
Distributed Software Systems
2023-24

Paolo Ciancarini
University of Bologna, Italy



Who am I

Professor of Computer Science@UniBo
Researcher on sw technologies for 

distributed programming

… and who are you?



Prerequisites
• This course presents the fundamental ideas on 

distributed systems and their principles of construction
• We also present middleware technologies and the related 

methods for distributed programming

• Prerequisites:
• Be able to program (object oriented)
• Basic notions of networking
• Basic notions of operating systems
• Basic notions of concurrent programming



Effort and scheduling

• Effort : 6 cfu
• Course duration: from sept to december
• Class hours:

• Tuesday 9-11 room Arzela
• Wednesday 11-13 room Ercolani 3



Syllabus (tentative)

Introduction to distributed systems 
Principles of programming distributed systems
Middleware frameworks and technologies
Theory issues (eg. Distributed time, distributed consensus)
Hands-on work on specific problems in distributed computing



Goals of this course
• Understand principles and concepts underlying 

distributed computing: communication, concurrency, 
coordination and related algorithms

• Learn how to design simple reliable distributed 
applications using (open source) middleware

• Gain practical experience on the development of 
simple distributed systems (eg. in Java or Python)



Exam
• Midterm report & presentation: 50%
• Labs 10% each (please present your result 

of at least 5 labs)



Mid-term (individual) presentation
Your task:
• you have to deliver a small paper (five pages) and a presentation (at 

least 15 slides, talk 20’)
Possible topics (examples):
• Middleware for distributed applications
• Important examples of distributed systems (architecture, behavior)

Where to look for papers:
• IEEE Transactions on Parallel & Distributed Systems
• Journal of Parallel and Distributed Computing (Elsevier)
• Distributed computing (Springer)
• Journal of Internet services and applications (Springer)
• ACM Symposium on Principles of Distributed Computing



Suggested topics 
for midterm

A report on any distributed 
system with an interesting 
distributed sw architecture
Middleware technologies 
preferred
When you choose (write your 
choice on the googlesheet) I will 
send you some references (eg. 
Books)

Apache 
middleware

Other 
middleware

Apache Cassandra Akka

Apache Flink Celery

Apache Hadoop Dapr

Apache Kafka gRPC

Apache Karaf Hyperledger Fabric

Apache Mesos ISIS toolkit

Apache NiFi ISTIO

Apache Openwhisk Jini

Apache Pulsar Kubernetes

Apache River Omnitude

Apache RocketMQ RabbitMQ

Apache Spark Settlemint

Apache Storm Keycloack

Apache Thrift Swagger/OpenAPI

Apache Wildfly ZeroMQ



Labs

Exercises 
I will assign weekly during the course

Solutions (by individuals or pairs)
are expected after one week max, 
presented and discussed in class

I will give at least 6 labs assignments



Lab: first example
Understanding transparency in distributed computing

1. Goal The objective of this exercise is to grasp the fundamental aspects of 
transparency in a distributed system.

2. Scenario: Imagine you are part of a team developing a distributed file storage 
system. Users should be able to access files stored on this system as easily as if 
they were stored on a local disk. Your task is to make the system transparent in 
terms of location transparency.

3. Hints for solution:
1. Discuss with your team what location transparency means in the context of a 

distributed file storage system.
2. Think about how to abstract the physical location of files so that users don't need 

to be aware of where the files are stored.
3. Consider techniques like distributed file naming, mapping logical file names to 

physical locations, and ensuring seamless access regardless of server locations
4. Deliverable: prepare a short presentation outlining your approach to achieving 

location transparency in the distributed file storage system. Describe the proposed 
techniques and how they address potential issues.



Channels
• Telegram (course): UniBo Distributed Sw Systems
• Telegram @PaLoCaPa (personal) 
• Email snmp://paolo.ciancarini@unibo.it/
• Linkedin: search me and ask for contact!

https://t.me/+MddBEbxy85I5ODI8


Textbooks

vanSteen and Tanenbaum, Distributed Systems, 4ed, 2023
Gorton, Foundations of scalable systems, O’Reilly, 2022

Additional material (slides, papers, books) distributed during the course

https://www.distributed-systems.net/index.php/books/ds4/


Questions?



Definition: distributed system
A distributed system is a collection of independent computers 
that appears to its users as a single coherent system



Lamport’s definition of a 
Distributed System

A distributed system is one in which 
the failure of a computer 

you didn’t even know existed 
can render your own computer unusable

(Leslie Lamport)



Distributed vs centralized
Centralized system: state stored on a single computer

• simpler to design
• easier to understand
• global clock

Distributed system: state divided over multiple computers
• Scalable
• Fault tolerant (under specific assumptions)
• Complex, No global time



Areas
Distributed systems hide network problems …
… but in order to understand and develop them, we 

need competencies in
Computer networks and Internet
Concurrency & Inter-process communication

Computer
Networks

Distributed
Systems

Concurrency 
&

Inter-process
Communication



Two consequences of distribution
• Data travel at (max) the speed of light, but usually 

the speed is quite slower
• Independent things fail independently

Building distributed systems means dealing with space, time, and 
having more than one active computing element. 
These constraints allow several possible system designs, and after 
this course you'll have a better idea of how distance, time, and 
consistency models interact.



Languages for distributed computing

• There are problems in distributed system 
environments that do not exist in single-machine 
environments. 

• Partial failure, concurrency, and latency are three 
problems that make distributed computing 
fundamentally different from local computing

• So languages for distributed programming are often 
normal languages (eg C++, Java, Python) extended 
with some middleware



Middleware

Middleware as an infrastructure for distributed systems



Variants of distributed systems

Internet of Things
Cloud computing
Fog computing
Edge computing
Service oriented computing
Multi-agent systems



Edge computing (example)

From Lea, IoT and Edge computing for architects, Packt 2020



Comparing centralized with 
distributed systems

Criteria Centralized Distributed
Economics low high
Availability low high
Complexity low high
Consistency simple difficult
Scalability poor good
Technology homogeneous heterogeneous
Security high low



Which problems should we solve when 
programming a distributed system?

Access (eg. How do we name resources?)

Transparency (we would like to ignore distribution issues)

Fault tolerance (we have multiple sources to get a service)

Latency (data speed is not infinite!)

… programming without shared memory and no 
absolute (unique) time is DIFFICULT



Transparency
• A transparency is some aspect of a distributed system that is 

hidden – abstracted - from the user (programmer, system 
developer, user or application program), so it can be ignored

• A transparency is implemented by some set of mechanisms in 
the distributed system at a layer below the interface where the 
transparency is required

• A number of basic transparencies have been defined; not all of 
these are appropriate for every distributed system, or are 
available at the same level of interface. 

• In fact, all transparencies have an associated cost, and it is 
extremely important for implementor to be aware of this cost 

There are several transparencies



Transparency: access
Access transparency There should be no difference between local and 

remote access methods. In other words, the cost of explicit 
communication may be hidden. 
For instance, from a user's point of view, access to a remote service such 
as a printer should be identical with access to a local printer. 
From a programmers point of view, the access method to a remote object 
may be identical to access a local object of the same class. 
Moreover, since the semantics of remote access are more complex, 
particularly in case of failure, this means that a local access should be a 
special case of remote access. 
Remote access will not always look like local access in that certain 
facilities may not be reasonable to support (for example, global 
exhaustive searching of a distributed system for a single object may be 
unreasonable in terms of network traffic).



Transparency: concurrency
Concurrency transparency Users and applications should be 

able to access shared data or objects without interference 
between each other. 
This requires very complex mechanisms in a distributed system, 
since there exists true concurrency rather than the simulated 
concurrency typical of a centralized system. 
For example, a distributed printing service must provide the 
same atomic access per file as a central system so that printout 
is not randomly interleaved.



Transparency: replication and fault tolerance
Replication Transparency If the system provides replication for availability or 

performance reasons, it should not concern the user (as for all 
transparencies, we include the applications programmer as a user)

Fault Transparency If software or hardware failures occur, these should be 
hidden from the user. For instance, in a networked system, it is often hard to 
tell the difference between a failed and a slow running process or processor.
Fault transparency can be difficult since partial failure of the communication 
subsystem is possible, and this may not be reported. 
As far as possible, fault transparency will be provided by mechanisms that 
relate to access transparency. However, when the faults are inherent in the 
distributed nature of the system, then access transparency may not be 
maintained. The mechanisms that allow a system to hide faults may result in 
changes to access mechanisms (e.g. access to reliable objects may be 
different from access to simple objects). 



Transparencies: location and migration

Location transparency The details of the topology of the system 
should be of no concern to the user. The location of an object in 
the system may not be visible to the user or programmer. (This 
differs from access transparency in that both the naming and 
access methods may be the same). Names may give no hint as 
to location.

Migration transparency If objects (processes or data) migrate (to 
provide better performance, or reliability, or to hide differences 
between hosts), this change of location should be hidden from 
the user.



Transparency: performance, scaling

Performance Transparency The configuration of the system 
should not be apparent to the user in terms of performance. This 
may require complex resource management mechanisms. It 
may not be possible at all in cases where resources are only 
accessible via low performance networks.

Scaling Transparency A system should be able to grow without 
affecting application algorithms. Graceful growth and evolution 
is an important requirement for most enterprises. A system 
should also be capable of scaling down to small environements
where required, and be space and/or time efficient as required.



Transparencies in a Distributed System

Different forms of transparency in a distributed system.

Transparency Description

Access Hide differences in data representation and how a 
resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another 
location while in use

Replication Hide that a resource may be shared by several 
competitive users

Concurrency Hide that a resource may be shared by several 
competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or 
on disk



Hands on Lab 1
Understanding transparency in distributed computing

1. Goal The objective of this exercise is to grasp the fundamental aspects of 
transparency in a distributed system.

2. Scenario: Imagine you are part of a team developing a distributed file storage 
system. Users should be able to access files stored on this system as easily as if 
they were stored on a local disk. Your task is to make the system transparent in 
terms of location transparency.

3. Hints for solution:
1. Discuss with your team what location transparency means in the context of a 

distributed file storage system.
2. Think about how to abstract the physical location of files so that users don't need 

to be aware of where the files are stored.
3. Consider techniques like distributed file naming, mapping logical file names to 

physical locations, and ensuring seamless access regardless of server locations
4. Deliverable: prepare a short presentation outlining your approach to achieving 

location transparency in the distributed file storage system. Describe the proposed 
techniques and how they address potential issues.



Questions?


