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1 Introduction

The purpose of the present work is to provide short and supple teaching notes
for a 30 hours introductory course on elementary Enumerative Algebraic Com-
binatorics.

We fully adopt the Rota way (see, e.g. [1]). The themes are organized into
a suitable sequence that allows us to derive any result from the preceding ones
by elementary processes.

Definitions of combinatorial coefficients are just by their combinatorial mean-
ing. The derivation techniques of formulae/results are founded upon construc-
tions and two general and elementary principles/methods:

- The bad element method (for recursive formulae). As the reader should
recognize, the bad element method might be regarded as a combinatorial com-
panion of the idea of conditional probability.

- The overcounting principle (for close form formulae).
Therefore, no computation is required in proofs : computation formulae are

byproducts of combinatorial constructions.
We tried to provide a self-contained presentation: the only prerequisite is

standard high school mathematics.
We limited ourselves to the combinatorial point of view : we invite the reader

to draw the (obvious) probabilistic interpretations.
Several beautiful (and ponderous) monographs on the subject are currently

available. We refer the interested reader to the ones by R. Graham, D. Knuth,
O. Patashnik [2] and by Richard P. Stanley [3].

These notes are dedicated to the memory of Gian-Carlo Rota. Gian-Carlo
was mentor of the first author and friend of both.

We quote from the obituary by Richard P. Stanley:
... Rota was the son of Giovanni Rota, a civil engineer and architect. Gio-

vanni Rota was a prominent anti-fascist who had to flee Italy in 1945 to escape
Mussolini’s death squads. The remarkable story of his family’s escape and sub-
sequent activities is recounted by Gian-Carlo Rota’s sister Ester Rota Gasperoni
in the three novels Orage sur le Lac, L’Arbre des Capulíes, and L’Année améri-
caine. Rota ended up completing his secondary school education in Ecuador. As
a result of his escape story Rota was fluent in English, Italian, Spanish, and
French. In 1950 Rota entered Princeton University and graduated summa cum
laude in 1953. He then attended graduate school at Yale University, receiving
a Master’s Degree in Mathematics in 1954 and a Ph.D. in 1956 under the su-
pervision of Jacob T. Schwartz. After graduating from Yale, Rota received a
Postdoctoral Reseach Fellowship from the Courant Institute at New York Uni-
versity. The next academic year Rota became a Benjamin Peirce Instructor at
Harvard University and in 1959 accepted a position at the Massachusetts In-
stitute of Technology. Except for a two year hiatus 1965 − 67 at Rockefeller
University, Rota remained at M.I.T. for the rest of his career. His honors and
achievements include the Colloquium Lectures of the American Mathematical
Society (1998), election to the National Academy of Sciences (1982), the Leroy
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P. Steele Prize for Seminal Contribution to Research (1988), Vice-President of
the American Mathematical Society (1995− 1997), four honorary degrees, and
the supervision of 42 Ph.D. students. He held numerous consulting positions,
including a fruitful association with Los Alamos Scientific Laboratory officially
beginning in 1966. He died unexpectedly in his sleep at his home in Cambridge
on April 18, 1999.

Rota was originally trained in functional analysis, and his early work was
in this area. In the early 1960’s he became interested in combinatorics, then a
rather seedy and disreputable backwater of mathematics.

Combinatorics is concerned with the arrangement of discrete objects and
looks at such problems as the existence of an arrangement, the number or ap-
proximate number of arrangements, relations among the different arrangements,
and the “optimal” arrangment according to given criteria. In general the defini-
tions involved are easy to understand, and the arrangements have little (obvious)
internal structure (Think of a jigsaw puzzle). For this reason combinatorics was
not regarded by most mathematicians as a serious subject.

Rota had the vision to realize that on the contrary combinatorics had tremen-
dous potential for elucidating and extending other areas of mathematics. He was
able to recognize intuitively many problems to which combinatorics could be un-
expectedly applied. As a consequence, he was the founder of the movement that
lifted the subject of combinatorics to its current position as a major branch of
mathematics ....

We thank Francesco (Franco) Regonati and Camilla Cobror.
We thank the former students Martin D’Ippolito and Gregorio Vettori who

provided us their class notes from the course of the academic year 2020.

2 Functions between finite sets

2.1 Three elementary problems

Problem 1. Compute the number of arbitrary functions:

#{F : k→ n}.

Problem 2. Compute the number of injective functions:

#{F : k
1−1
→ n}.

Problem 3. Compute the number of surjective functions:

#{F : k
su
→ n}.

2.2 The occupancy model

The elements of the domain set k = {1, 2, . . . , k} are thought as (labelled) balls
and the elements of the codomain set n = {1, 2, . . . , n} are thought as (labelled)
boxes.
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Any function F : k → n gives rise to a unique distribution of the k balls into
the n boxes and viceversa.

(To wit: if i ∈ k and F (i) = j ∈ n, then the ball with the label i is placed
into the box with the label j.)

Solution of Problem 1: we have n choices for the ball 1, n choices for the
ball 2, ..., n choices for the ball k.

Therefore
#{F : k→ n}.

equals
n · n · · ·n, (k times),

that is the power nk.

Solution of Problem 2: Any injective function F : k
1−1
→ n gives rise to a

unique distribution of the k balls into the n boxes such that any box can contain
at most one ball and viceversa.

Hence, we have n choices for the ball 1, n − 1 choices for the ball 2, n − 2
choices for the ball 3, ..., n− k + 1 choices for the ball k. Then,

#{F : k
1−1
→ n}.

equals
n(n− 1)(n− 2) · · · (n− k + 1),

that is the falling factorial

(n)k
def
= n(n− 1)(n− 2) · · · (n− k + 1).

Notice that, if k = n then the falling factorial (n)n becomes the traditional
factorial

n! = n(n− 1)(n− 2) · · · 1.

As a matter of fact (since we are speaking of finite sets!), any injective function

F : k
1−1
→ n (with k = n) is also surjective and, then, F is a bijection of k = n

to itself, that is a permutation.

Remark 2.1. What about Problem 3? It has no elementary solutions (in close
form formula)!

We shall see (by the end of the course and using the Moebius inversion
principle) that the solution is provided by the close form formula:

n
∑

j=0

(−1)n−j

(

n

j

)

jk. (1)

Since formula (1) contains alternating signs (and negative integers cannot be
interpreted as cardinalities), it cannot be derived by elementary constructions.
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2.3 The word model

Beside the occopancy model, functions between finite sets admit a second (in
a sense “dual”) model: the elements of the domain set k = {1, 2, . . . , k} can be
thought as positions of letters in a word of length k, and the elements of the
codomain set n = {1, 2, . . . , n} can be thought as letters (of the alphabet n).
Given any function F : k → n, we construct the word

W = F (1)F (2) · · ·F (k)

of length k on an alphabet with n letters.

For example, let k = 4, n = 3. The function

F : 4→ 3,

F (1) = 1, F (2) = 3, F (3) = 1, F (4) = 2

gives rise to the word
1312.

Any function F : k → n gives rise to a unique word of length k over n letters
and viceversa.

Solution of Problem 1: we have n choices for the letter to be written in
position 1, n choices for the letter to be written in position 2, ..., n choices for
the letter to be written in position k. Therefore

#{F : k→ n}.

equals
n · n · · ·n, (k times)

that is the power nk.

Solution of Problem 2: Any injective function F : k
1−1
→ n gives rise to a

unique word of length k on n letters, with no repeated letters, and viceversa.
Hence, we have n choices for the letter to be written in position 1, n − 1

choices for the letter to be written in position 2, n−2 choices for the letter to be
written in position 3 ..., n− k+1 choices for the letter to be written in position
n. Then

#{F : k
1−1
→ n}.

equals
n(n− 1)(n− 2) · · · (n− k + 1),

that is the falling factorial

(n)k = n(n− 1)(n− 2) · · · (n− k + 1).
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2.4 An elementary probalistic application: the birthday

problem

We teach a class with k Students, say k = {1, 2, . . . , k} (born in the same year,
not a leap (bisextile) year).

Compute the probability P(E) of the event :

E
def
= there are at least two Students with the same birthdate.

The date of birth is a function from the set of Students k = {1, 2, . . . , k} to
the set of the days of the year 365 = {1, 2, . . . , 365}:

F : k = {1, 2, . . . , k} → 365 = {1, 2, . . . , 365},

and the event E can be formalized in the following way:

E = {F : k → 365; F not injective}.

Then, the complementary event is:

E
c = {F : k

1−1
→ 365}

and, hence,
P(E) = 1−P(Ec).

The probability of P(Ec) equals

|{F : k
1−1
→ 365}|

|{F : k → 365}|
=

(365)k
365k

,

then

P(E) = 1−
(365)k
365k

.

Amazingly, it follows that for k ≥ 23 (at least 23 Students) this probability is
greater than 1

2 .

3 Binomial coefficients

3.1 Subsets and characteristic functions

Le X be a finite set, |X | = n.
Given a subset A ⊆ X , the characteristic function of A is the function

χA : X → {0, 1}

such that
χA(x) = 1 if x ∈ A, χA(x) = 0 if x /∈ A.
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Given a function
χ : X → {0, 1},

its support is the subset

supp(χ) = {x ∈ X ; χ(x) = 1} ⊆ X.

The “construction” (as a matter of fact: function)

C1 : A 7→ χA

and the “construction”
C2 : χ 7→ supp(χ)

are easily recognized to provide a pair of inverse maps:

C1 : P(X)
def
= {A; A ⊆ X} → {χ;χ : X → {0, 1}}

and
C2 : {χ; χ : X → {0, 1}} → P(X)

def
= {A; A ⊆ X}.

In details:
C2(C1(A)) = C2(χA) = supp(χA) = A,

and
C1(C2(χ)) = C2(supp(χ)) = χsupp(χ) = χ.

Hence, C1 and C2 are bijections. Then the two sets are equicardinal:

|P(X)| = |{χ; χ : X → {0, 1}}|.

The cardinality of the second set equals 2n, by the solution to Problem 1.

Proposition 3.1. Let |X | = n. Then

|P(X)| = 2n.

3.2 Binomial coefficients: the combinatorial definition

Let n, k ∈ N be natural integers.
The binomial coefficient

(

n

k

)

is defined by means of its combinatorial meaning:
(

n

k

)

def
= # k-subsets of an n-set.

Let X be a finite set, |X | = n. Since P(X)
def
= {A; A ⊆ X} equals the

disjoint union:
P(X) =

.
∪
n

k=0 {A ⊆ X ; |A| = k},

from Proposition 3.1 we immediately have:
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Corollary 3.2.
n
∑

n=0

(

n

k

)

= 2n.

3.3 Dispositions with no repetitions and increasing words

Let A = {a1 < a2 < . . . < an} be an alphabet on n letters, that is a finite n-set
endowed with a total order <.

A word of length k on A, say

w = ai1ai2 . . . aik

is increasing whenever ai1 < ai2 < · · · < aik .
Clearly, given an increasing word of length k on n letters, its set of letters

is a k-subset of the n-set A = {a1 < a2 < . . . < an}, and, conversely, given
a k-subset of the n-set A = {a1 < a2 < . . . < an} we can write its elements
(in a unique way) in increasing order, therefore obtaining an increasing word of
length k.

Then the two families are bijectively equivalent and, a fortiori, they have the
same cardinality

(

n
k

)

. In the language of old fashioned Combinatorial Calculus,
increasing words are called dispositions with no repetitions.

Example 3.3. Let A = {a1 < a2 < a3 < a4 < a5} and let

w = a1a3a4

be an increasing word of length 3. It bijectively corresponds to the 3-subset
{a1, a3, a4}.

3.4 The overcounting principle (shepherd’s principle)

We introduce a general principle that will be systematically used throughout our
presentation. As a fairy tale of the mathematical folklore, it is usually known
as the shepherd’s principle. To wit: A shepherd has to count the sheep of his
flock, how does he proceed? Count the number of legs then divide by four! This
metaphor seems to express a paradoxical procedure, however it is actually very
profound and effective. Suppose we have to enumerate objects of a certain type
(sheep, in the metaphor), but we don’t know how. Suppose that each sheep has
a fixed k number of other objects associated with it (the legs, in the metaphor)
and these objects are easier to count. So we count the legs and then divide by
k (Eureka!)

In the next paragraph we will immediately see a significant application.
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3.5 On the computation of binomial coefficients: close

form formulae

Our problem is to find algebraic formulas (close form formulae) to calculate the
binomial coefficients.

We want to apply the overcounting/shepherd’s principle. We have to ask
ourselves: if the k-subsets are sheep, what are the legs?

Let n ∈ N and n = {1, 2, . . . , n} the standard n-set. Given an injective

function F : k
1−1
→ n, consider its image

Im(F )
def
= {F (i); i ∈ k} ⊆ n.

Since F is injective, then its image Im(F ) is a k-subset of n, and futhermore
any k-subset of n can be obtained as the image of a suitable injective function
from k to n. Well, the injective functions from k to n are the legs! Now the
question is: how many legs per sheep? In precise terms, it becomes: how many
injective functions have the same image?

It is easy to recognize that, given F,G : k
1−1
→ n we have Im(F ) = Im(G) if

and only if there exists a permutation σ of k such that F = G σ.
There are exactly k! legs for each sheep!
Therefore

(

n

k

)

=
|{F : k

1−1
→ n}|

k!
.

By the solution to Problem 2, we infer:

Proposition 3.4.

(

n

k

)

=
(n)k
k!

=
n(n− 1) · · · (n− k + 1)

k!
=

n!

k!(n− k)!
.

3.6 Binomial coefficients: recursive computation

Binomial coefficients are regarded as a double sequence:
( (

n

k

) )

n,k∈N

.

Then, it is convenient to represent them by means of a biinfinite matrix, that is
a function

M : N× N→ R, M : (n, k) 7→

(

n

k

)

.

In plain words, we arrange the binomial coefficients in the following way:
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0 1 2 3 4 · · · k · · ·

0
(

0

0

) (

0

1

) (

0

2

) (

0

3

) (

0

4

)

· · ·

(

0

k

)

· · ·

1
(

1

0

) (

1

1

) (

1

2

) (

1

3

) (

1

4

)

· · ·

(

1

k

)

· · ·

2
(

2

0

) (

2

1

) (

2

2

) (

2

3

) (

2

4

)

· · ·

(

2

k

)

· · ·

3
(

3

0

) (

3

1

) (

3

2

) (

3

3

) (

3

4

)

· · ·

(

3

k

)

· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

n
(

n

0

) (

n

1

) (

n

2

) (

n

3

) (

n

4

)

· · ·

(

n

k

)

· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

.

The elements of the 0-row are:
(

0

k

)

def
= # k-subsets of the 0-set (the empty set ∅).

Clearly
(

0
0

)

= 1 and
(

0
k

)

= 0 whenever k > 0. By using the Kronecker δ symbol,
we write:

(

0

k

)

= δ0,k. (2)

The elements of the 0-column are:
(

n

0

)

def
= # 0-subsets of a n-set.

Clearly, the unique 0-set is the empty set ∅: then,
(

n

0

)

= 1 for every n ∈ N. (3)

Do binomial coefficients obey some kind of recursion? To deal with this
problem, we will use the so called “bad element” method.

3.6.1 Linear recursions and the bad element method

We must count the elements of a variety V of constructions that can be given
on a set of n elements. We choose an element, for example the last one, that we
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will call the “bad element”. We divide our variety into disjoint and exhaustive
classes with respect to the behavior of the “bad element”. Clearly, the cardinality
of the variety V will be given by the sum of the cardinalities of the subclasses
and counting these cardinalities will involve reasoning only on the first n − 1
elements. Let’s immediately see a first and prototypical application.

3.6.2 The Pascal/Tartaglia/Stifel/Chu recursion for binomial coef-
ficients

To calculate
(

n
k

)

we have to calculate (from the definition itself) the cardinality:

|{A ⊆ n; |A| = k}|.

In the set n = {1, 2, . . . , n}, choose as “bad element” the last element n (this
is an arbitrary choice).

For the family
{A ⊆ n; |A| = k}

we have two (disjoint) cases:
i) n /∈ A. In this case, A is a subset of n− 1 = {1, 2, . . . , n−1}, with |A| = k.
The cardinality of this class is:

(

n− 1

k

)

,

by definition.
ii) n ∈ A. In this case, A can be (uniquely) expressed in the form:

A = A′ .
∪ {n},

with
A′ ⊆ n− 1, |A′| = k − 1.

The cardinality of this class is:
(

n− 1

k − 1

)

by definition.
Therefore, we get the famous recursion (known to the ancient civilizations

B.C. of the Far East!):

Proposition 3.5. We have

(

n

k

)

THM
=

(

n− 1

k − 1

)

+

(

n− 1

k

)

.

This recursion, together with the initial condition (2) and (3) allows us to
compute the entries of the matrix of binomial coefficients in an effective way.

13



We have

0 1 2 3 4 · · ·

0 1 0 0 0 0 · · ·

1 1 1 0 0 0 · · ·

2 1 2 1 0 0 · · ·

3 1 3 3 1 0 · · ·

· · · · · · · · · · · · · · · · · · · · ·

.

3.7 Graphs

A (labelled) graph is - roughly speaking - a finite set of vertices V = {1, 2, . . . , n}
joined by (may be intersecting) edges ; two vertices joined by an edge are said
to be adjacent. The edges are identified with nonordered couples {i, j}, i, j ∈
V = {1, 2, . . . , n}.

Therefore, we formalize the notion of a graph G in the following way.
A graph G is a pair

G = (V,E),

where V = {1, 2, . . . , n} is the set of vertices and the set E of edges is

E ⊆ {A ⊆ V ; |A| = 2}.

Example 3.6. Consider the graph G:

1

2

3

5 4

14



where

V = {1, 2, 3, 4, 5}, E = { {1, 2}, {1, 3}, {1, 2}, {1, 4}, {2, 5}, {3, 5} }.

Proposition 3.7. The number of graphs G on n vertices is

2(
n

2).

Proposition 3.8. The number of graphs G on n vertices with exacly k edges is

(
(

n
2

)

k

)

.

3.8 Digraphs

A (labelled) directed graph (digraph, for short) is, roughly speaking, a finite set
of vertices V = {1, 2, . . . , n} joined by (may be intersecting) arrows. Then, an
arrow (i → j, with head i and tail j) is identified with the ordered pair (i, j),
i, j ∈ V = {1, 2, . . . , n}.

An arrow i→ i, with the same head i and tail i is called a loop.

Therefore, we formalize the notion of a digraph
→

G in the following way.

A digraph
→

G is a pair
→

G = (V,
→

E),

where V = {1, 2, . . . , n} is the set of vertices and the set
→

E of arrows is

→

E ⊆ V × V.

Example 3.9. Consider the digraph
→

G:

15



1

5

2

4
7

3

6

where
V = {1, 2, 3, 4, 5, 6, 7},

→

E = { (1, 1), (1, 5), (5, 1), (1, 7), (7, 4), (4, 4), (2, 3), (3, 6), (7, 6) }.

Then,

Proposition 3.10. The number of digraphs
→

G on n vertices is

2n
2

.

Proposition 3.11. The number of digraphs
→

G on n vertices with exacly k
arrows is

(

n2

k

)

.

Clearly, a digraph
→

G = (V,
→

E) has no loops whenever

→

E ⊆ V × V − {(i, i); i ∈ V }.

Example 3.12.
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1

5

3

4
7

2

6

where
V = {1, 2, 3, 4, 5, 6, 7},

→

E = { (1, 5), (5, 1), (1, 7), (7, 4), (4, 3), (3, 2), (2, 6), (7, 6) }.

Then,

Proposition 3.13. The number of digraphs
→

G with no loops on n vertices is

2n(n−1).

Proposition 3.14. The number of digraphs
→

G with no loops on n vertices with
exactly k edges is

(

n(n− 1)

k

)

.

4 Recursive matrices and generating functions

4.1 The algebra of formal power series R[[t]]

Let
(an)n∈N = (a0, a1, . . . , an, . . .), an ∈ R (4)

be a sequence with real entries.
Let t be a “formal” variable.
The associated formal power series is the “expression”

α(t) =

∞
∑

n=0

ant
n. (5)

17



The series (5) is also called the generating series of the sequence (4).
Note that polynomials are special cases of “finite” formal power series. To

wit: in the case of polynomials all but a finite number of the coefficients an are
ZERO. In a formal way:

α(t) =
∞
∑

n=0

ant
n,

but there exists n such that

an = 0, for every n > n.

Formal power series can be summed:

α(t) =

∞
∑

n=0

ant
n, β(t) =

∞
∑

n=0

bnt
n,

then, by definition:

α(t) + β(t) =

∞
∑

n=0

(an + bn)t
n.

Formal power series can be multiplied by a scalar factor λ ∈ R:

λα(t) =

∞
∑

n=0

(λan)t
n.

The set of formal power series R[[t]] endowed with these operations is clearly
a vector space. Its zero vector is the identically zero series:

0(t) =

∞
∑

n=0

0nt
n, 0n = 0 ∈ R, for every n ∈ N.

But formal power series can be multiplied together, too. To wit:

α(t) =

∞
∑

n=0

ant
n, β(t) =

∞
∑

n=0

bnt
n,

then, by definition, the product series

α(t)β(t)

is the series

γ(t) =

∞
∑

n=0

cnt
n,

where

cn =

n
∑

k=0

akbn−k. (6)

18



Notice that this multiplication rule is nothing but the natural generalization of
the ordinary one for polynomials (from high school mathematics)!

The vector space R[[t]] - endowed with this product operation - turns out to
be an ALGEBRA, i.e. the above product is associative and distributes w.r.t. to
vector space operations (i.e., addition and scalar multiplication).

Futhermore, R[[t]] is a commutative algebra, that is:

α(t) β(t) = β(t) α(t).

Notice that R[[t]] has a unit, which is the multiplicative neutral element 1(t):

1(t) α(t) = α(t) = α(t) 1(t).

Clearly, 1(t) is the constant series :

1(t) = 1,

that is

1(t) =

∞
∑

n=0

1nt
n,

with 10 = 1, 1n = 0 for n > 0.

Remark 4.1. As a vector space, the space R[[t]] of formal power series is the
dual space (R[t])∗ of the vector space of polynomials R[t]. Notice that R[t] is not
of finite dimension. As a matter of fact, R[t] has infinite countable dimension.
Indeed, a basis of R[t] is provided by the family of power monomials:

{tn;n ∈ N} = {1, t, t2, . . . , tn, . . .}

The dimension of R[[t]] = (R[t])∗ is more than countable. We recall that,
in infinite dimension, the basis theorem for vector spaces is just an existence
theorem (the standard proof involves the Zorn Lemma). Indeed, an explicit basis
of R[[t]] is still unknown.

4.2 Row generating series (functions) and recursive ma-
trices

Let
M : N× N→ R, M : (n, k) 7→M(n, k) ∈ R

be a biinfinite matrix. Alternatively, we denote this matrix as follows:

M =
[

M(n, k)
]

n,k∈N
.

Given n ∈ N, the nth generating series of the matrix M is the formal power
series

Mn(t) =

∞
∑

k=0

M(n, k)tk, (7)
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the generating series of the sequence in the nth row.
The matrix M is said to be a recursive matrix whenever the following con-

dition holds:
Mn(t) = (M1(t))

n
. (8)

Clearly, condition (8) is equivalent to the conditions:

M0(t) = 1, (9)

Mn(t) = M1(t) ·Mn−1(t), for n > 1. (10)

The series M0(t) and the series M1(t) are called the initial condition and
the recursion rule of the recursive matrix M , respectively.

4.2.1 The matrix of binomial coefficients as a recursive matrix

We have:

Theorem 4.2. The matrix of binomial coefficients

M =
[

M(n, k)
]

n,k∈N

def
=

[(

n

k

)]

n,k∈N

is a recursive matrix having as recursion rule the polynomial

M1(t) = 1 + t.

Proof. We verify conditions (10). Since
(

0
n

)

= δ0,n, then M0(t) = 1.
Since

(

1
0

)

=
(

1
1

)

= 1 and
(

1
n

)

= 0 for n > 1, then

M1(t)
def
=

∞
∑

n=0

(

1

n

)

tn = 1 + t.

We have to prove that

Mn(t)
def
=

∞
∑

k=0

(

n

k

)

tk

equals

M1(t) ·Mn−1(t)
def
= (1 + t) ·

(

∞
∑

k=0

(

n− 1

k

)

tk

)

.

Write

M1(t) ·Mn−1(t) = γ(t) =

∞
∑

k=0

ckt
k.

By the multiplication rule (6) of series, we have:

ck
def
=

(

1

0

)(

n− 1

k

)

+

(

1

1

)(

n− 1

k − 1

)

.
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But
(

n− 1

k

)

+

(

n− 1

k − 1

)

=

(

n

k

)

by Proposition 3.5. Then

M1(t) ·Mn−1(t) = γ(t) =

∞
∑

k=0

(

n

k

)

tk
def
= Mn(t).

Corollary 4.3. (Binomial Theorem) We have:

(1 + t)n =

n
∑

k=0

(

n

k

)

tk.

4.2.2 The generalized Vandermonde convolutions for recursive ma-
trices

Let
M =

[

M(n, k)
]

n,k∈N
.

be a recursive matrix.
We have:

Proposition 4.4. (General Vandermonde convolutions) Let i, j ∈ Z+

and n = i + j. Then

M(n, k) =

k
∑

h=0

M(i, h)M(j, k − h). (11)

Proof. Since the matrix M is a recursive matrix, then

Mn(t) = (M1(t))
n = (M1(t))

i · (M1(t))
j = Mi(t) ·Mj(t).

Write

Mi(t) ·Mj(t)
def
= γ(t) =

∞
∑

k=0

ckt
k.

By the multiplication rule (6) of series, we have:

ck =
k
∑

h=0

M(i, h)M(j, k − h).

But

γ(t) =

∞
∑

k=0

ckt
k = Mn(t)

def
=

∞
∑

k=0

M(n, k)tk

and thus the assertion follows.
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In the special case

M =
[

M(n, k)
]

n,k∈N
=

[(

n

k

)]

n,k∈N

,

Proposition 4.4 yields

Corollary 4.5. Let i, j ∈ Z+ and n = i+ j. Then

(

n

k

)

=

k
∑

h=0

(

i

h

)(

j

k − h

)

. (12)

5 Multisets and multiset coefficients

5.1 The problem of rows

We consider the following problem: In how many ways can we arrange k objects
into n different rows?

We can think of the k objects as “flags” and the n rows as “flagpoles”.
We fix the number n of flagpoles and try to compute the value

Lk
def
= # of ways to arrange k flags,

as a function of k. We can do this by meaning of recursion. Clearly, L1 = n by
definition.

We shall use the “bad element” method and choose the last flag (with label
k) as “bad element”.

Suppose the first k − 1 flags are already placed on the n flagpoles (this can
be done in Lk−1 ways). Clearly, there will be i1 flags on flagpole 1, i2 flags on
flagpole 2, . . . , in flags on flagpole n, with

i1 + i2 + · · ·+ in = k − 1.

In how many ways can we insert the last flag k? Clearly, there will be i1 + 1
choices on flagpole 1, i2+1 choices on flagpole 2, . . . , in+1 choices on flagpole
n. Therefore, the total number of ways in which we can insert the last flag k
will be given by:

(i1 + 1) + (i2 + 1) + · · ·+ (in + 1) = n+ k − 1.

Therefore, the recursive solution is provided by the linear recursion:

L1 = n, Lk = (n+ k − 1)Lk−1. (13)

By eq. (13), we obtain the solution of the problem of rows in close form:

Proposition 5.1.

Lk = n(n+ 1)(n+ 2) · · · (n+ k − 1),
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that is the so called rising factorial

〈n〉k
def
= n(n+ 1)(n+ 2) · · · (n+ k − 1).

5.2 k-multisets on n-sets and multiset coefficients

Let X be a finite set, |X | = n, say X = n = {1, 2, . . . , n}.
A multiset on the set X = {1, 2, . . . , n} is a function

ρ : {1, 2, . . . , n} → N.

The value ρ(i) is the multiplicity of the element i ∈ n.
Notice that the notion of multiset is the modern and transparent formaliza-

tion of disposition with repetition of the old fashioned “Combinatorial Calculus”.
A multiset ρ : {1, 2, . . . , n} → N is called of cardinality k (k-multiset, for

short) if
n
∑

k=1

ρ(i) = k.

Given n, k ∈ N, the corresponding multiset coefficient is by definition:
〈

n

k

〉

def
= # k-multisets on an n-set.

5.2.1 Dispositions with repetitions and nondecreasing words

Let A = {a1 < a2 < . . . < an} be an alphabet on n letters, that is a finite n-set
endowed with a total order <.

A word of length k on A, say

w = ai1ai2 . . . aik

is said to be nondecreasing whenever ai1 ≤ ai2 ≤ · · · ≤ aik .
Clearly, given a nondecreasing word of length k on n letters, the function

ρ : A = {a1 < a2 < . . . < an} → N.

such that

ρ(ai) = # of repetitions of the letter ai in the word w,

is a k-multiset on the n-set A = {a1 < a2 < . . . < an}.
Conversely, given any k-multiset on the n-set A = {a1 < a2 < . . . < an}

we can write its elements with their multiplicities/repetitions (in a unique way)
in a nondecreasing order.

Then, the two families are bijectively equivalent and, a fortiori, they have
the same cardinality

〈

n
k

〉

. In the language of the old fashioned Combinatorial
Calculus, increasing words are called dispositions with repetitions.

23



Example 5.2. Let A = {a1 < a2 < a3} and let

w = a1a1a2a3a3a3

be a nondecreasing word of length 6. It bijectively corresponds to the 6-multiset
ρ on A = {a1 < a2 < a3} such that

ρ(a1) = 2, ρ(a2) = 1, ρ(a3) = 3.

5.3 On the computation of multiset coefficients: close form
formulae

We have a beautiful close form formula to compute multiset coefficients:

Proposition 5.3. Let n, k ∈ N. Then

〈

n

k

〉

=
〈n〉k
k!

.

Proof. We shall use the overcounting principle. The k-multisets on the set n
are sheep, the arrangements of k flags on n flagpoles are legs.

Indeed, given an arrangement of the k flags, with i1 flags on flagpole 1, i2
flags on flagpole 2, ..., in flags on flagpole n (i1 + i2 + · · · + in = k) define a
k-multiset on n by setting:

ρ : n→ N,

ρ(1) = i1, ρ(2) = i2, . . . , ρ(n) = in.

Notice that any k-multiset can be obtained in this way. But flag labels do not
matter! Therefore, there are k! different arrangements of flags that give rise to
the same k-multiset. In a more formal way, we say that the above construction
is a k! 7→ 1 correspondence.

Then
〈

n

k

〉

=
Lk

k!
=
〈n〉k
k!

,

by Proposition 5.1.

Remark 5.4. Note that:
〈

n

k

〉

=
〈n〉k
k!

=
(n+ k − 1)!

k!(n− 1)!
=

(

n+ k − 1

k

)

.
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5.4 Multiset coefficients: recursive computation

By definition, we have:
〈

0

k

〉

= δ0,k

and
〈

n

0

〉

= 1.

Proposition 5.5. Let n, k ∈ N. Then

〈

n

k

〉

=

k
∑

i=0

〈

n− 1

i

〉

. (14)

Proof. We shall use the bad element method. Fix the element n ∈ n and
consider the disjoint/exhaustive cases:

ρ(n) = k; this case has cardinality

〈

n− 1

0

〉

,

ρ(n) = k − 1; this case has cardinality

〈

n− 1

1

〉

,

ρ(n) = k − 2; this case has cardinality

〈

n− 1

2

〉

,

...

ρ(n) = 0; this case has cardinality

〈

n− 1

k

〉

.

Then
〈

n

k

〉

=

〈

n− 1

0

〉

+

〈

n− 1

1

〉

+

〈

n− 1

2

〉

+ · · ·+

〈

n− 1

k

〉

.

The recursion (14) has (variable) step k + 1. But, since

k−1
∑

i=0

〈

n− 1

i

〉

=

〈

n

k − 1

〉

,

it is equilavalent to the step 2 recursion
〈

n

k

〉

=

〈

n

k − 1

〉

+

〈

n− 1

k

〉

. (15)
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5.5 The matrix of multiset coefficients as a recursive ma-
trix

Consider the biinfinite matrix

M : N× N→ R, M : (n, k) 7→M(n, k)
def
=

〈

n

k

〉

,

that is

M =

[ 〈

n

k

〉 ]

n,k∈N

.

By eq. (15), it is the matrix

0 1 2 3 4 · · · k · · ·

0 1 0 0 0 0 · · · 0 · · ·

1 1 1 1 1 1 · · · 1 · · ·

2 1 2 3 4 5 · · · k + 1 · · ·

3 1 3 6 10 15 · · ·

〈

3

k

〉

· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

n
〈

n

0

〉 〈

n

1

〉 〈

n

2

〉 〈

n

3

〉 〈

n

4

〉

· · ·

〈

n

k

〉

· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

.

Since
〈

0

k

〉

= δ0k,

the 0-row generating series is:

M0(t) = 1.

Since
〈

1

k

〉

= 1 for every n ∈ N,

the 1-row generating series is:

M1(t) = 1 + t+ t2 + t3 + · · ·+ tk + · · · . (16)
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Note that, since

(1− t)(1 + t+ t2 + t3 + · · ·+ tk + · · · ) = 1

in the algebra R[[t]] of formal power series, we can consistently write:

M1(t) = 1 + t+ t2 + t3 + · · ·+ tk + · · · =
1

1− t
.

Proposition 5.6. The matrix

M =

[ 〈

n

k

〉 ]

n,k∈N

is a recursive matrix having recursion rule

M1(t) = 1 + t+ t2 + t3 + · · ·+ tk + · · · =
1

1− t
.

Proof. We have to prove that:

Mn(t)
def
=

∞
∑

k=0

〈

n

k

〉

tk

equals
M1(t) ·Mn−1(t),

where

Mn−1(t)
def
=

∞
∑

k=0

〈

n− 1

k

〉

tk.

To do so, we write

M1(t) ·Mn−1(t) = γ(t) =

∞
∑

k=0

ck tk

where

ck
def
=

k
∑

j=0

〈

1

i

〉〈

n− 1

k − j

〉

,

that equals
k
∑

i=0

〈

n− 1

i

〉

=

〈

n

k

〉

.

Hence,
M1(t) ·Mn−1(t) = γ(t) = Mn(t).

Thus we have the following multiset version of the binomial theorem:

27



Corollary 5.7. Let n ∈ Z+. We have

(1 + t+ t2 + t3 + · · ·+ tk + · · · )n =
1

(1− t)n
=

∞
∑

k=0

〈

n

k

〉

tk.

Furthermore, we have:

Corollary 5.8. (Vandermonde convolutions for multiset coefficients)
Let i, j ∈ N and i+ j = n. Then

〈

n

k

〉

thm
=

k
∑

h=0

〈

i

h

〉〈

j

k − h

〉

. (17)

Proof. It immediately follows from Proposition 4.4, as a special case.

5.6 A glimpse on combinatorial identities between bino-
mial coefficients and multiset coefficients

Let n,m ∈ N and recall that

α(t) =

∞
∑

k=0

(

n

k

)

tk
thm
= (1 + t)n

and

β(t) =

∞
∑

k=0

〈

m

k

〉

tk
thm
=

1

(1− t)m
.

Let

α∗(t)
def
= (1− t)n =

n
∑

k=0

(−1)k
(

n

k

)

tk.

Consider the product series

α∗(t)β(t) =
(1− t)n

(1 − t)m
=

∞
∑

k=0

ckt
k,

where

ck
def
=

k
∑

h=0

(−1)h
(

n

h

)〈

m

k − h

〉

. (18)

Proposition 5.9. The value (18) equals:

1. If n > m and k > 0, then

k
∑

h=0

(−1)h
(

n

h

)〈

m

k − h

〉

=

=

(

n−m

k

)

(−1)k.
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2. If n = m and k > 0, then

k
∑

h=0

(−1)h
(

n

h

)〈

m

k − h

〉

=

= 0.

3. If n < m and k > 0, then

k
∑

h=0

(−1)h
(

n

h

)〈

m

k − h

〉

=

=

〈

m− n

k

〉

.

5.7 Multigraphs

A (labelled) multigraph on a set V of n vertices - say, V = {1, 2, . . . , n} - is,
roughly speaking, a finite set of vertices V joined by multiple edges. Multiple
edges that join the same pair of vertices are also called parallel edges.

1

2

3

5 4

Therefore, we formalize the notion of a multigraph Gρ in the following way.
A multigraph Gρ is a pair

Gρ = (V,Eρ),

where V = {1, 2, . . . , n} is the set of vertices and the multiset Eρ of of multiple
edges is the multiset on the set of non ordered pairs of V :

Eρ : {A ⊆ V, |A| = 2} → N,

where

Eρ( {i, j} )
def
= # parallel edges between i and j, i, j ∈ V.
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Proposition 5.10. The number of multigraphs Gρ on n vertices is +∞.

Proposition 5.11. The number of multigraphs Gρ on n vertices with exactly k
edges is

〈
(

n
2

)

k

〉

.

5.8 Multidigraphs

A (labelled) multidigraph on a set V of n vertices - say, V = {1, 2, . . . , n} - is,
roughly speaking, a finite set of vertices V joined by multiple arrows. Multiple
arrows with the same direction that join the same pair of vertices are also called
parallel arrows.

1

5

2

4 7

3

6

Therefore, we formalize the notion of a multidigraph
→

Gρ in the following
way.

A multidigraph
→

Gρ is a pair

→

Gρ= (V,
→

Eρ),

where V = {1, 2, . . . , n} is the set of vertices and the multiset
→

Eρ of multiple
arrows is the multiset on the set of ordered pairs of V :

→

Eρ: V × V → N,

where
→

Eρ ( (i, j) )
def
= # parallel arrows from i to j, (i, j) ∈ V × V.
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Proposition 5.12. The number of multidigraphs
→

Gρ on n vertices is +∞.

Proposition 5.13. The number of multidigraphs
→

Gρ on n vertices with exactly
k arrows is

〈

n2

k

〉

.

Proposition 5.14. The number of multidigraphs
→

Gρ with no loops on n vertices
with exactly k arrows is

〈

n(n− 1)

k

〉

.

6 Equations with natural integer solutions

6.1 The general case

Let n, k ∈ Z+. Consider the equation

x1 + x2 + · · ·+ xn = k. (19)

A vector (x1, x2, . . . , xn) such that

x1 + x2 + · · ·+ xn = k, xi ∈ N, i = 1, 2, . . . , n, (20)

is called a nonnegative integer solution of the equation (19).
Clearly, given a nonnegative integer solution (20) of (19), if we define

ρ : n→ N, ρ(i) = xi, i = 1, 2, . . . , n,

we get a k-multiset on an n-set, and vice versa.
Then,

Proposition 6.1. The number of nonnegative integer solutions (20) of (19) is
〈

n

k

〉

A vector (x1, x2, . . . , xn) such that

x1 + x2 + · · ·+ xn = k, xi ∈ {0, 1}, i = 1, 2, . . . , n, (21)

is called a binary solution of the equation (19).
Clearly, given a binary solution (21) of (19), if we define

ρ : n→ {0, 1}, ρ(i) = xi, i = 1, 2, . . . , n,

we get a k-subset of a n-set, and vice versa.
Then,
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Proposition 6.2. The number of binary solutions (21) of (19) is

(

n

k

)

6.2 The case subject to lower bounds

Let
(a1, a2, . . . , an), ai ∈ N, i = 1, 2, . . . , n,

be a vector with natural integer entries.
Problem: how many nonnegative solutions (x1, x2, . . . , xn) of (19), subject

to the lower bounds

x1 ≥ a1, x2 ≥ a2, . . . , xn ≥ an

are there?
In order to answer this question, we may start by performing the following

substitution of variables in equation (19):

zi = xi − ai ⇐⇒ xi = zi + ai, i = 1, 2, . . . , n,

and
xi ≥ ai ⇐⇒ zi ≥ 0.

Thus, equation (19) becomes

z1 + z2 + · · ·+ zn = k − a1 − a2 − · · · − an, (22)

and the Problem reduces to:
How many nonnegative solutions of equation (22) are there?
Clearly, the answer is:

〈

n

k − a1 − a2 − · · · − an

〉

. (23)

6.3 The generalized Gergonne problem

Consider a linearly ordered n-set, say n = 1 < 2 < 3 < · · · < n (for instance,
a deck of playing cards).

Take at random a k-subset S ⊆ n, say

S = i1 < i2 < · · · < ik. (24)

Fix a third parameter m ∈ Z+, which is the so called minimum lack param-
eter.

The set (24) is said to be a winning set whenever:

is+1 − is ≥ m+ 1, s = 1, 2, . . . , k − 1. (25)
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In plain words: between two consecutive elements is and is+1 that belong to S,
there are at least m elements of n that do not belong to S.

Clearly, such a winning k-subset S exists whenever

k + (k − 1)m ≤ n.

Problem: Given n, k,m ∈ Z+, compute the probability

Pn,k,m

that a k-subset S (see (24)) is a winning set (see (25)).
Clearly,

Pn,k,m =
Gn,k,m
(

n
k

) ,

where
Gn,k,m

def
= # winning k − subsets.

Solution. Given a k-subset (24), consider the (k + 1)-tuple

x1, x2, . . . , xk, xk+1

where

x1 = i1 − 1, x2 = i2 − i1 − 1, . . . , xk = ik − ik−1 − 1, xk+1 = n− ik. (26)

Clearly, the k-subset (24) uniquely determines the (k + 1)-tuple (26) such that

x1 + x2 + · · ·+ xk + xk+1 = n− k (27)

and vice versa. Furthermore, the k-subset (24) is winning if and only if the
(k + 1)-tuple (26) is such that

x1 ≥ 0, x2 ≥ m, . . . , xk ≥ m, xk+1 ≥ 0. (28)

Therefore, winning k-subsets (24) satifying (25) bijectively correspond to the
nonnegativite integer solutions of the equation (27), with lower bounds (28).

Equation (23) implies:

Gn,k,m =

〈

k + 1

n− k − (k − 1)m

〉

=

(

n−mk +m

k

)

. (29)

Then

Proposition 6.3. We have

Pn,k,m =

(

n−mk+m
k

)

(

n
k

) .

The classical Gergonne problem focuses on the case in which m = 1 i.e.,
no two consecutive playcards in the k-subset S = i1 < i2 < · · · < ik can be
adjacent. Then

Gn,k,1 =

(

n− k + 1

k

)

and Pn,k,1 =

(

n−k+1
k

)

(

n
k

) . (30)
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7 Three statistics of Quantum Physics

7.1 The Bose-Einstein statistics

In quantum statistics, Bose-Einstein (B–E) statistics describe one of the two
possible ways in which a collection of non-interacting, indistinguishable par-
ticles may occupy a set of available discrete energy states at thermodynamic
equilibrium. The aggregation of particles in the same state is a characteristic of
particles obeying Bose-Einstein statistics, accounts for the cohesive streaming of
laser light and the frictionless creeping of superfluid helium. The theory of this
behaviour was developed (1924− 25) by Satyendra Nath Bose, who recognized
that a collection of identical and indistinguishable particles can be distributed
in this way. The idea was later adopted and extended by Albert Einstein in
collaboration with Bose.

The Bose-Einstein statistics apply only to those particles not limited to
single occupancy of the same state, that is, particles that do not obey the Pauli
exclusion principle restrictions. Such particles have integer values of spin and
are named bosons, after the statistics that correctly describe their behaviour.
There must also be no significant interaction between the particles.

Suppose we have a given number of energy levels, characterized by the index
i, each having energy εi and containing a total of ki particles. Suppose further
that each level contains ni distinct sub-levels, but all with the same energy and
distinguishable from each other. For example, two particles could have different
moments and consequently be distinguishable, but they could have the same
energy. The value ni at the i-th level is called degeneration of that energy level.
Any number of particles can occupy the same sublevel.

For the sake of simplicity, let’s write k = ki and n = ni.
Let w(k, n) be the number of ways to distribute k indistinguishable particles

into n distinguishable sublevels of a certain energy level.

Theorem 7.1. We have:

w(k, n) =

〈

n

k

〉

.

Proof. Clearly, (k, n)-BE distributions bijectively correspond to distributions of
k indistiguishable balls (particles) into n distiguishable boxes (energy sublevels),
that is to k-multisets on a n-set:

ρ : n→ N,
n
∑

i=1

ρ(i) = k,

where
ρ(i) = # of balls in the box i, i = 1, 2, . . . , n. (31)
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7.2 The Fermi-Dirac statistics

In quantum statistics, the Fermi-Dirac (F–D) statistics describe a distribution
of particles over energy states in systems consisting of many identical particles
that obey the Pauli exclusion principle. It is named after Enrico Fermi and
Paul Dirac, each of whom discovered the method independently (although Fermi
defined the statistics earlier than Dirac).

Fermi-Dirac (FD) statistics apply to identical particles with half-integer spin
in a system with thermodynamic equilibrium. Additionally, the particles in this
system are assumed to have negligible mutual interaction. That allows the
multi-particle system to be described in terms of single-particle energy states.
The result is the FD distribution of particles over these states which includes
the condition that no two particles can occupy the same state (Pauli exclusion
principle); this has a considerable effect on the properties of the system. Since
FD statistics apply to particles with half-integer spin, these particles have come
to be called fermions. It is most commonly applied to electrons, a type of fermion
with spin 1/2.

Let w∗(k, n) be the number of ways to distribute k indistinguishable particles
into n distinguishable sublevels of a certain energy level obeying the condition
that no two particles can occupy the same state (Pauli exclusion principle).

Theorem 7.2. We have:

w∗(k, n) =

(

n

k

)

.

Proof. Clearly, this case is the special case of (31) obeying the condition that
no two particles can occupy the same state (Pauli exclusion principle):

ρ(i) = # of balls in the box i, ρ(i) ∈ {0, 1}, i = 1, 2, . . . , n.

Then, (k, n)-FD distributions bijectively correspond to k-subsets on a n-set.

7.3 The Giovanni Gentile jr statistics

Giovanni Gentile jr was born in Napoli in 1906. In 1937 he participated in the
Fisica Teorica concorso held by the University of Palermo. Previously only one
concorso for this subject had been held in Italy - the one won by Enrico Fermi,
Enrico Persico and Aldo Pontremoli - and there were many worthy scholars in
Italy, some of whom had to be necessarily sacrificed. Ettore Majorana, who had
retired in almost complete isolation, presented his candidacy surprising everyone
and upsetting the agreement established among the commissioners (who were
E. Fermi, O. Lazzarino, E. Persico, G. Polvani, A. Carrelli). The concorso
was suspended for a few months and Majorana was appointed professor for
exceptional merits. When the competition resumed, a triad of winners was
announced: Giancarlo Wick, Giulio Racah and Giovanni Gentile. As soon as
he was proclaimed among the winners, Gentile was called to hold the chair of
Fisica Teorica in Milan.

35



His major theoretical contribution is constituted by the memoirs on interme-
diate statistics. In the two types of statistics for atomic objects, Bose-Einstein
and Fermi-Dirac, the maximum number of occupations for each cell of the phase
space is either infinite or one, respectively. Gentile began to deal with the more
general case that the maximum number of occupations was any integer greater
than one, establishing the general energy distribution formulas. These formu-
las are applied to the case of degenerate gases, in which the maximum number
of occupancy is at most that of the molecules making up the gas - therefore,
they are not tractable with Bose-Einstein statistics - obtaining a theoretical
treatment of the Bose-Einstein gas condensation phenomenon and an interpre-
tation of some singular properties of liquid helium. From these works began a
theoretical research sector dedicated to the treatment of particles subject to in-
termediate statistics called, in honor of Gentile, gentilioni, distinct from bosons
and fermions.

An attack of septicemia, a consequence of a banal dental abscess, killed him
in Milan on 30 March 1942.

Given a positive integer p ∈ Z+, let cp(n, k) be the number of ways to
distribute k indistinguishable particles into n distinguishable sublevels of a
certain energy level obeying the condition that not more than p particles can
occupy the same state (p the parameter of the statistics).

Clearly, if p = 1, then we get the Fermi-Dirac statistics w∗(k, n) =
(

n
k

)

and,
if p → ∞, then we get the Bose-Einstein statistics w(k, n) =

〈

n
k

〉

. Therefore,
the Gentile coefficients cp(n, k) provide a common generalization/unification of
both binomial and multiset coefficients.

First, we get a computation of the cp(n, k)’s by recursion. Again, the parti-
cles are thougt as k indistinguishable balls to be distributed into n distinguish-
able boxes.

Clearly,
cp(0, k) = δ0,k, cp(n, 0) = 1 for every n ∈ N.

Furthermore, from the definitions, it follows:

cp(n, k) = 0 whenever k > np.

Proposition 7.3. We have:

cp(n, k) =

p
∑

i=0

cp(n− 1, k − i).

Proof. Given a Gentile distribution of parameter p ∈ Z+, denote with

ρ(i) = # of balls in the box i,

for i = 1, 2, . . . , n.
We shall use the bad element method. Let the last box (with label n) be

the bad element. We have the exhaustive/disjoint cases;

ρ(n) = 0, having cardinality cp(n− 1, k),
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ρ(n) = 1, having cardinality cp(n− 1, k − 1),

...

ρ(n) = p, having cardinality cp(n− 1, k − p).

Then,

cp(n, k) = cp(n− 1, k) + cp(n− 1, k − 1) + · · ·+ cp(n− 1, k − p).

Given p ∈ Z+, consider the biinfinite matrix

M (p) : N× N→ R, M (p) : (n, k) 7→M(n, k)
def
= cp(n, k),

that is
M (p) = [ cp(n, k) ]n,k∈N

.

For example, if p = 2, the matrix M (2) is:

0 1 2 3 4 · · · k · · ·

0 1 0 0 0 0 · · · 0 · · ·

1 1 1 1 0 0 · · · 0 · · ·

2 1 2 3 2 1 · · · 0 · · ·

3 1 3 6 7 6 · · · c2(3, k)· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

n c2(n, 0)· · · · · · · · · · · · · · · c2(n, k)· · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

.

Proposition 7.4. Given p ∈ Z+, the Gentile matrix M (p) (of parameter p) is
a recursive matrix having recursion rule

M
(p)
1 (t) = 1 + t+ t2 + · · ·+ tp.
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Proof. Consider the product series

M
(p)
1 (t)M

(p)
n−1(t) = (1 + t+ t2 + · · ·+ tp) · (

∞
∑

k=0

cp(n− 1, k)tk),

and write

M
(p)
1 (t)M

(p)
n−1(t) = γ(t) =

∞
∑

k=0

ckt
k

with

ck =

k
∑

i=0

cp(1, i)cp(n− 1, k − i) =

p
∑

i=0

cp(n− 1, k − i) = cp(n, k),

by Proposition 7.3. Then γ(t) =
∑np

k=0 cp(n, k)tk = M
(p)
n (t).

Hence, we have the following generalization of the binomial theorem:

Corollary 7.5. Given p ∈ Z+, we have:

(1 + t+ t+ t2 + · · ·+ tp)n =

np
∑

k=0

cp(n, k)tk.

8 Compositions of finite sets and multinomial co-

efficients

8.1 The type of a composition

Given a finite set X , say X = n = {1, 2, . . . , n}, a k − composition of n =
{1, 2, . . . , n} is an ordered k − tuple:

(A1, A2, . . . , Ak), Ai ⊆ n = {1, 2, . . . , n}, i = 1, 2, . . . , k, (32)

such that

1. if i 6= j, then Ai ∩ Aj = ∅;

2. ∪ki=1 Ai = n.

The elements Ai are called blocks of the composition.
The type of the composition (32) is the ordered k− tuple of natural integers:

(h1 = |A1|, h2 = |A2|, . . . , hk = |Ak|) . (33)
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8.2 Multinomial coefficients

Given n ∈ N and an ordered k− tuple of natural integers (h1, h2, · · · , hk), define
the multinomial coefficients in the following way:
(

n

h1, h2, . . . , hk

)

def
= # k-compositions of an n-set of type (h1, h2, · · · , hk).

(34)
Clearly,

(

n

h1, h2, . . . , hk

)

6= 0

if and only if
h1 + h2 + · · ·+ hk = n.

We can compute the multinomial coefficients by means of the following close
form formula:

Proposition 8.1. Let h1 + h2 + · · ·+ hk = n. Then, we have:
(

n

h1, h2, . . . , hk

)

=
n!

h1!, h2!, · · · , hk!
.

Proof. We shall use the shepherd’s principle. The sheep are k-compositions of
type (h1, h2, · · · , hk) that are, in turn, bijectively equivalent to distributions of n
(distinguishable) balls (labelled: 1, 2, . . . , n) into k (distinguishable) boxes (la-
belled: 1, 2, . . . , k), subject to the conditions: there are exactly hi balls located
in the box i = 1, 2, . . . , k. The set of balls located in the box i, i = 1, 2, . . . , k,
is the ith block Ai of the composition (32), and vice versa. Note that in Prob-
ability Theory and Quantum Mechanics these numbers hi are called occupancy
numbers.

Now, suppose that the n balls are turned into books and the boxes are turned
into shelves, with hi available positions. Since h1 + h2 + · · ·+ hk = n (the total
numer of available positions), the number of ways to distribute n books into
these k shelves (with a total numer of available positions h1+h2+ · · ·+hk = n)
is exactly the number of permutations n! of the n objects (these are the legs).

Now, turn the books back into balls and the shelves back into boxes. Then,
the order of the objects located in position i doesn’t matter! Thus, there are
exactly h1!h2! · · · , hk! legs for each sheep. Hence,

(

n

h1, h2, . . . , hk

)

=
n!

h1!, h2!, · · · , hk!
.

Remark 8.2. Directly from the combinatorial definition (34) we infer the re-
markable identity:

∑

h1,h2,...,hk

(

n

h1, h2, . . . , hk

)

= kn. (35)
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From the combinatorial identity (35), we get

Corollary 8.3. We have:

∑

h1,h2,...,hk

n!

h1!, h2!, · · · , hk!
= kn.

We have the following multinomial version of the binomial theorem:

Corollary 8.4. We have:

(x1 + x2 + · · ·+ xk)
n =

∑

(h1,h2,...,hk)

(

n

h1, h2, . . . , hk

)

xh1

1 xh2

2 · · ·x
hk

k .

9 Equivalence relations and partitions

Let R ⊆ X × X be binary relation a set X ; as usual, we write xRx′ to mean
(x, x′) ∈ R.

The relation R is said to be an equivalence relation whenever it satisfies the
following properties:

1. xRx (reflexivity);

2. if xRy, then yRx (symmetry);

3. if xRy and yRz, then xRz (transitivity).

Given an element x ∈ X , its equivalence class is the subset

[x]R
def
= { y ∈ X ; xRy } ⊆ X.

We recall that [x]R = [x′]R if and only if xRx′. This implies

Proposition 9.1. Equivalence classes are pairwise disjoint. Furthermore, they
are nonempty and their union equals X.

A partition of the set X is a subset

Π = { Ai ⊆ X ; i ∈ I } ⊆ P(X )

such that

1. Ai 6= ∅;

2. if i 6= j, then Ai ∩ Aj = ∅;

3. ∪i Ai = X .

The elements Ai ∈ Π are called blocks of the partition Π.
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9.1 Bijections

Let
Rel(X) = { R; R equiv. rel. on X }

be the set of all equivalence relations on X , and let

Par(X) = { Π; Π partition of X }

be the set of all partitions of X .
Let

Rel(X)
C1−→ Par(X)

be the function
C1 : R 7→ ΠR,

where ΠR is the partition of X whose blocks are the equivalence classes of R.
Let

Par(X)
C2−→ Rel(X)

be the function
C2 : Π 7→ RΠ,

where RΠ is the equivalence relation on X where xRΠx
′ if and only if x, x′ ∈ X

belong to the same block of Π.
But

R
C17→ ΠR

C27→ RΠR
= R,

and
Π

C27→ RΠ
C17→ ΠRΠ

= Π.

Then C1 and C2 are inverse functions and, therefore, they are bijections.
We summarize these facts by saying that Rel(X) and Par(X) are different

but bijectively equivalent sets.

9.2 The Stirling numbers of the 2nd kind S(n, k)

Let n, k ∈ N. Given a finite set X = {1, 2, . . . , n}, a partition Π of X = n is
said to be a k-partition whenever it has exactly k blocks.

Let
S(n, k)

def
= # k-partitions of an n-set.

The natural integers S(n, k) are called Stirling numbers of the 2nd kind.
Notice that S(0, 0) = 1: the unique 0-partition of the 0-set ∅ is the empty

partition, that is ∅ is the unique partition of itself.
Clearly, we have:

S(0, k) = δ0k, S(n, 0) = δn0.

We can compute the numbers S(n, k) by means of the following recursion:
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Proposition 9.2. We have:

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k).

Proof. We shall use the bad element method. Let n ∈ n be the bad element.
We have two disjoint/exhaustive cases:

i) The singleton {n} is a block of the partition. Then, to exhibit a k-
partition of n is equivalent to exhibiting a (k − 1)-partition of n− 1. Thus, the
contribution of case i) is: S(n− 1, k − 1).

ii) The singleton {n} is not a block of the partition, that is the bad element n
will stay in a block together with other elements of the set n. We can construct
partitions of this type by the following procedure: first, exhibit a k-partition of
n− 1 (this can be done in S(n− 1, k) ways), then insert the bad element n into
one of the k blocks (this can be done in k ways). Thus, the contribution of this
case is: kS(n− 1, k).

Hence, we can compute the entries of the biinfinite matrix

M = [ S(n, k) ]n,k∈N
:

0 1 2 3 4 · · · k · · ·

0 1 0 0 0 0 · · · 0 · · ·

1 0 1 0 0 0 · · · 0 · · ·

2 0 1 1 0 0 · · · 0 · · ·

3 0 1 3 1 0 · · · 0 · · ·

4 0 1 7 6 1 · · · 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

n S(n, 0) · · · · · · · · · · · · · · · S(n, k) · · ·
.
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9.3 The Bell numbers Bn

The Bell numbers Bn are defined in the following way:

Bn
def
= # partitions of an n-set.

Note that, by definition

B0 = 1, B1 = 1 :

the unique partition of ∅ is ∅, and the unique partition of the singleton set {1}
is the (singleton) set of blocks { {1} }.

We can compute the Bell numbers Bn+1 by means of the Aitken recursion:

Proposition 9.3. Let n ∈ Z+. Then

Bn+1 =

n
∑

k=0

(

n

k

)

Bk.

Proof. We shall use the bad element method. Let n + 1 ∈ n+ 1 be the bad
element. We have n + 1 disjoint/exhaustive cases: we classify the cases by
means of the cardinality of the block B that contains the bad element n + 1.
Clearly, it may happen:

|B| = n− k + 1, k = 0, 1, . . . , n.

Now, fix k = 0, 1, . . . , n. The block B can be uniquely expressed in the form:

B = B′ .
∪ {n},

where
|B′| = n− k, B′ ⊆ n.

The subset B′ can be chosen in
(

n

n− k

)

=

(

n

k

)

different ways.
All that is left is to partition the remaining k elements in n+ 1 − B: this

can be done, by definition, in Bk ways: thus, the contribution of this case (fixed
k = 0, 1, . . . , n) is

(

n

k

)

Bk.

By summing over all the possible values of k, we get:

Bn+1 =

n
∑

k=0

(

n

k

)

Bk.
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Example 9.4. We have:

B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203,

B7 = 887, B8 = 4140, B9 = 21147, . . .

9.4 The Faà di Bruno coefficients

9.4.1 The type of a partition

Given a partition Π of a finite n-set, we say that Π has type

1ν12ν23ν3 · · ·nνn

whenever

Π has νi blocks of cardinality i, for i = 1, 2, . . . , n.

The Faà di Bruno coefficients P (n; 1ν12ν2 · · · ) are defined in the following way:

P (n; 1ν12ν2 · · · )
def
= # partitions of type 1ν12ν23ν3 · · · of an n-set.

Clearly,
P (n; 1ν12ν2 · · · ) 6= 0

if and only if
ν1 + 2ν2 + 3ν3 + · · · = n.

We can compute the Faà di Bruno coefficients by means of the remarkable
close form formula:

Proposition 9.5. If ν1 + 2ν2 + 3ν3 + · · · = n, then

P (n; 1ν12ν2 · · · ) =
n!

(1!)ν1(2!)ν2(3!)ν3 · · ·
·

1

ν1!ν2!ν3! . . .
.

Proof. We shall use the shepherd’s principle. Partitions of type 1ν12ν2 · · · are
the sheep while the legs are the compositions (of the same n-set) of type:

(

ν1 times
1, 1, 1, · · ·1,

ν2 times
2, 2, 2, · · ·2,

ν3 times
3, 3, 3, · · ·3, . . .

)

. (36)

Given any composition of this type, if we neglect the order (i.e., we pass from
ordered k-tuples to sets), we get a unique partition of type 1ν12ν23ν3 · · · .

But, in compositions of type (36), we can permute the blocks of the same car-
dinality without affecting neither the type of the composition nor the partition
we produce. Then, there are precisely

ν1!ν2!ν3! · · ·
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legs per each sheep. Therefore,

P (n; 1ν12ν2 · · · )

equals
(

n

1, 1, 1, . . . , 2, 2, 2, . . . , 3, 3, 3, . . .

)

·
1

ν1!ν2!ν3! . . .

which in turn, equals

n!

(1!)ν1(2!)ν2(3!)ν3 · · ·
·

1

ν1!ν2!ν3! . . .
.

9.4.2 The n-th derivative of a composite function f(g(t))

Let f, g : (a, b) ⊆ R→ R be functions of class C(∞)
(a,b), and consider the composite

function
(f ◦ g)(t) = f(g(t)), t ∈ (a, b).

Given n ∈ Z+, the nth derivative of the composite function (f ◦g)(t) is explicitly
provided by the Faà di Bruno formula (1855):

(f ◦ g)(n)(t) =
∑

(ν1,ν2,...)

P (n; 1ν12ν2 · · · ) f (|ν|)(g(t)) · (g(1)(t))ν1 (g(2)(t))ν2 · · · ,

where |ν| = ν1 + ν2 + · · · .

9.5 A concluding remark on partition statistics

From their combinatorial definitions, we immediately infer

Proposition 9.6. Let n ∈ N. Then

Bn =
n
∑

k=0

S(n, k) =
∑

(ν1,ν2,...)

P (n; 1ν12ν2 · · · ).

10 Permutations

10.1 Permutations and permutation digraphs

An n-permutation σ of an n-set (say, n = {1, 2, . . . , n}) is a bijection

σ : n←→ n

from the set onto itself. A permutation is usually described by its functional
presentation, that is in the form

σ =

(

1 2 3 . . . n

σ(1)σ(2)σ(3) . . . σ(n)

)

. (37)
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Clearly, the number of n-permutations is: n!.
An n-permutation digraph is a digraph on n vertices (say, V = n)

→

G = (V,
→

E)

such that, for every vertex i ∈ V = n, there is a unique arrow with head i and
a unique arrow with tail i.

Given the permutation (37), the associated n-permutation digraph is the
digraph

→

Gσ= (V = n,
→

E)

such that, for every vertex i ∈ V = n, the unique arrow with head i is i→ σ(i)
and the unique arrow with tail i is σ−1(i)→ i.

Example 10.1. If

σ =

(

1 2 3 4 5 6 7 8

5 7 4 6 1 3 8 2

)

, (38)

then
→

Gσ (39)

is the digraph on vertices {1, 2, . . . , n} whose arrows are

1→ 5, 5→ 1, 2→ 7, 7→ 8, 8→ 2, 3→ 4, 4→ 6, 6→ 3,

that is

1 2 3 4 5 6 7 8

We have:

Proposition 10.2. The map

σ 7→
→

Gσ

is a bijection from the family of n-permutations to the family of n-permutation
digraphs.

10.2 Cycles and cyclic digraphs

Given a digraph
→

G= (V,
→

E), an (oriented) path (from the vertex i1 to the vertex
ik) is a finite sequence of arrows

i1 → i2 → i3 → · · · · · · → ih−1 → ih → · · · · · · → ik−2 → ik−1 → ik.
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A permutation k-digraph
→

Gτ= (V = k,
→

E) is said to be a cyclic digraph
whenever it is path connected, that is, for every i, j ∈ n, there exists a (unique)
oriented path from the vertex i to the vertex j and there exists a (unique)
oriented path from the vertex j to the vertex i.

The permutation τ associated to a cyclic k-digraph
→

Gτ is said to be a k-cycle.
Clearly, a k-cycle τ is a permutation of the form

τ(ik) = τ(τ(ik−1) = τ(τk−1(i1) = τk(i1) = i1.

Example 10.3. In the permutation (38), we have three (sub)permutations
C1, C2, C3 which are cycles, namely:

C1 =

(

1 5

5 1

)

, C2 =

(

2 7 8

7 8 2

)

, C3 =

(

3 4 6

4 6 3

)

.

The associated permutation digraphs are

1

5

2

8 7

3

6 4

whose disjoint union is the same as the graph of Example 10.1 (just different
drawing).

Proposition 10.4. The number of cycles on k elements (i.e., the number of
cyclic digraphs on k vertices) equals (k − 1)!

Proof. We shall use the (inverse) shepherd’s principle. Given a cycle τ and fixed
element i ∈ k, define the n-permutation

σi =

(

1 2 3 . . . k

σ(1)σ(2)σ(3) . . . σ(k)

)

,

as
σi(1) = τ(i + 1), σi(2) = τ(i + 2), . . . , σi(h) = τ(i + h), . . . ,

. . . , σi(k) = τ(i + k), . . . , σi(1) = τ(i + k + 1), . . . ,

for h = 0, 1, . . . , k.
This way, we are able to produce all the distinct k-permutations of k. Over-

all, these are k!.
But, depending from the choice of i = 0, 1, . . . k − 1, there are are exactly k

different k-permutations (legs) that are produced by one and the same cycle τ
(sheep). Then, the number of cycles on k elements equals

k!

k
= (k − 1)!
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Example 10.5. Consider the 4-cycle τ such that

τ(1) = 3, τ(3) = 2, τ(2) = 4, τ(4) = 1.

The corresponding 4-permutations in the above construction are:

σ0 =

(

1 2 3 4

3 2 4 1

)

,

σ1 =

(

1 2 3 4

2 4 1 3

)

,

σ2 =

(

1 2 3 4

4 1 3 2

)

,

σ3 =

(

1 2 3 4

1 3 2 4

)

.

Therefore, the number of 4-cycles is:

4!

4
= 3! = 6.

Given a k-cycle τ , any k-word of the form

(τ(i), τ(i + 1), . . . , τ(k), . . . , τ(i − 1)), i = 1, 2, . . . , k

is called a word presentation of the cycle τ .

Example 10.6. Given the 4-cycle τ of Ex. 10.5, its word presentations are

3241, 2413, 4132, 1324.

Clearly, any k-cycle admits k different word presentations.

10.3 The unique factorization of a permutation into dis-
joint cycles

To begin with, we state and proof this basic result in the language of permutation
digraph.

Proposition 10.7. Any permutation digraph
→

Gσ = (V,
→

E) is a disjoint union
of cyclic digraphs. In symbols

→

Gσ =
→

GC1

.
∪

→

GC2

.
∪ · · · · · ·

.
∪

→

GCk
,

where
→

GC1
,
→

GC2
, . . . ,

→

GCk
are cyclic digraphs on disjoint subsets C1, C2, . . . , Ck ⊆

V of the vertex set of
→

Gσ.
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Proof. First, we prove that a permutation graph can be described as a union
of cyclic digraphs, that is any vertex belongs to at least one cyclic subdigraph.
Consider the following procedure/algorithm. Choose a vertex, say 1, and exam-
ine the unique arrow 1→ σ(1) with head 1. We may have two cases.

1. If 1 = σ(1), then the arrow is indeed a loop (1-cycle) and we pass to
examine a further vertex.

2. If 1 6= σ(1), then σ(1) 6= σ(σ(1)) and so on, that is, every arrow we are
producing will have different head and tail. Cleary, we can repeat this
procedure over and over again. Yet, is it possible that at any step we will
find new vertices? The answer is no, since the set of vertices is FINITE!
This implies that, after a finite number of repetitions, we will find one
among the vertices already produced, which must be the initial vertex 1.

We repeat this procedure for remaining vertices, if there are any left. Indeed,
we proved that our permutation digraph is “covered” by cyclic subdigraphs.

Have these cyclic subdigraphs disjoint sets of vertices? If not, there must be
at least one vertex that should be either head or tail of more than one arrow,
which is a contradiction.

In the language of permutations, Proposition 10.7 reads:

Proposition 10.8. Any permutation σ can be uniquely factorized into the prod-
uct of disjoint cycles.

10.4 The coefficients C(n, k)

Let n, k ∈ N. The numbers
C(n, k)

are defined in the following way:

C(n, k)
def
= # n-permutations with k cycles.

Clearly, we have

C(0, k) = δ0k, C(n, 0) = δn0.

We can compute the C(n, k)’s by means of the following recursion:

Proposition 10.9. Let n, k ∈ Z+. Then,

C(n, k) = C(n− 1, k − 1) + (n− 1)C(n− 1, k).

Proof. We shall use the bad element method. Fix n ∈ n as bad element.
We have two cases:
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1. n is a fixed point, that is, the arrow n→ n is indeed a loop.

Therefore, the total number of this case is:

C(n− 1, k − 1).

2. n isn’t a fixed point.

Given such a permutation σ witk k cycles, consider the associated permu-

tation digraph
→

Gσ. This permutation digraph is such that the (unique)
cycle containing n has at least 2 vertices. How can we construct these per-
mutation digraphs? At first, we have to costruct a permutation digraph
→

G∗ on the first n − 1 elements n− 1 with k cycles: this can be done in
C(n− 1, k) different ways.

Now, we must insert the bad element n. This can be done putting n on

any existing arrow of
→

G∗, in order to split it into a pair of two consecutive

arrows. But
→

G∗ is a permutation digraph on n − 1 vertices. Thus, the
number of arrows is n− 1. Hence, the insertion of the bad element n can
be performed in n− 1 different ways. Therefore, the total number of this
second case is:

(n− 1)C(n− 1, k).

Thus,
C(n, k) = C(n− 1, k − 1) + (n− 1)C(n− 1, k).

Hence, we can compute the entries of the biinfinite matrix

M = [ C(n, k) ]n,k∈N
:
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0 1 2 3 4 · · · k · · ·

0 1 0 0 0 0 · · · 0 · · ·

1 0 1 0 0 0 · · · 0 · · ·

2 0 1 1 0 0 · · · 0 · · ·

3 0 1 3 1 0 · · · C(3, k) · · ·

4 0 1 10 6 1 · · · C(4, k) · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

n C(n, 0)· · · · · · · · · · · · · · ·C(n, k)· · ·
.

10.5 The type of a permutation and the Cauchy coeffi-
cients

Given a permutation σ of a finite n-set, we say that σ has type

1ν12ν23ν3 · · ·nνn

whenever

σ has νi cycles of cardinality i, for i = 1, 2, . . . , n.

The Cauchy coefficients P (n; 1ν12ν2 · · · ) are defined in the following way:

C(n; 1ν12ν2 · · · )
def
= # permutations of type 1ν12ν23ν3 · · · of an n-set.

Clearly,
C(n; 1ν12ν2 · · · ) 6= 0

if and only if
ν1 + 2ν2 + 3ν3 + · · · = n.

We can compute the Cauchy coefficients by means of the remarkable close
form:
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Proposition 10.10. If ν1 + 2ν2 + 3ν3 + · · · = n, then

C(n; 1ν12ν2 · · · ) =
n!

1ν12ν23ν3 · · ·
·

1

ν1!ν2!ν3! . . .
.

Proof. We shall use the (inverse) shepherd’s principle. We construct a permu-
tation of type 1ν12ν2 · · · by means of the following procedure.

First, we exhibit a partition Π of type 1ν12ν2 · · · . This can be done in
P (n; 1ν12ν2 · · · ) ways.

Then, on any of the νi blocks of cardinality i (i = 1, 2, 3, . . .) of the given
partition Π, we construct all the possible cycles: this can be done in (i−1)! ways
per block. Therefore, the constructions of cycles on blocks can be performed in
a total of

((1− 1)!)ν1((2− 1)!)ν2((3− 1)!)ν3 · · ·

different ways.
Thus,

C(n; 1ν12ν2 · · · ) = P (n; 1ν12ν2 · · · ) · ((1 − 1)!)ν1((2− 1)!)ν2((3− 1)!)ν3 · · · ,

equals (by Proposition 9.5)

n!

(1!)ν1(2!)ν2(3!)ν3 · · ·
·

1

ν1!ν2!ν3! . . .
· ((1 − 1)!)ν1((2− 1)!)ν2((3− 1)!)ν3 · · ·

which in turn, equals:

n!

1ν12ν23ν3 · · ·
·

1

ν1!ν2!ν3! . . .
.

10.6 A concluding remark on permutation statistics

From their combinatorial definitions, we immediately infer

Proposition 10.11. Let n ∈ N. Then

n! =

n
∑

k=0

C(n, k) =
∑

(ν1,ν2,...)

C(n; 1ν12ν2 · · · ).

10.7 Derangements

Given a permutation σ : n ←→ n, a fixed point of σ is an element i ∈ n such
that

σ(i) = i.

Set
Fix(σ) = {i ∈ n; i fixed point of σ}.
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The permutation σ : n ←→ n is said to be a derangement whenever it has
no fixed points, that is

Fix(σ) = ∅.

For positive integers, n ∈ Z+, the derangement numbers are defined in the
following way:

dn
def
= # derangements on an n-set.

Clearly,
d1 = 0, d2 = 1.

Indeed, the unique permutation of 1 is the identity permutation σ(1) = 1. For
n = 2, we have two permutations of the set 2:

σ(1) = 1, σ(2) = 2, τ(1) = 2, τ(2) = 1.

For n > 2, we can compute the derangement numbers dn by means of the
following recursion:

Proposition 10.12. Given n ∈ Z+, with n > 2, we have:

dn = (n− 1)(dn−2 + dn−1).

Proof. We shall use the bad element method. Fix n ∈ n as bad element and
consider the length of the (unique) cycle Cn (of a derangement σ) that contains
n.

We have two cases:

1. The length of Cn equals 2. In how many ways can we construct these
derangements? The 2-cycle Cn can be choosen in n − 1 different ways;
we must only specify the second element of Cn, that is, any i ∈ n− 1 =
{1, 2, . . . , n− 1}. On the remaining (n− 2)-set

n− 1− {i}

we have to construct again a derangement, and this can be done in dn−2

ways. Then, the total number in this case will be:

(n− 1)dn−2.

2. The length of Cn is strictly greater than 2. Given such a derangement

σ, consider the associated permutation digraph
→

Gσ. This permutation
digraph has no loops, and the (unique) cycle Cn that contains n has at
least 3 vertices. How can we construct these permutation digraphs? First,

we shall costruct a permutation digraph
→

G∗ (with no loops - derangement!)
on the first n− 1 elements n− 1: this can be done in dn−1 different ways.

Now, we must insert the bad element n. This can be done putting n on

any existing arrow of
→

G∗, in order to split it into a pair of two consecutive
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arrows. But
→

G∗ is a permutation digraph on n − 1 vertices. Thus, the
number of arrows is n− 1. Hence, the insertion of the bad element n can
be performed in n− 1 different ways. Therefore, the total number in this
second case will be:

(n− 1)dn−1.

Hence,
dn = (n− 1)dn−2 + (n− 1)dn−1.

Example 10.13. We have:

d1 = 0, d2 = 1, d3 = 2, d4 = 6, d5 = 32, d6 = 190, d7 = 1332, d8 = 10654, . . .

11 Some polynomial identities

11.1 The polynomial sequences of power polynomials xn,
rising factorial polynomials 〈x〉k and falling factorial
polynomials (x)k

We will consider three sequences of polynomials in the algebra (vector space)
R[x]:

– The sequence of power polynomials :

{xn; n ∈ N}. (40)

– The sequence of rising factorial polynomials:

{〈x〉n; n ∈ N}, (41)

where

〈x〉0
def
= 1, 〈x〉n

def
= x(x + 1) · · · (x+ n− 1) for n > 0.

– The sequence of falling factorial polynomials :

{(x)n; n ∈ N}, (42)

where

(x)0
def
= 1, (x)n

def
= x(x − 1) · · · (x− n+ 1) for n > 0.

Cleary, we have

Proposition 11.1. The sequences (40), (41), (42) are bases of the vector space
of polynomials R[x].
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11.2 The coefficients C(n, k) and the Stirling numbers of
the first kind s(n, k)

We have a remarkable expansion formula for the rising factorial polynomials
into power polynomials.

Proposition 11.2. Let n ∈ N. Then,

〈x〉n
!
=

n
∑

k=0

C(n, k) xk, (43)

where the coefficients C(n, k)’s are the permutation numbers defined in subsec-
tion 10.4.

Proof. We canonically write

〈x〉n
!
=

n
∑

k=0

c(n, k) xk, c(n, k) ∈ R. (44)

Clearly, c(0, k) = δ0k and c(n, 0) = δn0. Indeed, the polynomials 〈x〉n have
zero constant term whenever n > 0.

Now, for n > 0,
〈x〉n = 〈x〉n−1(x+ n− 1),

that is

〈x〉n =

n−1
∑

h=0

c(n− 1, h) xh+1 + (n− 1)

(

n−1
∑

h=0

c(n− 1, h) xh

)

. (45)

By setting (44) = (45) and h+ 1 = k, we get

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k).

The double sequences ( c(n, k) )n,k ∈ N and ( C(n, k) )n,k ∈ N have the same
initial conditions and recursion rule: hence, they are equal.

By definition, the Stirling numbers of the first kind s(n, k) are the coefficients
in the expansions of falling factorial polynomials into power polynomials, that
is

(x)n
def
=

n
∑

k=0

s(n, k) xk, s(n, k) ∈ Z. (46)

By comparing eqs. (43) and (46), it immediately follows

Proposition 11.3. Let n, k ∈ N. Then,

s(n, k) = (−1)n−k C(n, k).
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11.3 The unique factorization theorem for functions

Let X and Y be sets, F : X → Y be a function.
Define an equivalence relation ∼F on the domain set X by setting:

x ∼F x′ ⇔ F (x) = F (x′).

Let X/ ∼F denote the quotient set of X with respect to ∼F , that is - in the
language of partitions - the associated partition Π∼F

.
Let

π : X
su
→ X/ ∼F , π : x 7→ [x]∼F

be the canonical projection.
Then

Proposition 11.4. The function F uniquely factorizes into the composition of
a surjective function and an injective function

F = F ◦ π,

where
F : X/ ∼F

1−1
→ Y

is the function
F : [x]∼F

7→ F (x). (47)

Proof. First of all, we have to check that definition (47) is well-posed.
But

[x]∼F
= [x′]∼F

⇔ x ∼F x′ ⇔ F (x) = F (x′)⇔ F ( [x]∼F
) = F ( [x′]∼F

).

The implications from left to right mean that (47) is well-posed. The impli-
cations from right to left mean that F is injective.

Finally, we have:

(F ◦ π)(x) = F (π(x)) = F ( [x]∼F
) = F (x).

We rephrase Proposition 11.4 in the following way:

Corollary 11.5. Let Π be a partition of the set X. The map

F 7→ F

defines a bijection

{ F : X → Y ; X/ ∼F= Π } ←→ { F : Π
1−1
→ Y }.
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Now, assume that both X and Y are finite, say X = n , Y = m. Then,

mn = |{F : n→ m}| = |
.
⋃

Π partition of n
({ F : n→ m; n/ ∼F= Π }) |

equals, by Corollary 11.5,

|
.
⋃

Π partition of n

(

{ F : Π
1−1
→ m }

)

| =
∑

Π partition of n

|{ F : Π
1−1
→ m }|

which in turn, equals

n
∑

k=0





∑

Π k−partition of n

|{ F : Π
1−1
→ m }|



 =

n
∑

k=0

S(n, k) (m)k.

Therefore, we proved the following class of combinatorial identities:

Corollary 11.6.

Let m,n ∈ N. Then,

mn =

n
∑

k=0

S(n, k) (m)k.

11.4 The Stirling numbers of the 2nd kind S(n, k) as ex-
pansion coefficients in the vector space of polynomi-
als R[x]

Recall that, given a non zero polynomial of degree deg(p(x)) = n, n ∈ N, say

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ R[x], an 6= 0

and a real number α ∈ R, the evaluation of p(x) at α is the real number

Eα(p(x)) = a0 + a1α+ a2α
2 + · · ·+ anα

n ∈ R.

A real number α is said to be a root of a non zero polynomial p(x) whenever

Eα(p(x)) = a0 + a1α+ a2α
2 + · · ·+ anα

n = 0.

From Ruffini’s Theorem, it follows:

Proposition 11.7. The number of roots (even counted with multiplicities) of a
non zero polynomial p(x) is less than or equal to its degree deg(p(x)).

From this, it follows:
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Corollary 11.8. (The identity principle for polynomials) Let p(x), q(x) ∈ R[x]
be non non zero polynomials and assume that they admit an infinite family of
equal evaluations, say

Eαm
(p(x)) = Eαm

(q(x)), αm ∈ R, m ∈ N.

Then,
p(x) = q(x).

Proof. Clearly,

Eαm
(p(x)) = Eαm

(q(x)) ⇐⇒ αm is a root of p(x)− q(x)

for m ∈ N. From Proposition 11.7, it follows

p(x) − q(x) ≡ 0 ⇐⇒ p(x) = q(x).

Notice that we are now able to rewrite Corollary 11.3 as follows:

Corollary 11.9. Let n ∈ N. Then,

Em(xn) = mn =
n
∑

k=0

S(n, k) (m)k = Em(
n
∑

k=0

S(n, k) (x)k ),

for every m ∈ N.

Therefore, from Corollary 11.8 we infer the remarkable polynomial identities
in R[x]:

Proposition 11.10. Let n ∈ N. Then,

xn =

n
∑

k=0

S(n, k) (x)k ∈ R[x]. (48)

11.5 The Theorem s = S−1

Recall that, for the Stirling numbers of the first kind, we have (see eq. (46))

(x)n
def
=

n
∑

k=0

s(n, k) xk, (49)

and, for the Stirling numbers of the second kind (see eq. (48))

xn =

n
∑

k=0

S(n, k) (x)k. (50)

In the vector space R[x]:
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- Relation (49) means that the matrix

s = [ s(n, k) ]n,k ∈ N

is the transition matrix from the basis of falling factorial polynomials

{(x)n; n ∈ N}.

to the basis of power polynomials

{xn; n ∈ N}.

- Relation (50) means that the matrix

S = [ S(n, k) ]n,k ∈ N

is the transition matrix from the basis of power polynomials

{xn; n ∈ N}

to the basis of the falling factorial polynomials

{(x)n; n ∈ N}.

From Linear Algebra, it follows:

Proposition 11.11. We have

s× S = Id = S× s,

that is,
s
−1 = S ⇐⇒ s = S

−1.

12 An introduction to the Moebius-Rota inver-

sion theory

12.1 A glimpse on the general case

The Rota theory of Moebius inversion is a fairly general one, as it applies to all
locally finite partially ordered sets.

The foundational contribution is Rota’s paper [4] of 1964. For a comprehen-
sive treatment of the theory, we refer the reader to [5].

A partially ordered set (poset, for short) is a pair (P,≤) where P is a set and
≤ is a partial order relation. This, in turn, is a binary relation R ⊆ P ×P such
that

1. (x, x) ∈ R (reflexivity)
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2. (x, y) ∈ R⇒ (y, x) /∈ R if x 6= y: (antisymmetry)

3. (x, y), (y, z) ∈ R⇒ (x, z) ∈ R (transitivity)

Clearly, when we consider an order relation, we simply write x ≤ y for xRy.

For the sake of simplicity, we will assume in the following that (P,≤) is a
finite poset, that is |P | <∞.

Let µP : P × P → Z be the unique function that satisfies the following
conditions:

1. µP (x, y) = 0 if x � y,

2. µP (x, x) = 1, ∀ x ∈ P ,

3. µP (x, y) = −
∑

z:x≤z<y µP (x, z) = −
∑

z:x<z≤y µP (z, y) if x < y.

The function µP is the Moebius function of the poset P . When no confusion
might arise, we will simply write µ in place of µP .

Define the auxiliary functions

ζ, δ : P × P → Z

in the following way:

ζ(x, y) = 1 whenever x ≤ y, ζ(x, y) = 0 otherwise,

δ(x, y) = 1 whenever x = y, δ(x, y) = 0 otherwise.

The next result immediately follows from the definitions:

Proposition 12.1. For every z ∈ P , we have
∑

x≤y

ζ(z, x) µ(x, y) = δ(z, y)

The following result, simple though it is, is fundamental.

Theorem 12.2. (Moebius inversion formula) Let

f, g : P −→ R

be real-valued functions such that
∑

x≤y

f(x) = g(y), ∀y ∈ P. (51)

Then
f(y) =

∑

x≤y

µ(x, y) g(x), ∀y ∈ P. (52)
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Proof. Substituting the right side of (51) into the right side of (52) and simpli-
fying,

∑

x≤y

µ(x, y) g(x) =
∑

x≤y

∑

z≤x

f(z) µ(x, y). (53)

The right side of (53) is then rewritten in the form
∑

x≤y

∑

z

ζ(z, x) f(z) µ(x, y).

Interchanging the order of summation, this becomes
∑

z

f(z)
∑

x≤y

ζ(z, x) µ(x, y) =
∑

z

f(z) δ(z, y) = f(y),

by Proposition 12.1.

Therefore, the crucial problem of the theory is to determine explicit/close
form formulae for the Moebius functions of different classes of posets.

We limit ourselves to recall two classical (and fundamental) cases.

Example 12.3. (The set-theoretic case) Let S be a finite set. Let (P,≤) =
(P(S),⊆), that is, P is the power set P(S) = {A; A ⊆ S} and the order is the
inclusion ⊆.

Proposition 12.4. Let µ be the Moebius function of (P(S),⊆). Then

µ(A,B) = (−1)|B|−|A| if A ⊆ B, µ(A,B) = 0 if A 6⊂ B.

Proof. We have to prove that, given A ⊆ B ⊆ S, A 6= B, we have:
∑

C:A⊆C⊆B

(−1)|B|−|C| = 0. (54)

Set |A| = k, |B| = m, k < m. Eq. (54) can be rewritten as

m
∑

h=k

∑

C:A⊆C⊆B, |C|=h

(−1)m−h =

m−k
∑

h=k

(

m− k

h− k

)

(−1)m−h

=

m−k
∑

j=0

(

m− k

j

)

(−1)m−k−j = 0.

Example 12.5. (The classical Moebius function of Number Theory)
Let (P,≤) = (Z+, | ) be the poset of positive integers, endowed with the partial
order relation divide, that is:

m | n
def
⇔ n = hm, h ∈ Z+.

The poset (Z+, | ) is not finite, but it is a locally finite poset, with minimum,
the positive integer 1.
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Proposition 12.6. Let µ be the Moebius function of the poset (Z+, | ) Then,

1. µ(1, n) = 1 if n is a square-free positive integer with an even number of
prime factors.

2. µ(1, n) = −1 if n is a square-free positive integer with an odd number of
prime factors.

3. µ(1, n) = 0 if n has a squared prime factor.

4. µ(m,n) = µ(1, n
m ) if m|n.

5. µ(m,n) = 0 if m doesn’t divide n.

12.2 The Moebius inversion principle (set-theoretic case)

We explicitly restate Theorem 12.2 for the posets (boolean algebras)

(P(S),⊆),

where S is a finite set.

Proposition 12.7. (Set-theoretic Moebius inversion formula) Let S be
a finite set. Let

f, g : P(S) −→ R

be real-valued functions such that

∑

A⊆B

f(A) = g(B), ∀ B ⊆ S. (55)

Then,

f(B) =
∑

A⊆B

(−1)|B|−|A| g(A), ∀ B ⊆ S. (56)

12.2.1 On the number of surjective functions

Our problem is to discover and prove a close form formula for the numbers

#{F : k
su
→ n}.

We proceed by Moebius inversion on the power set (P(n),⊆).
Define

f : P(n) → R

by setting

f(A)
def
= #{F : k → n; Im(F ) = A}, ∀ A ⊆ n.

Define
g : P(n) → R

62



by setting

g(B)
def
= # {F : k→ n; Im(F ) ⊆ B}, ∀ B ⊆ n.

Since

{F : k → n; Im(F ) ⊆ B} =
.
⋃

A⊆B
{F : k → n; Im(F ) = A} ∀ B ⊆ n,

then,
∑

A⊆B

f(A) = g(B), ∀ B ⊆ n.

By Moebius inversion (56) and by setting |B| = m, we infer that

f(B) =
∑

A⊆B

(−1)|B|−|A| g(A) ∀ B ⊆ n

=

m
∑

j=0

(−1)m−j
∑

|A|=j,A⊆B

mj

=

m
∑

j=0

(−1)m−j

(

m

j

)

jk.

By specializing to B = n, we get:

Proposition 12.8. We have:

#{F : k
su
→ n} =

n
∑

j=0

(−1)n−j

(

n

j

)

jk.

12.3 The dual Moebius inversion principle (set-theoretic
case)

We explicitly restate Proposition 12.7 in dual form, that is, for the posets
(boolean algebras)

(P(S),⊇ ),

where ⊇ denotes the reverse inclusion order.

Proposition 12.9. (Dual set-theoretic Moebius inversion formula) Let
S be a finite set. Let

f, g : P(S) −→ R

be real-valued functions such that

∑

A⊇B

f(A) = g(B), ∀ B ⊆ S. (57)

Then,

f(B) =
∑

A⊇B

(−1)|A|−|B| g(A), ∀ B ⊆ S. (58)
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12.3.1 The generalized derangement problem

Let n, k ∈ N and consider the numbers:

dn,k
def
= # n-permutations with exactly k fixed points.

Clearly, dn,0 = dn, the number of derangements on n points.

Proposition 12.10. We have:

dn,k =

(

n

k

)

dn−k.

Proof. We choose the k-subsets of fixed points in
(

n
k

)

different ways. Then, we
multiply by the number dn−k of derangements on the remaining n−k points.

Our problem is to discover and prove a close form formula for the numbers

dn,k.

We proceed by Moebius inversion on (P(n),⊇).
Fix a subset B ⊆ n, with |B| = k. Clearly,

{σ : n↔ n; Fix(σ) ⊇ B} =

.
⋃

A⊇B
{σ : n↔ n; Fix(σ) = A}.

Then, if we set
f : P(n) → R,

f(A)
def
= # {σ : n↔ n; Fix(σ) = A}, ∀ A ⊆ n.

and
g : P(n) → R,

g(B)
def
= # {σ : n↔ n; Fix(σ) ⊇ B}, ∀ A ⊆ n,

we get
∑

A⊇B

f(A) = g(B), ∀ B ⊆ n.

By dual Moebius inversion (12.9), we infer

f(B) =
∑

A⊇B

(−1)|A|−|B| g(A)

=
n
∑

h=k

(−1)h−k
∑

|A|=h,A⊇B

g(A)

=

n
∑

h=k

(−1)h−k

(

n− k

h− k

)

(n− h)!

=

n
∑

h=k

(−1)h−k (n− k)!

(n− h)!(h− k)!
(n− h)!

=

n
∑

h=k

(−1)h−k (n− k)!

(h− k)!
.
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Proposition 12.11. We have

dn,k =
n!

k!

n
∑

h=k

(−1)h−k

(h− k)!
.

Proof. The choices of the subset B ⊆ n, |B| = k are
(

n
k

)

. Then,

dn,k =

(

n

k

)

f(B)

=

(

n

k

) n
∑

h=k

(−1)h−k (n− k)!

(h− k)!

=
n!

k!(n− k)!

n
∑

h=k

(−1)h−k (n− k)!

(h− k)!

=
n!

k!

n
∑

h=k

(−1)h−k

(h− k)!
.

In the case of derangements, that is, k = 0, we get:

Corollary 12.12. We have:

dn = dn,0 = n!

n
∑

h=0

(−1)h

h!
.

We provide a beautiful probabilistic version/interpretation of this fact.
Clearly, the probability Pn that an n-permutation is a derangement is given

by

Pn =
dn
n!

=

n
∑

h=0

(−1)h

h!
.

Then, the asymptotic Pn
n→∞
−→ P∞ of this probability is:

P∞ =

∞
∑

h=0

(−1)h

h!
=

1

e
,

where e denotes the Nepero number (the basis of natural logarithms).
As a matter of fact,

∞
∑

h=0

(−1)h

h!

is the evaluation at −1 of the Taylor expansion of the exponential

e
x =

∞
∑

h=0

xh

h!
, x ∈ R.
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12.4 Sieve method

Let Ω be a finite set (sample space) and let A1, A2, . . . , An be subsets Ai ⊆ Ω

(forbidden events). Let n = {1, 2, . . . , n} be the family of indexes.

12.4.1 Complete products

Given T ⊆ n, consider the subset
(

⋂

i∈T

Ai

)

⋂

(

⋂

i/∈T

Ac
i

)

⊆ Ω, (59)

where Ac
i denotes the complementary set ΩrAi of Ai in Ω.

The subset (59) is called the complete product associated to the subfamily
of indexes T ⊆ n.

The subset (59) is the set

{x ∈ Ω; x ∈ Ai for i ∈ T, x /∈ Ai for i /∈ T }. (60)

Complete products are pairwise disjoint. Furthermore, from (60) one easily
recognizes:

Proposition 12.13. Given S ⊆ n, we have

⋂

i∈S

Ai =
.
⋃

T⊇S

(

⋂

i∈T

Ai

)

⋂

(

⋂

i/∈T

Ac
i

)

.

Define two functions
f, g : P(n)→ R

in the following way

f(T ) =

∣

∣

∣

∣

∣

(

⋂

i∈T

Ai

)

⋂

(

⋂

i/∈T

Ac
i

)∣

∣

∣

∣

∣

, ∀ T ⊆ n,

g(S) =

∣

∣

∣

∣

∣

⋂

i∈S

Ai

∣

∣

∣

∣

∣

, ∀ S ⊆ n.

Proposition 12.13 reads as:

∑

T⊇S

f(T ) = g(S), ∀ S ⊆ n.

By dual Moebius inversion on P(n), we obtain
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Proposition 12.14. Given S ⊆ n, |S| = m, we have:

f(S) =

∣

∣

∣

∣

∣

(

⋂

i∈S

Ai

)

⋂

(

⋂

i/∈S

Ac
i

)∣

∣

∣

∣

∣

=
∑

T⊇S

(−1)|T |−|S| g(T ), ∀ S ⊆ n

=
n
∑

k=m

(−1)k−m
∑

|T |=k,T⊇S

g(T )

=

n
∑

k=m

(−1)k−m
∑

|T |=k,T⊇S

∣

∣

∣

∣

∣

⋂

i∈T

Ai

∣

∣

∣

∣

∣

.

12.4.2 The formula of Sylvester

The problem: Let Ω be a finite set (sample space) and let A1, A2, . . . , An be
subsets Ai ⊆ Ω (forbidden events). Let n = {1, 2, . . . , n} be the family of
indexes. Compute the cardinality (more in general: probability/measure)

∣

∣

∣

∣

∣

Ω r
n
⋃

i=1

Ai

∣

∣

∣

∣

∣

by an efficient close form formula.

Consider the natural integers:

Sk
def
=

∑

|T |=k,T⊆n

∣

∣

∣

∣

∣

⋂

i∈T

Ai

∣

∣

∣

∣

∣

.

These numers are called Sylvester numbers.

The cardinality
∣

∣

∣

∣

∣

Ω r
n
⋃

i=1

Ai

∣

∣

∣

∣

∣

can be computed by means of an alternating signs sum of the Sylvester numbers.

Proposition 12.15. (The formula of Sylvester) We have
∣

∣

∣

∣

∣

Ω r
n
⋃

i=1

Ai

∣

∣

∣

∣

∣

=

n
∑

k=0

(−1)k Sk.

Proof. From Proposition 12.14. Specialize to S = ∅: then,

f(∅) =

∣

∣

∣

∣

∣

n
⋂

i=1

(Ai)
c

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Ω r
n
⋃

i=1

Ai

∣

∣

∣

∣

∣

,
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by the DeMorgan laws (elementary, from high school math).
Then,

∣

∣

∣

∣

∣

Ω r
n
⋃

i=1

Ai

∣

∣

∣

∣

∣

= f(∅)

=
∑

T⊆n

(−1)|T | g(T )

=
n
∑

k=0

(−1)k
∑

|T |=k, T⊆n

∣

∣

∣

∣

∣

⋂

i∈T

Ai

∣

∣

∣

∣

∣

=

n
∑

k=0

(−1)k Sk.

Example 12.16. Sieve originates from inclusion/exclusion.
For n = 3, Proposition 12.15 reads:

| Ω r ∪3i=1 Ai| = |Ω| − |A1| − |A2| − |A3|

+ |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3| − |A1 ∩ A2 ∩ A3|.

12.4.3 Ch. Jordan’s formula

Let Ω be a finite set (sample space) and let A1, A2, . . . , An be subsets Ai ⊆ Ω

(forbidden events). Let n = {1, 2, . . . , n} be the family of indexes.
Given m = 0, 1, . . . , n, let

em

be the number of elements of Ω that belongs to exactly m of the forbidden
events A1, A2, . . . , An.
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In the notation of Proposition 12.14, we have:

em =
∑

S⊆n, |S|=m

f(S)

=
∑

S⊆n, |S|=m

∑

T⊇S

(−1)|T |−|S| g(T )

=
n
∑

k=m

∑

T⊆n, |T |=k

∑

S⊆T,|S|=m

(−1)|T |−|S| g(T )

=

n
∑

k=m

(−1)k−m

(

k

m

)

∑

|T |=k, T⊆n

g(T )

=

n
∑

k=m

(−1)k−m

(

k

m

)

∑

|T |=k, T⊆n

∣

∣

∣

∣

∣

⋂

i∈T

Ai

∣

∣

∣

∣

∣

=

n
∑

k=m

(−1)k−m

(

k

m

)

Sk.

Hence,

Proposition 12.17. (Ch. Jordan’s formula) Given m = 0, 1, . . . , n, we
have

em =

n
∑

k=m

(−1)k−m

(

k

m

)

Sk.

Clearly, for m = 0, we find again the formula of Sylvester.

The approach to the generalized derangement problem is even simpler and
intuitive, via Ch. Jordan’s formula.

Let Ω be the set of n-permutations:

Ω = {σ : n←→ n}.

and consider the n-family of forbidden events

Ai = {σ : n←→ n; σ(i) = i}, i = 1, 2, . . . , n.

Then,
dn,k = ek.

From Ch. Jordan’s formula, by setting m = k and k = h, we get

dn,k = ek =

n
∑

h=k

(−1)h−k

(

h

k

) (

n

h

)

(n− h)!

=
n!

k!

n
∑

h=k

(−1)h−k

(h− k)!
.
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12.5 The problem of menages

The menage problem asks for the number of different ways in which it is possible
to seat a set of male-female couples at a round dining table so that women and
men alternate and nobody sits next to his or her partner. This problem was
formulated in 1891 by Édouard Lucas and, independently, a few years earlier,
by Peter Guthrie Tait in connection with knot theory.

The problem was solved by J. Touchard in 1934. Touchard’s approach was
simplified by I. Kaplansky in 1943.

12.5.1 A preliminary remark on the “circular” Gergonne problem

Problem. In how many ways can we choose a k-subset S of seats in a round
table with seats labelled 2n = {1, 2, 3, . . . , 2n− 1, 2n} such that no two seats in
S are adjiacent?

Solution. We have to apply two times the solution of the classical Gergonne
problem twice.

Consider the following cases.
i) Suppose that the k-subset S contains the seat 1. Then, we have to choose

k− 1 seats in the set {3, 4, . . . , 2n− 1}, keeping in mind that no two seats must
be adjacent. Equation 30, implies that it can be done in

(

2n− 3− k + 1 + 1

k − 1

)

=

(

2n− k − 1

k − 1

)

ways.
ii) Suppose that the k-subset S doesn’t contain the seat 1. Then, we have

to choose k seats in the 2n− 1-set {2, 3, . . . , 2n}, keeping in mind that no two
seats must be adjacent. Equation 30, implies that it can be done in

(

2n− 1− k + 1 + 1

k

)

=

(

2n− k

k

)

ways.
Then, the solution is provided by the number

(

2n− k − 1

k − 1

)

+

(

2n− k

k

)

=
2n

2n− k

(

2n− k

k

)

. (61)

12.5.2 The formulae of Touchard and Kaplansky

To begin with, we consider the reduced problem of menages: the n women
n = {1, 2, . . . , n} are already sitting in the odd seats {1, 3, . . . , 2n− 1}.

We must place the n men, say n′ = {1′, 2′, . . . , n′}.
Their placements are described by the function

f : n = {1, 2, . . . , n} −→ n′ = {1′, 2′, . . . , n′}
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such that

f(i)
def
= the man f(i) sitted on the right of his partner i. (62)

Our aim is to apply the formula of Sylvester. The set Ω is

Ω = { f : n = {1, 2, . . . , n} −→ n′} = {1′, 2′, . . . , n′}.

In order for the placement function f obey to the restrictions of the menage
problem, we must consider the following 2n forbidden events Ai ⊆ Ω, i =
1, 2, . . . , 2n:

1. For i = 1, 2, . . . , n, let

A2n−1 = { f : n→ n′, f(i) = i′},

2. For i = 1, 2, . . . , n− 1, let

A2i = { f : n→ n′, f(i) = (i + 1)′},

3. Let
A2n = { f : n→ n′, f(n) = 1′}.

Therefore, the solution of the reduced problem is given by the positive integer
∣

∣

∣

∣

∣

∣

Ω r
2n
⋃

j=1

Aj

∣

∣

∣

∣

∣

∣

. (63)

From the Sylvester formula, it follows that (63) equals:

2n
∑

k=0

(−1)k
∑

T⊆2n: |T |=k

∣

∣

∣

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣

∣

∣

∣

. (64)

But now
⋂

j∈T

Aj = ∅,

whenever T contains adjacent elements, and
∣

∣

∣

∣

∣

∣

⋂

j∈T

Aj

∣

∣

∣

∣

∣

∣

= (n− k)!,

otherwise.
Hence, by applying formula (61), the solution of the reduced problem is given

by the Touchard numbers:

Un =

2n
∑

k=0

(−1)k
2n

2n− k

(

2n− k

k

)

(n− k)! (65)
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Now, we have to pass from the reduced problem to the general one. To wit:
i) women may be sitting in the odd seats into any order: then, there are n!

different cases.
ii) women may be sitting either in the odd seats or in the even seats: then,

there are 2 different cases.
Hence, the solution of the general menage problem is:

2 n! Un =
2n
∑

k=0

(−1)k
4n

2n− k

(

2n− k

k

)

n!(n− k)! (66)

12.6 The Euler Φ function

The Euler Φ function is the function

Φ : Z+ → Z+

such that
Φ(n)

def
= |{m ∈ n; GCD(m,n) = 1}|, n ∈ Z+,

that is the number of positive integers m less than or equal to n that are coprime
with n.

Proposition 12.18. (Euler’s Theorem) Let n ∈ Z+, and let

n
!
= pi11 pi22 · · · p

ir
r

(p1, p2, . . . pr pairwise distinct primes, different from 1) be its unique factoriza-
tion into product of powers of primes. Then

Φ(n) = n

(

1−
1

p1

)(

1−
1

p2

)

· · ·

(

1−
1

pr

)

.

Proof. It is another beautiful application of the formula of Sylvester.
Set Ω = n and

Ai = {m ∈ n; pi | n}, i = 1, 2, . . . , r.

Then,
Φ(n) = |Ω− ∪ri=1 Ai|.

Now,

|Ai| =
n

pi
, i = 1, 2, . . . , r.

In general, given T ⊆ r, |T | = k, say

T = {i1, i2, . . . , ik},

then,
∣

∣

∣

∣

∣

⋂

i∈T

Ai

∣

∣

∣

∣

∣

=
n

pi1pi2 · · · pik
.
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Hence,

Φ(n) = n(1−
1

p1
− · · · −

1

pr
+
∑

p,q

1

pippiq

−
∑

p,q,s

1

pippiqpis
+ · · ·+ (−1)r

1

p1p2 · · · pr

= n

(

1−
1

p1

)(

1−
1

p2

)

· · ·

(

1−
1

pr

)

.

Example 12.19. We have:

1. n = 30 = 2 · 3 · 5. Then, Φ(30) = 30(1− 1
2 )(1 −

1
3 )(1−

1
5 ) = 8.

2. n = 100 = 22 · 52. Then, Φ(100) = 100(1− 1
2 )(1−

1
5 ) = 40.

3. n = 125 = 53. Then, Φ(125) = 125(1− 1
5 ) = 100.

4. n = 210 = 2·3·5·7. Then, Φ(210) = 210(1− 1
2 )(1−

1
3 )(1−

1
5 )(1−

1
7 ) = 48.

12.7 A glimpse on RSA public-key cryptography

12.7.1 Preliminaries. Congruences mod n on the integers Z

Given an integer n ∈ Z, n > 1, we define an equivalence relation ≡ (mod n) in
the following way.

Given x, y ∈ Z,

x ≡ y(mod n)
def
⇐⇒ x− y = qn, q ∈ Z.

Therefore, x ≡ y(mod n) if and only if x and y have the same remainder
with respect to the division by n, i.e.:

x
!
= q1n+ r1, y

!
= q2n+ r2, 0 ≤ r1, r2 < n ⇒ r1 = r2.

Hence, the equivalence classes with respect to ≡ (mod n) are canonically repre-
sented by the remainders with respect to the division by n:

[0]mod n, [1]mod n, . . . , [n− 1]mod n.

The equivalence relations = (mod n) are congruences, that is, are compatible
with the operations of addition and sum.

If x ≡ y(mod n) and x′ ≡ y′(mod n), then

x+ x′ ≡ y + y′(mod n) and xx′ ≡ yy′(mod n).

We limit ourselves to recall a couple of elementary facts.
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Proposition 12.20. Let n ∈ Z+, n > 1, and let x ∈ Z+, 0 < x < n, such that
GCD(x, n) = 1. There exists a unique y ∈ Z+, 0 < y < n, such that

xy ≡ 1(mod n). (67)

Remark 12.21. Under condition (12.20), we write (by consistent convention):

y ≡ x−1(mod n), [y]mod n = ([x]mod n)
−1.

Example 12.22. For example, let n = 20, x = 3, y = 7. Since

xy = 21 ≡ 1(mod 20),

then,
7 ≡ 3−1(mod 20),

and
[7]mod 20 = ([3]mod 20)

−1.

Furthermore,
7 ≡ −13(mod 20),

then,
[7]mod 20 = [−13]mod 20 = ([3]mod 20)

−1.

Proposition 12.23. (Fermat’s little theorem) Let p ∈ Z+ be a prime num-
ber. For every a ∈ Z, if m ≡ n(mod (p− 1)), then

am ≡ an(mod p).

Example 12.24.

22 ≡ 1(mod 3) ≡ 24(mod 3) ≡ 26(mod 3),

52 ≡ 1(mod 3) ≡ 54(mod 3) ≡ 56(mod 3),

51 = 5 ≡ 2(mod 3) ≡ 53(mod 3) ≡ 55(mod 3),

34 = 81 ≡ 1(mod 5) ≡ 38(mod 5),

26 = 64 ≡ 1(mod 7) ≡ 212(mod 7)

56 = 15.625 ≡ 1(mod 7) ≡ 512(mod 7),

52 = 25 ≡ 4(mod 7) ≡ 58(mod 7),

123(mod 17) ≡ 1219(mod 17).
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In the notation of Remark 12.22, we have:

[3]mod 5 = [2]−1
mod 5.

Then,

[3]7mod 5 = [3]2mod 5 = [4]mod 5 = ([2]−1
mod 5)

2 = [2]−2
mod 5

def
= [3]2mod 5.

12.7.2 The method

RSA (Rivest-Shamir-Adleman) is a public-key cryptosystem that is widely used
for secure data transmission. A typical application of public-key cryptography
is the digital signature.

In a public-key cryptosystem, the encryption key is public and distinct from
the decryption key, which is kept secret (private).

An RSA user creates and publishes a public key n = pq based on two large
prime numbers p, q, along with an auxiliary value. The prime numbers are
kept secret. Messages can be encrypted by anyone, via the public key, but can
only be decrypted by someone who knows the prime numbers. The security
of RSA relies on the practical difficulty of factoring the product of two large
prime numbers, the factoring problem. Breaking RSA encryption is known as
the RSA problem. Whether it is as difficult as the factoring problem is an open
question. There are no published methods to defeat the system if a large enough
key is used.

Suppose that you have a classified clear M message that you need to convey
to a friend of yours. How can you do that in a safe way? First, you should build
a new message (encryption). This process will lead your message to be the
encrypted dark message M, that you really convey. The next step (decryption)
is for your friend to rebuild the original clear message M from the dark message
M:

M
encryption
−→ M, M

decryption
−→ M.

For the encryption process, we use a known n ∈ Z+ key - n being a product
n = pq of two prime numbers p, q - while for the decryption process we use the
evaluation Φ(n) of the Euler function. In order to calculate it one needs to know
the prime numbers p, q. The security of RSA relies on the practical difficulty of
factoring the product of two large prime numbers, the “factoring problem”. In
current technology, the numbers n, p, q are of the order of 10300.

We fix the number n and a positive integer e such that

1 < e < Φ(n), GCD(e; Φ(n)) = 1;
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this number e is the public exponent and the pair (n, e) is the public key.

The encryption process consists in splitting the original clear message into
submessages, and by transforming each submessage into a positive integer num-
ber m, with the constraint that 1 < m < n.

Then, we proceed to the encryption of each clear submessage m:

(clear) m
encryption
−→ c ≡ me(mod n) (dark),

where c is the unique positive integer c < n such that c ≡ me(mod n) (Proposi-
tion 12.20). In plain words, the dark message c is the remainder in the division
by n of the power me of the clear massage m.

The message m to be encripted may be any positive integer such that 1 <
m < n, but the public exponent e, 1 < e < Φ(n), must be coprime with Φ(n).

Now, given the public key (n, e), we have

Φ(n) = pq

(

1−
1

p

)(

1−
1

q

)

= (p− 1)(q − 1),

and, from Proposition 12.20,

∃! d < Φ(n) such that d · e ≡ 1(mod Φ(n)). (68)

The pair (n, d) is the private key and d is the private exponent.

The decryption process is:

(dark) c
decryption
−→ cd(mod n) ≡ m (clear).

In plain words, the original message m is the remainder in the division by n of
the power cd of the dark message c.

12.7.3 Proof

The exponents e, d < Φ(n) are such that

ed ≡ 1(mod (p− 1)(q − 1)).

Hence,
ed = h(p− 1)(q − 1) + 1.

Thus,
ed ≡ 1(mod (p− 1))

and
ed ≡ 1(mod (q − 1)).
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From Proposition 12.23, we infer:

(me)d = med ≡ m(mod p) =⇒ med −m ≡ 0(mod p)

and
(me)d = med ≡ m(mod q) =⇒ med −m ≡ 0(mod q).

Then, p divides med −m and q divides med −m.
Since p, q are distinct primes, then

n = pq divides med −m.

Therefore,

med = (me)d = cd(mod n)
!
≡ m,

is exactly the original clear message.

Example 12.25. Let n = 25, then, Φ(25) = 20.
Let e = 3 be the public exponent ; then, the private exponent is d = 7 (indeed

7 · 3 = 21 ≡ 1(mod 20)).
Let m = 14 be the clear message. Then, c = 19 ≡ 143(mod 25) =

me(mod 25) is the dark message.
Hence,

cd(mod25) = 197(mod 25) = 14 = m,

as desired.
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