$$
Q \subseteq \mathbb{R}
$$

\uparrow ration numbers

1) WHy $\mu^{2}(Q)=0$?

Decal that, (Q) is a countable set.
now
$\hat{i}_{\text {Conn }} \quad q \in Q$
ThAt is : $\mu^{n}\left(Q_{Q}\right)=\mu^{\prime}\left(\bigcup_{y \in Q}^{\text {ever }}\{\varphi\}\right) \leqslant$

$$
\leqslant \sum_{q \in Q} \mu^{v}(\{q\})=0^{111}
$$

Hence $\quad 0 \leq \mu^{x}(Q) \leq 0 \Rightarrow \mu^{\partial}(Q)=0 \quad$ QED
2) WLH $\mathrm{Ju}^{\prime}(\mathbb{R})=+\infty \quad ? ?$?

A matter of fact, $X \mu \in \mathbb{L}^{+}$we hive

$$
\mu^{*}(30, m[)=\mu(] 0, n l) \stackrel{m}{=} n-0=n \quad!\quad
$$

But now, for any $x \in \mathbb{Z}^{+}$

$$
\begin{aligned}
&] 0, n\left[\leq \mathbb{R} \quad \stackrel{\text { Mowrouker }}{\Rightarrow} u=\mu^{*}(] 0, n T\right) \leq \mu^{*}(\mathbb{R}) \\
& \Rightarrow \mu^{*}(\mathbb{R}) \geqslant n \quad X n \in \mathbb{Z}^{+} \Rightarrow \mu^{*}(\mathbb{R})=+\infty \quad!
\end{aligned}
$$

variation on time them:

1) $\mu^{x}(30,1 \Gamma)=\mu u(30,1 \tau)=1$
$\left.{ }^{\text {i }}\right) \mu^{x}(] 0,1[\cap Q) \stackrel{\text { mover }}{=} \mu^{*}(Q)=0!!$

$$
\downarrow \text { this is } 0 \text {. }
$$

Prop 3 (count. subannitivity)
LET $\left\{A_{h} \leqslant \mathbb{R}^{n} ; h \in a\right\}$ an at most countable

$$
\mu^{\nu}\left(\bigcup_{k<a} A_{k}\right) \leqslant \sum_{k \in a} \mu^{\nu}\left(A_{k}\right) \quad!!\cdots
$$

prour First, we notice tint,
for any fixen A_{h} the nolooenve is true:

WHy (x) is true ? ? ? By nefintion "!. By Coutranotion
Suppose (o) is FALSE \Rightarrow

$$
(x \times) \begin{cases}\exists \varepsilon \in \mathbb{R}^{+} & \text {such taAA tore EvERY } \\ & \left.\left\{I_{k_{j}} ; j \in a_{k}\right\} \leq\right\}_{A_{h}}\end{cases}
$$

$$
\begin{aligned}
& \text { We have } \\
& \sum_{j \in a_{k}} \mu\left(I_{\ell_{j}}\right)>\mu^{\nu}\left(A_{k}\right)+\varepsilon / z^{k} \\
& \text { Tomive } \quad \Downarrow \\
& \mu^{x}\left(A_{h}\right) \geqslant \mu^{\prime \prime}\left(A_{h}\right)+\varepsilon / \rho_{h} \quad \text { ARSurn }!\cdots
\end{aligned}
$$

so now, for any $A_{h_{2}}$ in oure atmost coudt fanmicy,
pmuose a leb. coverine satisfieiona (∞).
but nuw

$$
\left.\left\{I_{h_{j} i j} \in \lambda_{k_{k}}\right\} \in\right\}_{A_{k}}
$$

Ann Cousiner

$$
\begin{aligned}
& \left.\int^{\frac{\text { TnEN }}{\infty}\left(\bigcup_{k=a} A_{k}\right)} \leqslant \sum_{k \in a}\left(\sum_{j \in \theta_{k}} \mu\left(I_{l_{j}}\right)\right) \leqslant \quad \right\rvert\, \frac{\text { TRIVIAC }}{\text { FACT }} \\
& \leqslant \sum_{k \in Q}\left(\mu^{\infty}\left(A_{k}\right)+\varepsilon / 2^{k}\right)= \\
& =\sum_{k+a} \mu^{\nu}\left(A_{k}\right)+\sum_{k+c e} \varepsilon_{z^{2}} \beta_{k}=\sum_{k+a} \mu^{\prime}\left(A_{k}\right)+\varepsilon
\end{aligned}
$$

in the worst ensio (Cl ineiniti but couptabe:)

$$
\begin{aligned}
\sum_{k \in a} \frac{\varepsilon}{2^{k}}=\sum_{k=1}^{\infty} \varepsilon / 2^{k} & =\varepsilon \cdot \sum_{k=1}^{\infty} \frac{1}{2^{k}} \\
& =\varepsilon \cdot 1 \quad \begin{array}{c}
\text { eroumernie } \\
\text { cen, } \\
\text { oe nensun } 1 / 2
\end{array}
\end{aligned}
$$

So, we proven the (infinite) famgly of inequalities

$$
\begin{aligned}
& (t) \quad u^{\nu}\left(\bigcup_{h \in a} A_{k}\right) \leqslant \sum_{k \in a} j^{*}\left(A_{k}\right)+\varepsilon \quad, \forall \varepsilon \in \prod^{+} \\
& \text {ut } \\
& (H) \quad u^{\gamma}\left(\sum_{k \rightarrow \theta} A_{k}\right) \leqslant \sum_{k \in \theta} u^{\star}\left(A_{k}\right) \quad(2) \quad \text { QV) }
\end{aligned}
$$

BREAK WE RIGH 10.20

