Epigenetics and Addiction



Drug addiction defined as a THREE-STAGE CYCLE
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Environmental factor and Drug addiction
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Environmental factor and neuropathic pain

*Genes, environment and brain
circuitry in_neuropathic pain??
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Dalla Tolleranza alla Dipendenza fisica..che si rivela con l'astinenza. Factors Contributing to Vu|nerabi|ity To Developa Speciﬁc Addiction
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The question is:

Are there neurobiological basis for which
patients suffering from chronic or
neuropathic pain under chronic

opioid therapy do not develop an OUD?
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Nigrostriatal

Mesocortical pathway

Actions of Addictive Substances on the Brain pathway

Mesolimbic
pathway (Money and Stanwood, Front Cell Neurosci 2013 ;7:260)

Diverse afferent and efferent

connectivity in the striatum
VTA
Medial PFC mppmmm

NAc

(Nestler EJ. Nature Neuroscience. 2005;8:1445-1449)

+* Genes, environment and brain circuitry in drug

addiction
(Kim et al., Mol Cells 2017; 40:379-385)
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Figure 1. Model of the
mechanism of suppression of m-
agonist-induced reward in
neuropathic pain. Peripheral
nerve injury can cause sustained
activation of the

endogenous b-endorphinergic
system in the brain. b-Endorphin
released by

chronic nociceptive stimuli can
continuously activate m-opioid
receptors in the

VTA, thus leading to
downregulation of m-opioid
receptor function and resulting
in

a decrease in dopamine release
in the NAc. This phenomenon
could explain the

mechanism that underlies the
suppression of m-opioid reward
under neuropathic

pain-like states observed in
animal models [28].
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Un modello murino di dolore neuropatico: la legatura del nervo sciatico
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Epigenetics and addictive drugs

Epigenetic alterations interact with genetic predisposition,
environmental factors, exposure to addictive drugs.

All together induce long-lasting gene expression alterations
influencing the typical behavior of addiction
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EPIGENETICS and Addictive drugs

Cocaine epigenetic effects

1 single cocaine administration 1 in 30 min histone H4 acetylation
(H4ac) e histone H3 phospho-acetylated (H3pac) levels in rat NAc

Self-administration of cocaine in the rat 1 H3ac and H4ac levels in
NA but only H3ac levels are related to motivation of the cocaine
Intake.

On the contrary, repeated exposure to cocaine | H3 dimethylation
In Lysine in position 9 (H3K9me2), a repressive modification.



EPIGENETICS and Addictive drugs

Combining the two modifications (increase of acetylation and
decrease of methylation on H3 determines the final effect:
repeated exposure to cocaine induce a global increase of DNA
transcription.

Therefore the chronic exposure to cocaine induce in the Nac
neurons a global modification of chromatin that is favorable to
transcription by means of increase of acetylation (H3ac, H4ac) and
phosphoacetylation (H3pac) and a decrease of methylation
(H3K9me2)
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Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic
changes by cocaine in rat striatum and nucleus accumbens




Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and
pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in
rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation
in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addic-
tion. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and
nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen
(mCPu and ICPu, respectively ) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epige-
netic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the
promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine in-
duced pDYN gene expression up-regulation in the NA and ICPu, and its down-regulation in the mCPu, whereas
KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA
and ICPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the ICPu.
Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter,
consistent with the observed gene expression alterations.

The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in
neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underly-
ing the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene
promoters that result in long-lasting drug-induced plasticity.



pPDYN gene expression

A

2.0 -
1.5 4

1.0 4

pDYN relative
gene expression

0.5+

0.0

NA 1 Control

Hl Cocaine

ek

2.0 -

1.5 4

1.0 4

0.5+

pDYN relative
gene xpression

ICPu

0.0
C 20+
154
1.0 -

0.5+

pDYN relative
gene expression

mCPu

*%

0.0
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Fig. 3. Left panel — KOP mRNA levels in the striatum. KOP gene expression was measured in rat nucleus accumbens (A), lateral (B) and medial (C) caudate-putamen. Animals were chron-
ically infused with cocaine (total daily dose: 50 mg/kg) for 7 days and compared to saline-treated rats (control group). Bars represent 2~ °P® value calculated by Delta-Delta Ct ( DDCt)
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Fig. 5. Left panel — Levels of NOP mRNA in the striatum. The NOP gene expression was measured in rat nucleus accumbens (A), lateral (B) and medial (C) caudate-putamen. Animals were
chronically infused with cocaine (total daily dose: 50 mg/kg) for 7 days and compared to saline-treated rats (control group). Bars represent 2~ " value calculated by Delta-Delta Ct
(DDCt) method (n = 6). Gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and data are expressed as means =+ SE of 6 animals for each
group. **p < 0.01 and *p < 0.05 versus control group. Right panel — NOP promoter histone modifications. RT-qPCR analyses of H3K4me3 and H3K27me3 immuno-precipitated DNA frag-
ments at NOP promoter were performed in rat nucleus accumbens (A), lateral (B) and medial (C) caudate-putamen. ChIP histogram shows the levels of specific histone modification nor-
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The recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) has been shown to pro-
duce neurotoxic damage and long-lasting changes in several brain areas. In addition to the involvement
of serotoninergic and dopaminergic systems, little information exists about the contribution of noci-
ceptin/orphaninFQ (N/OFQ)-NOP and dynorphin (DYN)-KOP systems in neuronal adaptations evoked by
MDMA. Here we investigated the behavioral and molecular effects induced by acute (8 mg/kg) or repeated
(8 mg/kg twice daily for seven days) MDMA exposure.

MDMA exposure affected body weight gain and induced hyperlocomotion; this latter effect progres-
sively decreased after repeated administration. Gene expression analysis indicated a down-regulation of
the N/OFQ system and an up-regulation of the DYN system in the nucleus accumbens (NAc), highlighting
an opposite systems regulation in response to MDMA exposure.

Since histone modifications have been strongly associated to the addiction-related maladaptive
changes, we examined two permissive (acH3K9 and me3H3K4) and two repressive transcription marks
(me3H3K27 and me2H3K9) at the pertinent opioid gene promoter regions. Chromatin immunoprecipi-
tation assays revealed that acute MDMA increased me3H3K4 at the pN/OFQ, pDYN and NOP promoters.
Following acute and repeated treatment a significant decrease of acH3K9 at the pN/OFQ promoter was
observed, which correlated with gene expression results. Acute treatment caused an acH3K9 increase
and a me2H3K9 decrease at the pDYN promoter which matched its mRNA up-regulation.

QOur data indicate that the activation of the DYNergic stress system together with the inactivation of
the N/OFQergic anti-stress system contribute to the neuroadaptive actions of MDMA and offer novel
epigenetic information associated with MDMA abuse.

© 2016 Elsevier Ltd. All rights reserved.



Table 1

Primers used in quantitative PCR for gene expression.

Forward (5-3") Reverse (5°'-3') Product size
pN/OFQ TGCAGCACCTGAAGAGAATG CAACTTCCGGGCTGACTTC 170
NOP AGCTTCTGAAGAGGCTGTGT GACCTCCCAGTATGGAGCAG 101
pDYN CCTGTCCTTGTGTTCCCTGT ACAGGCACTCAGGGTGAGCAA 157
KOP TTIGGCTACTGGCATCATCTG ACACTCTTCAAGCGCAGGAT 177
GAPDH AGACAGCCGCATCTTCTTGT CTTGCCGTGGGTAGAGTCAT 207
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Fig. 1. Sheared chromatin fragments. DNA fragment size was determined by 1.5%
agarose gel electrophoresis. Sonication produced fragments ranging from 400 to

600 bp.
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and pDY¥MN (Fig. 5c¢) promoters. The levels of permissive or repressive marks fol-
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Fig. 1 Sequences of Rarfus
norvegicus PDYN and PNOC
promoter regions. The
transcriptional start site (+1) is
indicated. The TATA box on
PDYN promoter and the CRE
sequence on PNOC promoter
are also indicated and
highlighted. Primer sequences
are wunderlined indicatin g

also the starting positions

a) Rattus norvegicus prodynorphin gene promoter region (M 019374 .3)
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tgtctoctgttttoctgtgagactoctoccoctggaaatgotcaaagtggoocgaatitgaagtgacaaacageoge tacacocgagaa toca
cooccocggactgogegagagratocctoctorcacatcaca tcacctggagragetattgtgtttcactcaggococcagggagttgagt
Ggaaggaccocogggggtbtoctgagctctgactgccactocococcococattggoctocctggocagoctgtgoct ctgtgagocgagecgctgagoeggg
+1
ctgagocgacagtggggggagactoctott ggggagggagtaaggctcacagaGAGCTALRGCCTCACAGAACTCCCATAG

GCEGGATTTGGTAGCCTTCARACGGCTTCCTCTGTGGCACTTCTCTGACCTAGCGTCAGGGCTCCTTCTGAATCTTGGATCGGCCATC

CTATCACCTGATCAGCCAGARAGCCTCGCCAGCGACARACCACGCACGCAG

) Rattus norvegicus pronociceptin gene promoter region (NW_047454.2)

-645
Aaacattcaaactatggcagcaactcoccattc tgacaLc_aEWC ttocctaggagggagagtitga

Gggacagcac tococcagoccaggoccagagggacttgagaggoctgagaggaagecactttagttgtitcattcacctgtoctoctocococtooo

Gagaaatgagatgagagatggataccaccactoggtgacttgtoctgocacttigocagtocttacagotctcacttocagocttocaaa

tgaaagtacatggctacaha c

aaactcttococttococcaggtgaacoctocagacctgggaatcacctocagggaggaatggtgocttggocctttgbgttgtggtoctcac
+1

agctgactaaccctoctoococcagacocgtactgactggocatgtgoocococttatgtgt ttCAGCCTCTTGCTTCCCACGCGCTGCACCAT

GAARATCCTEGTTTTETGATGTCCTGCTGCTCAGCCTEGCTCTCCAGCETEGTTCAGCAGCTETCOCCGAGGACTGCCTCACCTGCCAG

GAGAGGCTCCACCCGGCTCCGGEGCAGCTTCAACCTGAAG
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Fig. 2 RT-gPCR analysis of H3K27me3-, H3K9Ac-, and H3K4me3-
immunoprecipitated DN A fragments at a PDYN and b PNOC promoters.
Histogram shows specific histone modification levels, normalized to total
input DNA, in rats treated with EtOH intragastrically (total daily dose,
4.5gkg 'day '; EtOH, n=7) or vehicle (cont, n=7) for 1 day (group 1D).
Data are expressed as means£SE of tnplicate independent samples. *P<
0.05 vs. control group
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Fig. 3 RTqPCR analysis of H3K27me3-, H3K9Ac-, and H3K4me3-
immunoprecipitated DN A fragments ata PDYN and b PNOC promoters.
Histogram shows specific histone modification levels, normalized to total
input DNA, in rats treated with EtOH itragastrically (total daily dose,
4.5 gkg day; EtOH, n=T) or vehicle (cont, n=7) for 5 days (group 5D).
Data are expressed as means=SE of triplicate independent samples. *P<
0.05 vs. control group



Group W-1D
a) PDYN promoter

Jcont . EtOH
— 201
£
==
25 154
-
S H 104
£3
<]
EG 05-
z9
O ~
L 00 Table 1 Percent of
H3K27Tme3  H3K9Ac  H3K4me3 DNA methylation in pro-
b) PNOC promoter moter regions of PDYN
and PNOC in rats treated
2.5 1 with vehicle or EtOH
g
s E intragastrically (total day
_E‘ g 201 dose, 4.5 gkg ' day ")
E ? for 1 (1D group) or
=8 151 for 5 days (5D and
20 - 3
£ 3 1.0 4 W-1D groups)
23
0
o O 0.5 -
= <
o
L 0.0

H3K27me3  H3K9%Ac H3K4me3

Fig. 4 RT-qPCR analysis of H3K27me3-, H3K9Ac-, and H3K4me3-
immunoprecipitated DN A fragments at a PDYN and b PNOC promoters.
Histogram shows the level of specific histone modifications, normalized
to total input DNA, in rats treated with EtOH intragastrically (total daily
dose, 4.5 gkg ' day '; EtOH, n=7) or vehicle (cont, n=7) for 5 days,
assessed after 1 day of withdrawal (group W-1D). Data are expressed as
means+SE of triplicate independent samples

DNA methylation

Control EtOH
1D
PDYN 46+4 44+5
PNOC 569 4949
5D
PDYN 41£12 48+ 18
PNOC 5846 64+15
W-1D
PDYN 3912 3014
PNOC 58x22 63236




