
Quantum Mechanical Tunneling
●The quantum mechanical description of matter through wave-
functions obeying the Schroedinger equation is consistent with the 
possibility of penetration through forbidden energy barriers
●The continuous nonzero nature of wave-functions, even in 
classically forbidden regions (negative kinetic energy), implies an 
ability to penetrate such forbidden regions and a probability of 
tunneling from one classically allowed region to another.
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Quantum Mechanical Tunneling

●In 1928 Fowler and Nordheim explained, on the basis of electron 
tunneling, the main features of the phenomenon of electron 
emission from cold metals into vacuum, occurring due to high  
electric fields
●1973 Nobel Prize for Physics awarded to Leo Esaki for the 
invention of the Tunnel Diode
●1986 Nobel Prize for Physics awarded to G. Binning and H. 
Rohrer for the development of the Scanning Tunneling Microscope



Quantum Mechanical Tunneling
Field emission from cold cathodes

Picture from Esaki's Nobel Prize lecture
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Quantum Mechanical Tunneling Esaki's tunnel diode 

From Esaki's 1973 Physics Nobel Prize lecture

(a)

(b) (c)

(d)

P-N junction with highly doped, degerate, N and P regions: EF is positioned inside the 
conduction (valence) band in N (P) region.
For low positive bias (case b) an energy window exists, inside which electrons in conduction 
band of N-region can elastically tunnel into available valence-band states (holes) in P-region.
Larger positive bias (condition c) closes the tunneling window.
Further increasing the bias voltage leads to usual forward conduction of conventional diodes 
(region d).



Quantum Mechanical Tunneling
Scanning tunneling microscopy

Si 111 surface

From Binning & Rohrer Nobel Prize lecture

Constant current (I
T
 ) mode: the 

tip is scanned across the 
surface at constant tunnel 
current, maintained at a pre-set 
value by continuously 
adjusting the vertical tip 
position with the feedback 
voltage V

Z
. In the case of an 

electronically homogeneous 
surface, constant current 
essentially means constant s.



Quantum Mechanical Tunneling
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Quantum Mechanical Tunneling

ψ( x)=Aexp(− j k x )+B exp( j k x)

Ψ inc(x , t)=Aexp [ j (−k x+ω t )]

Ψrefl (x ,t )=B exp [ j (k x+ω t )]

U

Objective: given the barrier height U0 and thickness L we want to find 
the probability for an electron to tunnel through the barrier

Ψ( x , t)=ψ( x)⋅ϕ(t )=Aexp [ j (−k x+ω t )]+B exp [ j(k x+ω t )]



Quantum Mechanical Tunneling

ψ( x)=C exp(−α x )+D exp(α x)

Ψ( x , t)=C exp(−α x+ j ω t)+D exp [α x+ j ω t ]

exponential dumped solution
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Quantum Mechanical Tunneling

ψtrans(x)=F exp (− j k x) Ψtrans=F exp [ j(−kx+ω t )]

A+B=C+D

− jkA+ jkB=−α C+α D

C exp(−α L)+D exp(α L)=F exp(− j k L)

−αC exp(−α L)+α D exp(α L)=− jkF exp(− jk L )

By imposing the continuity of y and dy/dx at x=0 (see next slide) and x= L we get a 
linear system in A,B,C,D,F. 

T=|ψ trans (L)
ψ inc(0) |

2

=|FA|
2

=| 4 j kα e jkL

(α+ jk)2 eα L−(α− jk)2e−α L|
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Quantum Mechanical Tunneling

A exp(− j k 0-)+B exp( j k 0-)=C exp(−α0+)+D exp(α 0+)

− j k Aexp(− j k 0-)+ j k B exp( j k 0-)=−αC exp(−α0+)+α D exp(α0+)

Continuity of y(x) at x = 0

Continuity of y’(x) at x = 0

Matching of solutions at x=0

Similar matching conditions are set at x=L



QM-particles through barriers

ψ( x )=C exp(−α x)+D exp(α x)

D exp(ax) diverges as x increases; the only acceptable solution requires: 
D=0 

ψ(x)=C exp(−α x)

Let's consider the solution inside the barrier:

Suppose that L is “large” compared to a-1 (                          , frequent case)

Probability of electrons penetrating the barrier: T=
|ψ(L)|2

|ψ(0)|2 =exp(−2α L)

(WKB approximation)

Critical dependence of T on L 
and, through a,  on the barrier 
height U0 - E

U
U

U 0−E≫ ℏ2

2m

α=√2m(U 0−E)
ℏ



Tunneling through a 1nm thick, 1 eV 
high barrier 

U

Transmission coef.
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|ψtransm .|
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probability of tunneling through the ith section:

probability of tunneling through the entire barrier:

limit for infinitesimal discretization length dx:

Tunneling through a generic barrier

T =exp[−2∫0

L
α(x)dx ]=exp[−2 √2 m

ℏ ∫0

L

√U ( x)−E dx]

T i≈e
−2α iδ x i  with: α i=

√2m(U i−E)
ℏ

T≈∏
1

n

e−2α iδ xi=e
−2∑

1

n

α iδ x i

An energy barrier of arbitrary 
shape may be discretized into 
many sections of length dxi, 
featuring approximately 
constant Ui values;



Field-emission from cold cathodes into vacuum
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T=exp[−2∫
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α (x )dx]
α (x)=√ 2mℏ2 [U (x )−E0]

T=exp[−4 (2m)0.5ϕ 1.5
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Tunneling through triangular barrier 
(Fowler Nordheim)
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α (x)=√ 2mℏ2 [U (x )−E ]

T≃exp[−2(2mϕ )0.5 t
ℏ ]
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Tunneling through trapezoidal barrier 
(Direct Tunneling)



Gate Electrode
(N-Polysilicon)

Gate Oxide Silicon Body
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: electric field in the oxide



Gate Electrode
(N-Polysilicon)

Silicon Body



t
OX

T≃exp[−2(2mϕ )0.5 tOX
ℏ ]





Exploitation of direct tunneling in advanced 
solar cells

Passivated tunneling back contact
Avoids charge recombination at the back cell contact
Conversion efficiency up to 25.1% demonstrated (Lab.) 
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