzato, perché l’intervallo di integrazione è superiormente illimita-
to. La funzione integranda ha valori positivi e per x→+∞ si ha

x + 1
p

x4+ 2
∼ x
p

x4
=

1
x

.

La funzione x 7→ 1/x ha integrale generalizzato in [1,+∞[ divergente, quindi, per il
criterio del confronto asintotico, anche l’integrale studiato diverge.
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4.1.7 Esempio. Studiamo la convergenza dell’integrale generalizzato

∫ 1

0

e x log(2− x)
(1− x)3/2

d x .

L’integrale è generalizzato, perché la funzione integranda non è definita in 1 . La fun-
zione integranda ha valori positivi e per x→ 1 si ha e x → e e

log(2− x) = log
�

1+(1− x)
�

∼ 1− x ,

pertanto
e x log(2− x)
(1− x)3/2

∼
e(1− x)
(1− x)3/2

=
e

(1− x)1/2
.

La funzione x 7→ 1/(1−x)1/2 ha integrale generalizzato in [0,1[ convergente, quindi anche
x 7→ e/(1−x)1/2 ha integrale convergente. Pertanto, per il criterio del confronto asintotico,
l’integrale studiato converge.

Il confronto tra due funzioni per x→ b consente di ottenere informazioni sull’integra-
bilità in senso generalizzato anche se le due funzioni non sono asintotiche. Se, ∀x ∈ [a, b [ ,
si ha f (x)≥ 0 , g (x)≥ 0 e f (x) = o

�

g (x)
�

, per x→ b , allora

∫ b

a
g (x)d x converge =⇒

∫ b

a
f (x)d x converge ;

∫ b

a
f (x)d x diverge =⇒

∫ b

a
g (x)d x diverge .

4.1.8 Esempio. Studiamo la convergenza dell’integrale generalizzato

∫ +∞

1

log x
p

x + 1
x

d x .

L’integrale è generalizzato, perché l’intervallo di integrazione è superiormente illimita-
to. La funzione integranda ha valori non negativi. Per x→+∞ si ha

log x
p

x + 1
x

∼
log x
p

x
x

=
log x
x1/2

;

quindi, poiché 1/x1/2 = o(log x/x1/2) , si ha anche

1
x1/2
= o
�

log x
p

x + 1
x

�

.

Poiché
∫+∞

1 1/x1/2 d x è divergente, per il criterio del confronto asintotico anche l’integrale
studiato è divergente.
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4.1.9 Esempio. Studiamo la convergenza dell’integrale generalizzato
∫ 1

0

− log x
p

x
d x .

L’integrale è generalizzato, perché la funzione integranda non è definita in 0 . La fun-
zione integranda ha valori non negativi. Per x → 0 la funzione logaritmo tende a −∞
ed è trascurabile rispetto a qualunque funzione potenza, in particolare log x = o(x−1/4) .
Pertanto

− log x
p

x
= o
�

x−1/4

p
x

�

= o
�

1
x3/4

�

.

Poiché
∫ 1

0 1/x3/4 d x è convergente, per il criterio del confronto asintotico l’integrale stu-
diato è convergente.

Per studiare la convergenza dell’integrale generalizzato di una funzione f a valori non
positivi è sufficiente considerare la funzione − f , che è a valori non negativi, e utilizzare gli
strumenti illustrati sopra. Nel caso invece di funzioni che assumono valori sia positivi che
negativi si può studiare l’integrabilità del valore assoluto della funzione integranda. Infatti
un integrale generalizzato assolutamente convergente è convergente, cioè

∫ b

a

�

� f (x)
�

�d x converge =⇒
∫ b

a
f (x)d x converge .

4.1.10 Esempio. Studiamo la convergenza dell’integrale generalizzato
∫ +∞

0
x sen x e−x d x .

L’integrale è generalizzato, perché l’intervallo di integrazione è superiormente illimita-
to. Si ha, ∀x ∈ [0,+∞[ , |x sen x e−x | ≤ xe−x ; come visto nell’esempio 4.1.2

∫+∞
0 x e−x d x

converge, quindi, per il criterio del confronto
∫+∞

0 |x sen x e−x |d x converge, pertanto
anche l’integrale studiato converge.

1) Studiare la convergenza dell’integrale generalizzato
∫ +∞

2

p
4x − 8 arctan
�

1/(4x)
�

x log(x/2)
d x .

2) Studiare la convergenza dell’integrale generalizzato
∫ −2

−∞

x4e2x
�

cosh(x + 2)− 1
�

(−2− x)9/4
d x .

3) Determinare per quali a ∈R è convergente l’integrale generalizzato
∫ +∞

1
x2 log(1+ xa)d x .
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4) Determinare per quali a ∈R+ è convergente l’integrale generalizzato

∫ +∞

1

x4+ xa

x8+ xa
d x .

5) Determinare per quali a ∈R è convergente l’integrale generalizzato

∫ 1

0

�

exp
�

(1+ x)4a�− e
�

(x6a + x−3a)d x .

6) Determinare per quali a ∈R è convergente l’integrale generalizzato

∫ +∞

−∞

e (a+2)x

e2ax + 4
d x .

7) Studiare la convergenza dei seguenti integrali generalizzati:

a.
∫ 1

0

x
1− x

d x

b.
∫ 2

0
log
� x

x + 1

�

d x

c.
∫ +∞

0

x
e x

d x

d.
∫ +∞

1

�

exp
� p

x
x2+ 1

�

− 1
�

d x

e.
∫ +∞

2
x log
� x + 2

x + 3

�

d x

f.
∫ 3

0

1
x9/4

�p

x4+ x2− x2
�

d x

g.
∫ 3

1

1
log x

� x − 1
3− x

�2/3

d x

h.
∫ 1

0

p

− log x
1−
p

x
d x

i.
∫ +∞

0

p
e x − 1

senh x
d x

j.
∫ +∞

1

p
x2+ 2x −

p
x2+ 2

(x − 1)5/4
d x

k.
∫ +∞

9

�p
x − 3
�

x log x

(x2− 9x)3/2
d x

l.
∫ +∞

0

1
exp
�

x +(1/x)
�

− e x
d x

m.
∫ +∞

−∞

e x + x4

cosh(2x)
d x

n.
∫ +∞

−∞

e x + x4

cosh x
d x

o.
∫ +∞

−∞

x4 cosh x
cosh2x

d x

p.
∫ +∞

1

1

(x2− 1)
p

log x
d x

q.
∫ +∞

0

log(x + 1)
x2+ 2x3

d x

r.
∫ +∞

0

log(1+ x)
p

x arctan x
d x
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8) Determinare per quali a appartenenti all’insieme indicato a fianco i seguenti integrali
generalizzati sono convergenti:

a.
∫ 2

0

xa

xa+2+ x3
d x R

b.
∫ +∞

1

x2

1+ eax
d x R

c.
∫ 1

0

�

�sen(xa)
�

�

p
x

d x R

d.
∫ +∞

1

x−a

p
1+ ax2− 1

d x R+

e.
∫ +∞

−∞

eax

cosh x
d x R

f.
∫ +∞

−∞

1
e x +
�

1+ |x|
�a d x R

g.
∫ +∞

1

1
xa + x1/a

d x R+

h.
∫ +∞

1

p
x4a + 1

x5a + x3a
d x R+

i.
∫ 2

0

xa + x2a

x4−a + x4−2a
d x R+

j.
∫ 1

0

x7+ xa

x8+ x4a
d x R+

k.
∫ 1

0

sen(x3a)
x9a + x3

d x R+

l.
∫ 1

0

log(1+ x2)
p

xa + x14−a
d x R+

m.
∫ 1

0

�

�log(1− x)
�

�

a+1

(x2− x3)a
d x R+

n.
∫ +∞

0

log(1+ xa+1)
x3/2 arctan(xa)

d x R+

o.
∫ +∞

1

log
�

4cosh(ax)
�

x−3a + x4a
d x R

p.
∫ +∞

0

(e x − 1)a

senh x
d x R+

q.
∫ 1

0

1
x3a(1− x4a)

d x R+

r.
∫ +∞

0

�

exp
� ax2

x2+ 1

�

− e
�

d x R

s.
∫ +∞

1
xa sen
�

1
x5

�

arctan(1+ xa)d x R

t.
∫ +∞

0

1
x2a+3+ x3a

log
�

1+ 2x9

1+ x9

�

d x R+

u.
∫ 1

0

1
(1+ 2x)a − (1+ x)a

d x R∗

v.
∫ +∞

1

1
(2+ x)a − (1+ x)a

d x R∗
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4.2 Soluzioni e risultati

1) Il dominio di integrazione è superiormente illimitato; inoltre la funzione integranda
non è definita in 2 , quindi occorre studiare la convergenza dell’integrale sia in un intervallo
del tipo [b ,+∞[ (per un fissato b ∈ ]2,+∞[ ) che in un intervallo del tipo ]2, b ] . La
funzione integranda ha valori positivi.

Per x→+∞ si ha
p

4x − 8∼ 2
p

x ,

arctan
�

1
4x

�

∼ 1
4x

,

log
� x

2

�

= log x − log2∼ log x .

Pertanto p
4x − 8 arctan
�

1/(4x)
�

x log(x/2)
∼

2
p

x
�

1/(4x)
�

x log x
=

1
2x3/2 log x

.

Poiché, per x ≥ e , si ha log x ≥ 1 , risulta 1/(2x3/2 log x)≤ 1/(2x3/2) . Si ha 3/2> 1 , quindi
quest’ultima funzione è integrabile in [b ,+∞[ , pertanto, per il criterio del confronto
asintotico, la funzione studiata è è integrabile in senso generalizzato in [b ,+∞[ .

Per x→ 2 si ha

arctan
�

1
4x

�

→ arctan
1
8

,

log
� x

2

�

∼ x
2
− 1=

x − 2
2

,

x→ 2 .
Pertanto

p
4x − 8 arctan
�

1/(4x)
�

x log(x/2)
∼

2
p

x − 2 arctan(1/8)
x − 2

=
2arctan(1/8)
(x − 2)1/2

.

Poiché 1/2< 1 , questa funzione è integrabile in ]2, b ] , quindi, per il criterio del confronto
asintotico, anche la funzione studiata è integrabile in senso generalizzato in ]2, b ] .

Possiamo quindi concludere che l’integrale generalizzato converge.

2) Poiché il dominio di integrazione è inferiormente illimitato e la funzione integranda
non è definita in −2 , dobbiamo studiare la convergenza dell’integrale in ciascuno dei due
intervalli ]−∞, b ] e [b ,−2[ , dove b è un fissato numero reale minore di −2 . La funzione
integranda ha valori positivi.

Per x→−2 si ha

x4→ 16 ,

e2x → e−4 ,

cosh(x + 2)− 1∼ 1
2
(x + 2)2 .
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Quindi
x4e2x
�

cosh(x + 2)− 1
�

(−2− x)9/4
∼

16e−4(1/2)(x + 2)2

(−2− x)9/4
=

8e−4

(−2− x)1/4
.

Poiché 1/4< 1 , questa funzione è integrabile in senso generalizzato in ogni intervallo del
tipo [b ,−2[ , pertanto, per il criterio del confronto asintotico, anche la funzione studiata
è integrabile.

Per x→−∞ si ha

cosh(x + 2)− 1=
e x+2+ e−x−2

2
− 1∼ e−x−2

2
,

(−2− x)9/4 ∼ |x|9/4 .
Quindi

x4e2x
�

cosh(x + 2)− 1
�

(−2− x)9/4
∼

x4e2x e−x−2/2
|x|9/4

=
e−2

2
|x|7/4e x .

Poiché, qualunque sia c > 0 , per x→−∞ si ha e x = o
�

|x|−c
�

, risulta

x4e2x
�

cosh(x + 2)− 1
�

(−2− x)9/4
= o
�

|x|−c+7/4� .

Scegliendo c > 11/4 l’esponente è minore di −1 , quindi la funzione |x|−c+7/4 è integrabile
in senso generalizzato in un intorno di −∞ . Per il criterio del confronto, anche la funzione
studiata è integrabile.

Possiamo quindi concludere che l’integrale generalizzato converge.

3) La funzione integranda è continua in [1,+∞[ , per stabilire la convergenza dell’inte-
grale occorre studiare il comportamento per x→+∞ . La funzione è non negativa, quindi
possiamo utilizzare il criterio del confronto.

Se a > 0 si ha limx→+∞ xa = +∞ e quindi anche limx→+∞ x2 log(1+ xa) = +∞ ,
perciò l’integrale diverge.

Se a = 0 allora la funzione integranda è x 7→ x2 log2 , e si ha limx→+∞ x2 log2=+∞ ;
anche in questo caso l’integrale diverge.

Se a < 0 allora limx→+∞ xa = 0 e quindi si ha log(1+ xa)∼ xa , per x→+∞ ; perciò
x2 log(1+ xa)∼ xa+2 ; per il criterio del confronto asintotico, l’integrale è convergente se e
solo se a+ 2<−1 , cioè a <−3 .

Pertanto l’integrale generalizzato è convergente se e solo se a ∈ ]−∞,−3[ .

4) La funzione integranda è continua in [1,+∞[ ed è a valori positivi. Per determinare
la convergenza dell’integrale studiamone il comportamento per x → +∞ . A tale fine
studiamo anzitutto il comportamento di numeratore e denominatore.

Per determinare il comportamento del numeratore, occorre stabilire quale tra xa e x4

è il termine dominante, per x → +∞ . Bisogna quindi stabilire quale degli esponenti è
maggiore; se a < 4 allora x4+ xa ∼ x4 , se a = 4 allora x4+ xa = 2x4 , infine se a > 4 si
ha x4+ xa ∼ xa .
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Analogamente, per il denominatore occorre confrontare xa con x8 , perciò se a < 8
allora x8+ xa ∼ x8 , se a = 8 allora x8+ xa = 2x8 , infine se a > 8 si ha x8+ xa ∼ xa .

Indicata con f la funzione integranda si ha quindi, per x→+∞ ,

a < 4 , f (x)∼ x4

x8
=

1
x4

,

a = 4 , f (x)∼ 2x4

x8
=

2
x4

,

4< a < 8 , f (x)∼ xa

x8
=

1
x8−a

,

a = 8 , f (x)∼ x8

2x8
=

1
2

,

a > 8 , f (x)∼ xa

xa
= 1 .

Perciò se a ≤ 4 allora f (x) è equivalente (eventualmente a meno di una costante molti-
plicativa che è ininfluente) a 1/x4 , che è integrabile in [1,+∞[ ; per il criterio del confronto
asintotico, per tali valori di a anche f è integrabile. Se invece a ≥ 8 allora f (x) ha limite
reale diverso da 0 per x→+∞ e quindi non è integrabile. Infine se 4< a < 8 allora f (x)
è equivalente a 1/x8−a , che è integrabile se e solo se 8−a > 1 , cioè a < 7 , quindi anche f
è integrabile in senso generalizzato se solo se a < 7 .

Perciò l’integrale è convergente se e solo se a ∈ ]0,7[ .

5) La funzione integranda è continua in ]0,1] . La funzione è non negativa se e solo se
exp
�

(1+ x)4a
�

− e è non negativo, cioè (1+ x)4a ≥ 1 . Pertanto se a ≥ 0 allora è non
negativa, mentre se a < 0 è negativa.

Sia a > 0 . Per x→ 0 , risulta

exp
�

(1+ x)4a�− e = e
�

exp
�

(1+ x)4a − 1
�

− 1
�

∼ e
�

(1+ x)4a − 1
�

∼ 4ae x ,

x6a + x−3a ∼ x−3a .

Quindi la funzione integranda è asintotica alla funzione 4ae x1−3a , che è integrabile se e solo
se 1− 3a >−1 , cioè a < 2/3 . Pertanto, per il criterio del confronto asintotico, l’integrale
generalizzato è convergente se 0< a < 2/3 ed è divergente se a ≥ 2/3 .

Se a = 0 le funzione integranda è identicamente nulla, quindi l’integrale è convergente.
Se a < 0 la funzione integranda è a valori negativi, l’integrale è convergente se e solo se

è convergente l’integrale della funzione opposta che è a valori positivi. Si ha

e − exp
�

(1+ x)4a�= e
�

1− exp
�

(1+ x)4a − 1
��

∼−e
�

(1+ x)4a − 1
�

∼−4ae x ,

x6a + x−3a ∼ x6a .

Quindi l’opposta della funzione integranda è asintotica alla funzione −4ae x1+6a , che è
integrabile se e solo se 1+ 6a >−1 , cioè a > −1/3 . Pertanto, per il criterio del confron-
to asintotico, l’integrale generalizzato è convergente se −1/3 < a < 0 ed è divergente se
a ≤−1/3 .

Quindi l’integrale generalizzato è convergente se e solo se a ∈ ]−1/3,2/3[ .
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6) Poiché l’intervallo di integrazione è R , occorre studiare la convergenza dell’integrale
negli intervalli ]−∞, 0] e [0,+∞[ . La funzione integranda è positiva.

Consideriamo anzitutto l’integrale in ]−∞, 0] .
Se a > 0 , allora, per x→−∞ , si ha e2ax → 0 , quindi

e (a+2)x

e2ax + 4
∼ e (a+2)x

4
.

È facile determinare una primitiva di questa funzione: risulta
∫ 0

y

e (a+2)x

4
d x =
� e (a+2)x

4(a+ 2)

�0

y
=

1− e (a+2)y

4(a+ 2)
−−−→
y→−∞

1
4(a+ 2)

;

pertanto questo integrale generalizzato è convergente e, per il criterio del confronto asin-
totico, anche la funzione studiata ha integrale generalizzato in ]−∞, 0] convergente.

Se a = 0 si ha
e (a+2)x

e2ax + 4
=

e2x

5
e, procedendo come sopra, si prova la convergenza dell’integrale generalizzato.

Se a < 0 , allora, per x→−∞ , si ha e2ax →+∞ , quindi

e (a+2)x

e2ax + 4
∼ e (a+2)x

e2ax
= e (2−a)x .

Poiché 2− a > 0 si può procedere come sopra per provare la convergenza dell’integrale.
Pertanto l’integrale generalizzato è convergente in ]−∞, 0] qualunque sia a .
Consideriamo ora l’integrale in [0,+∞[ .
Se a > 0 , allora, per x→+∞ , si ha e2ax →+∞ , quindi

e (a+2)x

e2ax + 4
∼ e (a+2)x

e2ax
= e (2−a)x .

Se inoltre a < 2 questa funzione ha limite +∞ , per x→+∞ , mentre se a = 2 il limite
è 1 . In entrambi i casi quindi la funzione e (2−a)x non è integrabile in senso generalizzato in
[0,+∞[ , pertanto, per il criterio del confronto asintotico, anche l’integrale studiato non è
convergente. Se a > 2 , allora

∫ y

0
e (2−a)x d x =
� e (2−a)x

2− a

�y

0
=

e (2−a)y − 1
2− a

−−−→
y→+∞

1
a− 2

;

pertanto questo integrale generalizzato è convergente e, per il criterio del confronto asin-
totico, anche la funzione studiata ha integrale generalizzato in [0,+∞[ convergente.

Se a = 0 si ha
e (a+2)x

e2ax + 4
=

e2x

5
,

che tende a +∞ , per x→+∞ , quindi l’integrale generalizzato in [0,+∞[ diverge.
Se a < 0 , allora e2ax → 0 , per x→+∞ , pertanto

e (a+2)x

e2ax + 4
∼ e (a+2)x

4
.
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Se a ≥ −2 si ha a+ 2 ≥ 0 , quindi questa funzione ha limite diverso da 0 per x → +∞ ,
perciò non è integrabile in senso generalizzato; pertanto, per il criterio del confronto asin-
totico, anche l’integrale che stiamo studiando non è convergente. Se invece a <−2 , allora,
procedendo come sopra, si prova la convergenza dell’integrale generalizzato.

Perciò l’integrale è convergente se e solo se a ∈ ]−∞,−2[∪ ]2,+∞[ .

7)

a. Divergente

b. Convergente

c. Convergente

d. Convergente

e. Divergente

f. Divergente

g. Convergente

h. Convergente

i. Convergente

j. Convergente

k. Convergente

l. Convergente

m. Convergente

n. Divergente

o. Convergente

p. Divergente

q. Divergente

r. Divergente

8)

a. a ∈ ]2,+∞[

b. a ∈ ]0,+∞[

c. a ∈R

d. a ∈ ]0,+∞[

e. a ∈ ]−1,1[

f. a ∈ ]1,+∞[

g. a ∈ ]0,+∞[ \ {1}

h. a ∈
�

1
3

,+∞
�

i. a ∈ ]0,1[

j. a ∈
�

0,
1
3

�

k. a ∈
�

0,
1
6

�

∪
�

2
3

,+∞
�

l. a ∈ ]0,6[∪ ]8,+∞[

m. a ∈ ]0,1[

n. a ∈ ]0,+∞[

o. a ∈
�

−∞,− 2
3

�

∪
�

1
2

,+∞
�

p. a ∈ ]0,1[

q. Nessun a

r. a = 1

s. a ∈ ]−∞, 4[

t. a ∈
�

0,
7
2

�

u. Nessun a

v. a ∈ ]2,+∞[



5

Serie

5.1 Esercizi

Lo studio della convergenza di una serie risulta semplice nel caso, poco frequente, in cui
è possibile ottenere un’espressione esplicita delle somme parziali.

5.1.1 Esempio. Studiamo la convergenza della serie
+∞
∑

n=1

1
n2+ n

.

Per n ∈N∗ risulta
1

n2+ n
=

1+ n− n
n(n+ 1)

=
1+ n

n(n+ 1)
− n

n(n+ 1)
=

1
n
− 1

n+ 1
.

Pertanto, se n ∈N \ {0,1} , si ha
n
∑

k=1

1
k2+ k

=
n
∑

k=1

�

1
k
− 1

k + 1

�

=
n
∑

k=1

1
k
−

n
∑

k=1

1
k + 1

=
n
∑

k=1

1
k
−

n+1
∑

k=2

1
k
=

= 1+
n
∑

k=2

1
k
−

n
∑

k=2

1
k
− 1

n+ 1
= 1− 1

n+ 1
−−−→
n→+∞

1 .

Quindi la serie studiata converge e ha somma 1 .

Nel caso in cui non si possa ottenere una forma esplicita delle somme parziali vi sono
numerosi criteri che consentono di stabilire se una serie converge o no.

Anzitutto, un condizione necessaria per la convergenza di una serie è che il termine
n -simo tenda a 0 .

5.1.2 Esempio. Studiamo la convergenza della serie
+∞
∑

n=1

n
p

n2+ 1
.

Poiché
n

p
n2+ 1

∼ n
n
= 1 ,

il termine n -simo della serie non ha limite 0 , pertanto la serie non converge.
La serie è a termini positivi, perciò non può essere indeterminata, quindi è divergente.
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Vari criteri per la convergenza di serie consentono di dedurre la convergenza o diver-
genza di una serie dalla convergenza o divergenza di un’altra serie. Per poterli applicare è
utile conoscere il carattere di alcune serie campione.

La serie armonica generalizzata
∑+∞

n=1 nα , con α ∈R+ , converge se α > 1 e diverge
se α ≤ 1 . La serie geometrica

∑+∞
n=0 α

n , con α ∈R , converge se −1< α < 1 , diverge se
α≥ 1 ed è indeterminata se α≤−1 ; il numero α è detto ragione della serie geometrica.

Il criterio del confronto afferma che se, ∀n ∈N , si ha 0≤ an ≤ bn , allora
+∞
∑

n=0

bn converge =⇒
+∞
∑

n=0

an converge;

+∞
∑

n=0

an diverge =⇒
+∞
∑

n=0

bn diverge.

5.1.3 Esempio. Studiamo la convergenza della serie
+∞
∑

n=1

1
p

n 2n
.

La serie è a termini positivi. Per n ∈ N∗ si ha 1/
�p

n 2n
�

≤ 1/2n = (1/2)n . La serie
∑+∞

n=1 (1/2)
n è una serie geometrica convergente, perché 0 < 1/2 < 1 , pertanto, per il

criterio del confronto, la serie studiata converge.

5.1.4 Esempio. Studiamo la convergenza della serie
+∞
∑

n=1

log n
n

.

La serie è a termini non negativi. Se n ∈ N∗ \ {1,2} si ha log n > 1 , quindi risul-
ta log n/n > 1/n . La serie armonica

∑+∞
n=1 1/n diverge. Poiché modificando un numero

finito di termini di una serie il carattere non cambia, possiamo applicare il criterio del con-
fronto anche se la disuguaglianza log n/n ≥ 1/n è verificata solo per n ≥ 3 . Quindi la
serie studiata diverge.

Il criterio del confronto asintotico afferma che se, ∀n ∈ N , si ha 0 ≤ an , 0 ≤ bn e
an ∼ bn , allora

+∞
∑

n=1

an converge ⇐⇒
+∞
∑

n=1

bn converge.

5.1.5 Esempio. Studiamo la convergenza della serie
+∞
∑

n=1

1
ne1/n

.

La serie è a termini positivi. Poiché e1/n→ 1 , si ha

1
ne1/n

∼ 1
n

.

La serie armonica
∑+∞

n=1 1/n diverge, quindi, per il criterio del confronto asintotico, anche
la serie studiata diverge.
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5.1.6 Esempio. Studiamo la convergenza della serie

+∞
∑

n=0

n3+ 2n

n2+ 3n
.

La serie è a termini positivi. Si ha

n3+ 2n

n2+ 3n
∼ 2n

3n
=
�

2
3

�n

.

Poiché 0< 2/3< 1 , la serie geometrica
∑+∞

n=0(2/3)
n converge, pertanto, per il criterio del

confronto asintotico, la serie studiata converge.

Per il criterio del rapporto se, ∀n ∈ N , si ha an > 0 ed esiste limn→+∞(an+1/an)
,allora

lim
n→+∞

an+1

an
< 1 =⇒

+∞
∑

n=1

an converge;

lim
n→+∞

an+1

an
> 1 =⇒

+∞
∑

n=1

an diverge.

Osserviamo che, vista l’ipotesi su an , il limite appartiene a [0,+∞] .

5.1.7 Esempio. Studiamo la convergenza della serie

+∞
∑

n=0

(2n)!
n2n

.

La serie è a termini positivi. Indicato con an il termine n -simo della serie, si ha

an+1

an
=
(2n+ 2)!
(n+ 1)2n+2

n2n

(2n)!
=
(2n)!(2n+ 1)(2n+ 2)

(2n)!
n2n

(n+ 1)2n(n+ 1)2
=

=
(2n+ 1)(2n+ 2)
(n+ 1)2

� n
n+ 1

�2n

.

Risulta

(2n+ 1)(2n+ 2)
(n+ 1)2

−−−→
n→+∞

4 ,

� n
n+ 1

�2n

=
�

�n+ 1
n

�n�−2

=
�

�

1+
1
n

�n�−2

−−−→
n→+∞

e−2 .

Perciò
lim

n→+∞

an+1

an
= 4e−2 < 1 .

Pertanto, per il criterio del rapporto, la serie studiata converge.
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5.1.8 Esempio. Studiamo la convergenza della serie

+∞
∑

n=0

(2n)!
(2n)n

.

La serie è a termini positivi. Indicato con an il termine n -simo della serie, si ha

an+1

an
=
(2n+ 2)!
(2n+ 2)n+1

(2n)n

(2n)!
=
(2n)!(2n+ 1)(2n+ 2)

(2n)!
(2n)n

(2n+ 2)n(2n+ 2)
=

= (2n+ 1)
� n

n+ 1

�n

.

Risulta

2n+ 1−−−→
n→+∞

+∞ ,

� n
n+ 1

�n

=
�

�n+ 1
n

�n�−1

=
�

�

1+
1
n

�n�−1

−−−→
n→+∞

e−1 .

Perciò

lim
n→+∞

an+1

an
=+∞> 1 .

Pertanto, per il criterio del rapporto, la serie studiata diverge.

Per il criterio della radice se, ∀n ∈N , si ha an ≥ 0 ed esiste limn→+∞
n
pan , allora

lim
n→+∞

n
p

an < 1 =⇒
+∞
∑

n=1

an converge;

lim
n→+∞

n
p

an > 1 =⇒
+∞
∑

n=1

an diverge.

Osserviamo che, vista l’ipotesi su an , il limite appartiene a [0,+∞] .

5.1.9 Esempio. Studiamo la convergenza della serie

+∞
∑

n=0

nn

e2n
.

La serie è a termini positivi. Si ha

n

s

nn

e2n
=

n
e2
−−−→
n→+∞

+∞> 1 .

Pertanto, per il criterio della radice, la serie studiata diverge.
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5.1.10 Esempio. Studiamo la convergenza della serie
+∞
∑

n=0

n
p

n

e2n
.

La serie è a termini positivi. Si ha

n

√

√

√n
p

n

e2n
=

n1/
p

n

e2
=

exp
�

(log n)/
p

n
�

e2
−−−→
n→+∞

1
e2
< 1 .

Pertanto, per il criterio della radice, la serie studiata converge.

Il criterio integrale afferma che se f ∈ C
�

[0,+∞[,R
�

è decrescente e non negativa,
allora

∫ +∞

0
f (x)d x converge ⇐⇒

+∞
∑

n=0

f (n) converge.

5.1.11 Esempio. Studiamo la convergenza della serie
+∞
∑

n=2

1
n(log n)a

,

dove a ∈R+ .
La funzione x 7→ 1/

�

x(log x)a
�

è positiva e decrescente in [2,+∞[ . Inoltre
∫ y

2

1
x(log x)a

d x =
∫ y

2
(log x)−a d log x

d x
d x .

Pertanto, se a 6= 1 , allora
∫ y

2

1
x(log x)a

d x =
�

1
1− a

(log x)1−a
�y

2
=

1
1− a

(log y)1−a − 1
1− a

(log2)1−a −−−→
y→+∞

−−−→
y→+∞







+∞ , se a < 1 ,

− 1
1− a

(log2)1−a , se a > 1 .

Inoltre, se a = 1 , allora
∫ y

2

1
x log x

d x =
∫ y

2

1
log x

d log x
d x

d x =
�

log(log x)
�y

2 = log(log y)− log(log2)−−−→
y→+∞

+∞ .

Pertanto la serie studiata converge se e solo se a > 1 .

Per studiare la convergenza di una serie
∑+∞

n=0 an a termini non positivi è sufficiente con-
siderare serie
∑+∞

n=0(−an) , che è a termini non negativi, e utilizzare gli strumenti illustrati
sopra. Nel caso invece di serie che che hanno termini sia positivi che negativi si può studia-
re la serie dei valori assoluti della serie data. Infatti una serie assolutamente convergente è
convergente, cioè

+∞
∑

n=0

|an | converge =⇒
+∞
∑

n=0

an converge.
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5.1.12 Esempio. Studiamo la convergenza della serie

+∞
∑

n=1

sen(n2) sen
�

1
n2

�

.

Poiché, ∀x ∈R , si ha |sen x| ≤ |x| e |sen x| ≤ 1 , si ha, ∀n ∈N∗ ,
�

�

�

�

sen(n2) sen
�

1
n2

�
�

�

�

�

≤ 1
n2

.

La serie armonica generalizzata
∑+∞

n=1 1/n2 converge, quindi, per il criterio del confronto,
la serie
∑+∞

n=1

�

�sen(n2) sen(1/n2)
�

� converge, pertanto anche la seria studiata converge.

Il criterio di Leibniz afferma che se la successione (cn)n∈N è decrescente e infinitesima,
allora la serie
∑+∞

n=0(−1)n cn converge.

5.1.13 Esempio. Studiamo la convergenza della serie

+∞
∑

n=0

(−1)n log
�n+ 1

n

�

.

Si ha log
�

(n+1)/n
�

→ log1= 0 ; inoltre, poiché (n+1)/n = 1+(1/n) , è evidente che,
per n ∈N∗ , si ha (n+ 2)/(n+ 1)< (n+ 1)/n . Perciò sono verificate le ipotesi del criterio
di Leibniz, quindi la serie studiata converge.

1) Studiare la convergenza e la assoluta convergenza della serie

+∞
∑

n=0

(−1)n
�

π

2
− arctan(n+ 2)
�1/2

.

2) Studiare la convergenza e la assoluta convergenza della serie

+∞
∑

n=1

nn+1n!
(2n+ 1)!

.

3) Studiare la convergenza e la assoluta convergenza della serie

+∞
∑

n=1

3pn2+ 2n− 3pn2+ 2
3pn2+ n+ 3pn2+ 1

.

4) Studiare la convergenza e la assoluta convergenza della serie

+∞
∑

n=1

(−1)n
�

arctan
3
n

�2/n

.
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5) Determinare per quali a ∈R converge la serie

+∞
∑

n=1

n2 log(1+ na) .

6) Determinare per quali a ∈R+ converge la serie

+∞
∑

n=1

sen(na)
n3/2

.

7) Determinare per quali a ∈R+ converge la serie

+∞
∑

n=1

n4+ na

n8+ na
.

8) Determinare per quali a ∈R converge la serie

+∞
∑

n=1

(−1)n

2n
�p

n+ 2
� (a2− 4a+ 2)n .

9) Studiare la convergenza e la assoluta convergenza delle seguenti serie:

a.
+∞
∑

n=1

n! (n+ 1)!
(2n)!

b.
+∞
∑

n=1

�

(n+ 1)!
�23n

(2n)!

c.
+∞
∑

n=1

2n n2n

(2n)!

d.
+∞
∑

n=0

(n+ 2)n+2

(2n)n

e.
+∞
∑

n=1

2n − 1
n!

f.
+∞
∑

n=1

π− 2arctan n
n3

g.
+∞
∑

n=1

�

1− cos
1

n2

�1/10

h.
+∞
∑

n=1

log
�n2− n+ 2

n2− n+ 1

�

i.
+∞
∑

n=1

(−1)n
3n + n3

n6+ 6n

j.
+∞
∑

n=1

(−1)n
n2+ 2
n3+ 3

k.
+∞
∑

n=0

(−1)n
3n + n2

3n + n6

l.
+∞
∑

n=1

(−1)n
√

√

√

3
�

1− cos
2
n

�

m.
+∞
∑

n=1

(−1)n log
�n+ 1

n

�

n.
+∞
∑

n=1

(−1)n
n23n

(n+ 6)n+2
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o.
+∞
∑

n=1

(−1)n
3n
�

(n+ 2)!
�3/2

(2n)!
p.
+∞
∑

n=1

(−1)n
n3n−4

(n+ 3)3n

10) Determinare per quali a appartenenti all’insieme indicato a fianco le seguenti serie
sono convergenti:

a.
+∞
∑

n=0

an

n2+ 1
R

b.
+∞
∑

n=1

na + n
na + n3

R

c.
+∞
∑

n=0

an2

(n+ 2)!
R+

d.
+∞
∑

n=0

(n!)2

an2
R+

e.
+∞
∑

n=0

1
3n + 2

� a+ 3
a2+ 1

�n+1

R

f.
+∞
∑

n=1

4n arctan
3
n

�

1
4
− a2
�n

R

g.
+∞
∑

n=1

(a2− 7a+ 6)n

n6n+2
R

h.
+∞
∑

n=0

(n2+ 1)(a2+ 4a+ 2)n+2

2n
R

i.
+∞
∑

n=0

n+ 1
2n3+ 1

arctan
�

(a2+ 5)n
�

R

j.
+∞
∑

n=0

n2

1+ ean
R

k.
+∞
∑

n=1

a4+(2a+ 3)n

a4+ a2n
R

l.
+∞
∑

n=1

2n + n3

n2

�

2a2− 5a+
5
2

�n

R

m.
+∞
∑

n=0

�

exp
� an2

2n2+ 4

�

�3n

R

n.
+∞
∑

n=0

�n+ a
n+ 2

�n2/3

R

o.
+∞
∑

n=0

1
(n+ 1)2

�a2− 2a− 4
4

�n

R

p.
+∞
∑

n=0

9n + n4

3n5+ 3n
a2n R

q.
+∞
∑

n=0

� a+ 1
a+ n

�n

R+

r.
+∞
∑

n=0

1
(a+ n)2+ 1

R+

s.
+∞
∑

n=1

3n + an

5n +(4/a)n
R+

t.
+∞
∑

n=0

ean n! R

u.
+∞
∑

n=1

an + 3n

an + a−n
R+

v.
+∞
∑

n=1

na−3

an
R+

w.
+∞
∑

n=1

1
n2

�n+ a
n

�n2

R

x.
+∞
∑

n=1

�n+ a
n

�n2

R

y.
+∞
∑

n=1

an + na

(2a)n + n5/4
R+

z.
+∞
∑

n=0

�

log(na + n2/a)− log(na + 1)
�

R+
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5.2 Soluzioni e risultati

1) La serie ha termini di segno alterno, studiamo anzitutto la assoluta convergenza. Per
questo studiamo il comportamento del valore assoluto del termine n -simo della serie per
n→+∞ . Si ha
�

�

�

�

(−1)n
�

π

2
− arctan(n+ 2)
�1/2�
�

�

�

=
�

π

2
− arctan(n+ 2)
�1/2

=
�

arctan
�

1
n+ 2

�

�1/2

.

Poiché per n→+∞ si ha 1/(n+ 2)→ 0 e per x→ 0 è arctan x ∼ x , risulta

arctan
�

1
n+ 2

�

∼ 1
n+ 2
∼ 1

n
,

quindi
�

�

�

�

(−1)n
�

π

2
− arctan(n+ 2)
�1/2�
�

�

�

∼ 1
n1/2

.

Pertanto il termine n -simo della serie dei valori assoluti è asintotico al termine n -simo
della serie armonica generalizzata di esponente 1/2 che non è convergente, perché 1/2< 1 ,
quindi la serie studiata non è assolutamente convergente.

Studiamo ora la convergenza. Poiché la serie è a termini di segno alterno, verifichiamo
se si può applicare il criterio di Leibniz. Abbiamo già verificato che il valore assoluto del ter-
mine n -simo della serie è asintotico a n−1/2 , quindi ha limite 0 . La funzione arcotangente
è strettamente crescente, quindi, ∀n ∈N , si ha arctan(n+ 2)< arctan(n+ 3) , pertanto

π

2
− arctan(n+ 2)>

π

2
− arctan(n+ 3) ,

quindi
�

π

2
− arctan(n+ 2)
�1/2

>
�

π

2
− arctan(n+ 3)
�1/2

.

Pertanto la successione dei valori assoluti dei termini della serie è decrescente, quindi, per
il criterio di Leibniz, la serie converge.

Quindi la serie è convergente ma non è assolutamente convergente.

2) Poiché la serie è a termini positivi, è convergente se e solo se è assolutamente conver-
gente.

È abbastanza complicato verificare direttamente se è soddisfatta la condizione, necessa-
ria per la convergenza della serie, che il termine n -simo converga a 0 ; vista la forma del
termine n -simo risulta conveniente applicare il criterio del rapporto.

Indicato con an il termine n -simo della serie, si ha

an+1

an
=
(n+ 1)n+2(n+ 1)!
(2n+ 3)!

(2n+ 1)!
nn+1n!

=

=
(n+ 1)n(n+ 1)2

nn n
n!(n+ 1)

n!
(2n+ 1)!

(2n+ 1)!(2n+ 2)(2n+ 3)
=

=
�n+ 1

n

�n (n+ 1)3

n(2n+ 2)(2n+ 3)
=
�

1+
1
n

�n (n+ 1)3

n(2n+ 2)(2n+ 3)
.
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Per n→+∞ il primo fattore ha limite e , mentre il secondo ha limite 1/4 , quindi il limite
del prodotto è e/4 , che è minore di 1 ; perciò, per il criterio del rapporto, la serie converge.

Pertanto la serie è convergente e assolutamente convergente.

3) Il termine n -simo della serie è un quoziente; il denominatore è somma di due radici
(non nulle) e quindi è positivo, mentre il numeratore è differenza di due radici, ma qualun-
que sia n ∈ N∗ si ha n2 + 2n ≥ n2 + 2 e quindi il numeratore è non negativo. La serie è
quindi a termini non negativi, perciò converge se e solo se converge assolutamente.

Studiamo il comportamento del termine n -simo per n→+∞ . Si ha, ∀n ∈N∗ ,

3
p

n2+ 2n− 3
p

n2+ 2= 3

√

√

√

n2
�

1+
2
n

�

− 3

√

√

√

n2
�

1+
2

n2

�

= n2/3 3

s

1+
2
n
− n2/3 3

s

1+
2

n2
=

= n2/3
�
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1+
1
3

2
n
+ o(n−1)
�

−
�

1+
1
3

2
n2
+ o(n−2)
�

�

= n2/3
�

2
3

1
n
+ o(n−1)
�

∼ 2
3

n−1/3,

3
p

n2+ n+ 3
p

n2+ 1= 3

√

√

√

n2
�

1+
1
n

�

+ 3

√

√

√

n2
�

1+
1

n2

�

=

= n2/3 3

s

1+
1
n
+ n2/3 3

s

1+
1

n2
∼ 2n2/3.

Quindi
3pn2+ 2n− 3pn2+ 2
3pn2+ n+ 3pn2+ 1

∼
(2/3)n−1/3

2n2/3
=

1
3

1
n

.

Il termine n -simo della serie è quindi asintotico, a meno di una costante moltiplicativa, a
quello della serie armonica, che non converge. Per il criterio del confronto asintotico la
serie non converge.

Pertanto la serie non è convergente e non è assolutamente convergente.

4) Poiché, ∀n ∈N∗ , si ha
�

arctan(3/n)
�2/n
> 0 , la serie ha i termini di segno alterno.

Studiamo anzitutto la assoluta convergenza. Si ha, ∀n ∈N ,
�

�

�

�

�

(−1)n
�

arctan
3
n

�2/n
�

�

�

�

�

= exp
�

2
n

log
�

arctan
3
n

�

�

.

Per n→+∞ si ha arctan(3/n) = 3/n+ o(n−2) , quindi

log
�

arctan
3
n

�

= log
�

3
n
+ o(n−2)
�

= log
�

3
n

�

1+ o(n−1)
�

�

=

= log
3
n
+ log
�

1+ o(n−1)
�

=− log n+ log3+ o(n−1)∼− log n .

Pertanto
2
n

log
�

arctan
3
n

�

∼ 2
n
(− log n)−−−→

n→+∞
0 .
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Quindi

lim
n→+∞

�

arctan
3
n

�2/n

= e0 = 1 ,

perciò il termine n -simo della serie non ha limite 0 .
Pertanto la serie non è convergente e non è assolutamente convergente.

5) La serie è a termini non negativi; per stabilirne la convergenza studiamo il comporta-
mento del termine n -simo per n→+∞ .

Se a ∈R+ allora limn→+∞ na =+∞ e quindi anche

lim
n→+∞

n2 log(1+ na) = +∞ ,

perciò non è verificata la condizione necessaria per la convergenza, quindi la serie non
converge.

Se a = 0 allora il termine n -simo della serie è n2 log2 e limn→+∞ n2 log2 = +∞ ,
perciò non è verificata la condizione necessaria per la convergenza, quindi la serie non
converge.

Se a ∈R− allora limn→+∞ na = 0 e quindi, per n→+∞ , log(1+ na)∼ na , perciò

n2 log(1+ na)∼ na+2 ;

per il criterio del confronto asintotico, la serie converge se e solo se a + 2 < −1 , cioè
a <−3 .

Possiamo concludere che la serie converge se e solo se a ∈ ]−∞,−3[ .

6) La funzione seno assume valori compresi tra −1 e 1 , pertanto, per n ∈N∗ , si ha

�

�

�

�

sen(na)
n3/2

�

�

�

�

≤ 1
n3/2

.

Il membro di destra è il termine n -simo della serie armonica generalizzata di esponente 3/2
che converge perché l’esponente è maggiore di 1 .

Per il criterio del confronto la serie è assolutamente convergente qualunque sia a e
quindi è anche convergente.

7) La serie è a termini positivi. Studiamo il comportamento di numeratore e denomina-
tore per n→+∞ .

Per determinare il comportamento del numeratore occorre stabilire quale tra na e n4

è il termine dominante; se a < 4 allora n4+na ∼ n4 , se a = 4 allora n4+na = 2n4 , infine
se a > 4 si ha n4+ na ∼ na .

Analogamente per il denominatore occorre confrontare na con n8 ; perciò se a < 8
allora n8+ na ∼ n8 , se a = 8 allora n8+ na = 2n8 , infine se a > 8 si ha n8+ na ∼ na .
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Indicato con an il termine n -simo della serie, si ha quindi, per n→+∞ ,

se a < 4 an ∼
n4

n8
=

1
n4

,

se a = 4 an ∼
2n4

n8
=

2
n4

,

se 4< a < 8 an ∼
na

n8
=

1
n8−a

,

se a = 8 an ∼
n8

2n8
=

1
2

,

se a > 8 an ∼
na

na
= 1 .

Perciò se a ≤ 4 allora an è asintotico (eventualmente a meno di costanti che sono ininfluen-
ti) a 1/n4 , termine n -simo di una serie armonica generalizzata convergente, perché 4> 1 ;
per il criterio del confronto asintotico per tali valori di a anche la serie studiata converge.
Se invece a ≥ 8 allora an ha limite reale diverso da 0 per n→+∞ e la serie studiata non
converge. Infine se 4< a < 8 allora an è asintotico a 1/n8−a , termine n -simo di una serie
che converge se e solo se 8− a > 1 , cioè se e solo se a < 7 , perciò anche la serie studiata
converge solo per a < 7 .

Possiamo concludere che la serie converge se e solo se a ∈ ]0,7[ .

8) Studiamo anzitutto l’assoluta convergenza della serie. Si ha
�

�

�

�

(−1)n

2n
�p

n+ 2
� (a2− 4a+ 2)n
�

�

�

�

=
1

2n
�p

n+ 2
� |a2− 4a+ 2|n .

La forma del termine n -simo suggerisce di utilizzare il criterio della radice. Si ha

n

√

√

√

1
2n
�p

n+ 2
� |a2− 4a+ 2|n = 1

2 n
pp

n+ 2
|a2− 4a+ 2| .

Poiché
n
Æp

n+ 2= exp
�

1
n

log
�p

n+ 2
�

�

−−−→
n→+∞

e0 = 1 ,

risulta

lim
n→+∞

n

√

√

√

1
2n
�p

n+ 2
� |a2− 4a+ 2|n = 1

2
|a2− 4a+ 2| .

Tale limite risulta minore di 1 se e solo se −1< (a2− 4a+ 2)/2< 1 , cioè se e solo se a è
soluzione del sistema

¨

a2− 4a+ 2< 2 ,

a2− 4a+ 2>−2 ,

che equivale a
¨

a2− 4a < 0 ,

a2− 4a+ 4> 0 .
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La prima disequazione è verificata per a ∈ ]0,4[ . Poiché a2− 4a+ 4= (a− 2)2 la seconda
è verificata per a 6= 2 . Pertanto, se a ∈ ]0,2[∪ ]2,4[ , allora, per il criterio della radice, la
serie è assolutamente convergente e quindi convergente.

Dai ragionamenti fatti sopra segue anche che, se a ∈ ]−∞, 0[∪ ]4,+∞[ , allora

lim
n→+∞

n

√

√

√

1
2n
�p

n+ 2
� |a2− 4a+ 2|n > 1 ,

quindi, per il criterio della radice, la serie non è assolutamente convergente. Inoltre, per
il teorema della permanenza del segno, se limn→+∞

n
p

|an |> 1 , allora per n grande si ha
n
p

|an |> 1 , quindi |an | > 1 , pertanto il termine n -simo della serie non converge a 0 .
Quindi la serie non è neppure convergente.

Se a = 2 allora abbiamo la serie

+∞
∑

n=1

(−1)n

2n
�p

n+ 2
� (−2)n =

+∞
∑

n=1

1
p

n+ 2
;

questa serie non converge, perché è a termini non negativi, con termine n -simo asintotico
a quello della serie armonica generalizzata di esponente 1/2 , che non converge. Se a = 0
o a = 4 allora si ha

+∞
∑

n=1

(−1)n

2n
�p

n+ 2
� 2n =

+∞
∑

n=1

(−1)n
p

n+ 2
.

Si verifica facilmente che la successione
�

1/
�p

n+ 2
��

n∈N è decrescente e convergente a 0 .
Quindi, per il criterio di Leibniz, la serie converge.

Possiamo concludere che la serie converge se e solo se a ∈ [0,2[∪ ]2,4] .

9)
a. Converge, converge assolutamente

b. Converge, converge assolutamente

c. Non converge, non converge assolutamente

d. Converge, converge assolutamente

e. Converge, converge assolutamente

f. Converge, converge assolutamente

g. Non converge, non converge assolutamente

h. Converge, converge assolutamente

i. Converge, converge assolutamente
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j. Converge, non converge assolutamente

k. Non converge, non converge assolutamente

l. Converge, non converge assolutamente

m. Converge, non converge assolutamente

n. Converge, converge assolutamente

o. Converge, converge assolutamente

p. Converge, converge assolutamente

10)

a. a ∈ [−1,1]

b. a ∈ ]−∞, 2[

c. a ∈ ]0,1]

d. a ∈ ]1,+∞[

e. a ∈ ]−∞, 0[∪
�

1
3

,+∞
�

f. a ∈
�

− 1
p

2
,0
�

∪
�

0,
1
p

2

�

g. a ∈ ]0,3]∪ [4,7[

h. a ∈ ]−4,0[ \ {−2}

i. a ∈R

j. a ∈R+

k. a ∈ ]−∞,−1[∪ ]3,+∞[

l. a ∈
�

1
2

,1
�

∪
�

3
2

,2
�

m. a ∈R−

n. a ∈ ]−∞, 2[

o. a ∈ [−2,0]∪ [2,4]

p. a ∈
�

− 1
p

3
,

1
p

3

�

q. a ∈R+

r. a ∈R+

s. a ∈ ]0,5[

t. Nessun a

u. a ∈
�

0,
1
3

�

v. a ∈ [1,+∞[

w. a ∈ ]−∞, 0]

x. a ∈R−

y. a ∈
�

0,
1
4

�

∪ ]1,+∞[

z. a ∈ ]2,+∞[


