TONELLI THM FOR mensures

Ex 1

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}<y<1\right\} \subseteq \mathbb{R}^{2} \\
& \Leftrightarrow x^{2}<1 \Leftrightarrow|x|=1
\end{aligned}
$$

By Towial TnM,

$$
R^{2}=\underset{x}{\mid R^{4} \times R^{4}} \underset{x}{y_{1}^{1}}
$$

$$
\begin{equation*}
\mu_{2}(A)=\int_{S_{A} \cdot S_{A}^{0}} \mu_{1}\left(A_{x}\right) d x \tag{x}
\end{equation*}
$$

whene $\left.\quad S_{A}=\right]-1,1\left[, S_{A}^{0}=\phi\right.$.
Ara $x \in]-1,1[$

$$
\left.A_{\underline{x}}=\left\{y \in \mathbb{R} ; \quad \underline{x}^{2}<y<1\right\}=\right] x^{2}, 1[
$$

nemea,

$$
\mu_{1}\left(A_{\underline{x}}\right)=\mu_{1}(] \underline{x}^{2}, 1[)=1-\underline{x}^{2}
$$

Thien, By (o)

$$
\begin{aligned}
& \mu_{2}(A)=\int_{x \in J-1,1[}\left(1-x^{2}\right) d x= \\
& =R \int_{-1}^{1}\left(1-x^{2}\right) d x=\left[x-\frac{x^{3}}{3}\right]_{x=-1}^{x=1}=4 / 3 \text {. 国 }
\end{aligned}
$$

Ex2 $A=\left\{(x, y) \in \mathbb{R}^{2} ; 0<x<2,0<y \leqslant x^{2}, 0<y<1\right\}$

- H

$$
x \in S_{A}=[0,2]
$$

$$
\mu_{2}(A)=\int \mu_{1}\left(A_{x}\right) d x
$$

$$
\text { ClemRay, } \left.S_{A}^{x}=30,2\right] \quad \text { AND. }
$$

$$
X_{\underline{x}} \in S_{A}^{x} \quad w_{E} \text { Have: }
$$

$$
A_{x}=\begin{array}{ll}
{\left[0, x^{2}\right]} & \text { if } 0 \leq x \leq 1 \\
{[0,1]} & \text { if } 1 \leq x \leq 2
\end{array}
$$

$$
\mu_{1}\left(A_{\underline{x}}\right)=\sum_{1}^{x^{2}} \quad 0 \leqslant \underline{x} \leqslant 1
$$

$$
\mu_{2}(A)=\int_{[0,2]} \mu_{1}\left(A_{2}\right) d x=\int_{[0,1]} x^{2} d x+\iint_{[1,2]} 1 d x
$$

$$
\left[x^{3} / 3\right]_{x=0}^{x=1}+[x]_{x=1}^{x=2}=\frac{1}{3}+1=4 / 3 \text {. 国 }
$$

Ex 2 (Sicoms way)

$$
A=\left\{(x, y) \in m^{2} ; 0<x<2,0<y<x^{2}, y \leqslant 1\right\}
$$

$$
\mu_{2}(A)=\int_{y \in S_{A}^{y}=[0,1]} \mu_{1}\left(A_{y}\right) \quad d y \quad(t)
$$

Aun $y \in[0,1]$

$$
\begin{aligned}
& A_{y}=\{x \in \mathbb{R} ;(x, y) \in A\}=[\sqrt{y}, 2] \\
\Rightarrow & \mu_{1}\left(A_{y}\right)=2-y^{1 / 2} \Rightarrow 3^{B y(t)} \\
\Rightarrow & \mu_{2}(A)=\int_{y \in[0,1]}\left(2-y^{1 / 2}\right) d y= \\
& =\left[2 y-\frac{2}{3} y^{3 / 2}\right]_{y=0}^{y=1}=2-2 / 3=4 / 3 \quad \frac{\text { As }}{\text { EATR2En}}!!
\end{aligned}
$$

Eス3

$$
\bar{B}=\left\{(x, y) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}<z^{2}, 3 x-4 y+5 z \in \mathbb{R}-Q\right\} .
$$

1) IS B Ment? is B boneinn? IF yES: COMPuTe $\mu_{3}(B)$.
YES il
SO2. For it \& in).

NOW
(if) $B=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}<z^{2}\right\}-\{(x, y, z) ; 3 x-2 y+5 z \in \mathbb{Q}\}$

$$
\operatorname{From}(H) \Rightarrow
$$

(FRoM Yesternay)
$u_{1}(B)=\mu .\left(B_{2}\right) \quad$ wuer=

$$
B_{3}=\left\{(x, y, 2) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}<z^{2}\right\} \quad r \in \mathbb{R}^{+}
$$

NuW, we have to eompute

Now, SR2T $\quad 1 R^{3}=1 R^{4} \rightarrow 1 R^{2}$

$$
x \quad(y, z)
$$

We mavi: in $\left.\quad S_{A}^{x}=\right]-r, r[$ Aurs

$$
\begin{aligned}
& \text { FOR } \left.\underline{x} \in S_{A}=\right]-r, r[\\
& A_{\underline{x}}=\left\{(y, z) \in \mathbb{m}^{2} ;(\underline{x}, y, z) \in B_{3}\right\}= \\
& =\left\{(y, z) \in m^{2} ; y^{2}+z^{2}<z^{2}-\underline{x}^{2}\right\} \Rightarrow \\
& \mu_{2}\left(A_{\underline{x}}\right)=\pi\left(2^{2}-\underline{z}^{2}\right) \quad \stackrel{\text { TONELC }}{=} \\
& \mu_{3}\left(B_{3}\right)=\int \pi\left(2^{2}-x^{2}\right) d x \\
& \left.x \cdot S_{A}=\right]-2,-2 I
\end{aligned}
$$

bréak questions begern alain a 15.10

