NAME			MAT		_
Please reply yes or no, more than or	ne ansv	wer can b	be yes (+0.5 if correct, otherwise 0)		
Quantum number	yes	no	Excited state deactivation processes	s yes	no
Energy does not depend on n			Are always non radiative		
l is always lower than n			Can be in the millisecond time		
			scale		
s can be negative			Can produce heat or light		
mլ describes the orbital shape			Are always unimolecular		
Electronic excited states			Lifetime τ		
	yes	no		yes	no
Are always singlets			After τ excited state completely		
			disappears		
Typically, triplets can be formed			Typically, is shorter for triplets than		
by light absorption			for singlets		
Have lower energy than the			Short τ is needed for bimolecular		
ground state Are stable			processes		
			For singlet is often in the ns time		
Are stable					
Are stable			scale		
Jablonski diagrams			scale Multiplicity		
	yes	no		yes	no
Jablonski diagrams Typically represent only one	yes	no	Multiplicity Singlet to singlet transitions are	yes	no
Jablonski diagrams Typically represent only one electronic state	yes	no	Multiplicity Singlet to singlet transitions are forbidden	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in	yes	no	Multiplicity Singlet to singlet transitions are forbidden Triplet to triplet transitions are	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet	yes	no	Multiplicity Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from	yes	no	Multiplicity Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet	yes	no	Multiplicity Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet	yes	no	Multiplicity Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are allowed	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet Intersystem crossing goes from	yes	no	Multiplicity Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are allowed Typically, excited state singlet of a	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet	yes	no	Multiplicity Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are allowed	yes	no
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet Intersystem crossing goes from triplet to triplet			Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are allowed Typically, excited state singlet of a chromophore interacts with O2		
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet Intersystem crossing goes from triplet to triplet Absorption of light			Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are forbidden Triplet to singlet transitions are allowed Typically, excited state singlet of a chromophore interacts with O2 Photo-isomerization		
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet Intersystem crossing goes from triplet to triplet Absorption of light Red pigments absorb red light			Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are allowed Typically, excited state singlet of a chromophore interacts with O2 Photo-isomerization Is not activated by light		
Jablonski diagrams Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet Intersystem crossing goes from triplet to triplet Absorption of light Red pigments absorb red light Typically leads to the direct			Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are allowed Typically, excited state singlet of a chromophore interacts with O2 Photo-isomerization Is not activated by light May involve rotation around a		
Typically represent only one electronic state First excited singlet is lower in energy than first excited triplet Intersystem crossing goes from singlet to singlet Intersystem crossing goes from triplet to triplet Absorption of light Red pigments absorb red light Typically leads to the direct formation of a triplet			Singlet to singlet transitions are forbidden Triplet to triplet transitions are forbidden Triplet to singlet transitions are forbidden Triplet to singlet transitions are allowed Typically, excited state singlet of a chromophore interacts with O2 Photo-isomerization Is not activated by light May involve rotation around a double bond		

NAME			MAT		
Dye molecules			Distorted excited states		
	yes	no		yes	no
Absorption maximum does not			Peak of absorption is lower in		
depend on the substituents			energy than the pure electronic transition		
Can be organic or inorganic			Peak of fluorescence is lower in		
			energy than the pure electronic transition		
Are soluble in the used matrix			Absorption of light produces a		
			breaking of bonds		
Are less photostable than iron-			Minimum of energy of the ground		
oxides			and excited state is for the same		
			geometry		
Non distorted (nested) excited stat	es	no	Electronic excited states	yes	no
Absorption band is symmetric			Geometry can be very different		
			from ground state		
Fluorescence band is not			There is only one excited state per		
symmetric			molecule		
Vibrational 0-0 transition is not			Can be produced with a small		
possible			increase of the temperature		
After light absorption there is			Are typical of a molecule in the dark		
always vibrational relaxation					

Exercise (9 points)

Draw the microstates for O_2 . Find the electronic states. Show the order of energy of the states. What is the multiplicity of the ground state? What is the multiplicity of the first excited state? Is transition to this last state possible by absorption of light by O_2 .