$$
\frac{\text { RMKS OW GEEVERATIN }}{2-A L C E B R A S}
$$

$$
\operatorname{LET} \quad J \leq \mathbb{P}\left(\mathbb{R}^{n}\right) \quad \text { TnE }
$$

Z-AROERAA REZNERETED RY $\}$ is

RMK 1 (eumparison prineitie)

$$
\begin{aligned}
& J, \xi \leq \mathbb{P}\left(\mathbb{R}^{n}\right) \\
& \text { IF } J \subseteq J_{z} \Rightarrow \mathcal{J}_{j} \leq J_{z} .
\end{aligned}
$$

Proof $\sin G^{2} \quad J \leqslant J_{Z}(\lambda) \Rightarrow$

RMn 2 (inantty prineime $)$ LET $J, J \in \mathbb{P}\left(\mathbb{R}^{n}\right)$
IF
i) $J \leq J_{J}\left(\Rightarrow J_{J} \leqslant J_{J}\right)$
i) $J \leq J_{J}\left(\Leftrightarrow J_{z} \leq J_{J}\right)$

Thex, $\boldsymbol{\rho}_{J}{ }^{\text {Tan }}=J_{J}$
Arpl
LET $\quad \theta=\left\{A \subseteq \mathbb{R}^{n} ; A\right.$ OPEN $\}$
nan

$$
C=\left\{B \leqslant \mathbb{R}^{n} ; B C \text { cose }\right\}
$$

But now, Clemey
$(x)\} \omega \leq \delta_{\theta}$
$\theta^{\&} \leq J_{e}$

$$
B\left(\mathbb{R}^{x}\right){\underset{i}{\lambda}}^{i} \mathcal{L}\left(\mathbb{R}^{n}\right) \underset{i}{c} \mathbb{P}\left(\mathbb{R}^{x}\right)
$$

Now, econsiner $B(I R) \quad(n=1)$
LINDEZOF LEMMN (SPECIML FORM)
ANy OPEN SET $A \subseteq I R$ can be
EXPrESSEN BY
At must countabre unidu OF LIMITED OPEN INTERUALS

Cons=avences FIrst, eunsiner

$$
I=\{] a, b[\subseteq \mathbb{R} ; a, b \in \mathbb{R}, a=l\} \subseteq \mathbb{P}(\mathbb{R})
$$

LET NOW
ρ
the Z-aceebara eeiveraten I BY THE SET I!
now, LINDELGiNE LEmmA,

$$
\begin{equation*}
0 \leq \delta_{T} \tag{1}
\end{equation*}
$$

but, trivimuy,

$$
\begin{equation*}
I \leq \delta \theta \tag{2}
\end{equation*}
$$

By THE IDENTITY PROINCIPLE

$$
\delta_{I}=\delta_{\theta}=\delta_{\rho} \stackrel{n r x}{=} B(\| R)_{\ldots}^{111}
$$

is it clenr

Cuñiluvos fluction $\quad F: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$; upin SETS , CCOSED SITS
DiF $F: A \subseteq \ln n^{x} \rightarrow \ln$ is
Satin to continuos $A T \quad \underline{x} \in A$

$$
\begin{aligned}
& |F(x)-F(\underline{x})|<\varepsilon \quad \frac{\text { LOCNL }}{\text { neFintion }} \\
& X x \in I(\underline{x}, \delta) \cap A .
\end{aligned}
$$

We have tha blubal cund.:
F $\frac{\text { eontinuous on } A}{\text { if ann unly if }}$
F is continuos $A T \quad x \in A \quad \forall x \in A$
Tum $\quad F: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$.
THE FUZCOWILE CONDITIUNS ARE EqUIVALENT:

1) $F: A \subseteq m^{x} \rightarrow \mathbb{R}$ is cominuous on A
2) $\forall B \leq M, B$ UPEN $\quad \exists B_{1} \subseteq I M^{n}, B_{1}$ OPEN ANn $F^{-1}[B]=A \cap B_{1}$
wuele:

$$
\begin{aligned}
& F^{-1}[B] \stackrel{D E F}{=}\{x \in A ; F(x) \in B\} \\
& \text { pILEMAGE} \\
& \text { "FIBEX" }
\end{aligned}
$$

3) $\forall C \subseteq \mathbb{R}, C \operatorname{cosin} \exists C, \mathbb{R}^{n}, C_{4} \operatorname{cosen}$ nwo
10.1

$$
F^{-1}[C]=A \cap C_{1}
$$

